Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/*
 * Copyright (c) 2017 comsuisse AG
 * Copyright (c) 2018 Justin Watson
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/** @file
 * @brief Atmel SAM MCU family ADC (AFEC) driver.
 *
 * This is an implementation of the Zephyr ADC driver using the SAM Analog
 * Front-End Controller (AFEC) peripheral.
 */

#include <errno.h>
#include <misc/__assert.h>
#include <misc/util.h>
#include <device.h>
#include <init.h>
#include <soc.h>
#include <adc.h>

#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"

#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_sam_afec);

#define NUM_CHANNELS 12

#define CONF_ADC_PRESCALER ((SOC_ATMEL_SAM_MCK_FREQ_HZ / 15000000) - 1)

typedef void (*cfg_func_t)(struct device *dev);

struct adc_sam_data {
	struct adc_context ctx;
	struct device *dev;

	/* Pointer to the buffer in the sequence. */
	u16_t *buffer;

	/* Pointer to the beginning of a sample. Consider the number of
	 * channels in the sequence: this buffer changes by that amount
	 * so all the channels would get repeated.
	 */
	u16_t *repeat_buffer;

	/* Bit mask of the channels to be sampled. */
	u32_t channels;

	/* Index of the channel being sampled. */
	u8_t channel_id;
};

struct adc_sam_cfg {
	Afec *regs;
	cfg_func_t cfg_func;
	u32_t periph_id;
	struct soc_gpio_pin afec_trg_pin;
};

#define DEV_CFG(dev) \
	((const struct adc_sam_cfg *const)(dev)->config->config_info)

#define DEV_DATA(dev) \
	((struct adc_sam_data *)(dev)->driver_data)

static int adc_sam_channel_setup(struct device *dev,
				 const struct adc_channel_cfg *channel_cfg)
{
	const struct adc_sam_cfg * const cfg = DEV_CFG(dev);
	Afec *const afec = cfg->regs;

	u8_t channel_id = channel_cfg->channel_id;

	/* Clear the gain bits for the channel. */
	afec->AFEC_CGR &= ~(3 << channel_id * 2U);

	switch (channel_cfg->gain) {
	case ADC_GAIN_1:
		/* A value of 0 in this register is a gain of 1. */
		break;
	case ADC_GAIN_1_2:
		afec->AFEC_CGR |= (1 << (channel_id * 2U));
		break;
	case ADC_GAIN_1_4:
		afec->AFEC_CGR |= (2 << (channel_id * 2U));
		break;
	default:
		LOG_ERR("Selected ADC gain is not valid");
		return -EINVAL;
	}

	if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
		LOG_ERR("Selected ADC acquisition time is not valid");
		return -EINVAL;
	}

	if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
		LOG_ERR("Selected reference is not valid");
		return -EINVAL;
	}

	if (channel_cfg->differential) {
		LOG_ERR("Differential input is not supported");
		return -EINVAL;
	}

	/* Set single ended channels to unsigned and differential channels
	 * to signed conversions.
	 */
	afec->AFEC_EMR &= ~(AFEC_EMR_SIGNMODE(
			  AFEC_EMR_SIGNMODE_SE_UNSG_DF_SIGN_Val));

	return 0;
}

static void adc_sam_start_conversion(struct device *dev)
{
	const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
	struct adc_sam_data *data = DEV_DATA(dev);
	Afec *const afec = cfg->regs;

	data->channel_id = find_lsb_set(data->channels) - 1;

	LOG_DBG("Starting channel %d", data->channel_id);

	/* Disable all channels. */
	afec->AFEC_CHDR = 0xfff;
	afec->AFEC_IDR = 0xfff;

	/* Enable the ADC channel. This also enables/selects the channel pin as
	 * an input to the AFEC (50.5.1 SAM E70 datasheet).
	 */
	afec->AFEC_CHER = (1 << data->channel_id);

	/* Enable the interrupt for the channel. */
	afec->AFEC_IER = (1 << data->channel_id);

	/* Start the conversions. */
	afec->AFEC_CR = AFEC_CR_START;
}

/**
 * This is only called once at the beginning of all the conversions,
 * all channels as a group.
 */
static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);

	data->channels = ctx->sequence.channels;

	adc_sam_start_conversion(data->dev);
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx,
					      bool repeat_sampling)
{
	struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

static int check_buffer_size(const struct adc_sequence *sequence,
			     u8_t active_channels)
{
	size_t needed_buffer_size;
	needed_buffer_size = active_channels * sizeof(u16_t);
	if (sequence->options) {
		needed_buffer_size *= (1 + sequence->options->extra_samplings);
	}
	if (sequence->buffer_size < needed_buffer_size) {
		LOG_ERR("Provided buffer is too small (%u/%u)",
				sequence->buffer_size, needed_buffer_size);
		return -ENOMEM;
	}
	return 0;
}

static int start_read(struct device *dev, const struct adc_sequence *sequence)
{
	struct adc_sam_data *data = DEV_DATA(dev);
	int error = 0;
	u32_t channels = sequence->channels;

	data->channels = 0U;

	/* Signal an error if the channel selection is invalid (no channels or
	 * a non-existing one is selected).
	 */
	if (channels == 0U ||
	    (channels & (~0UL << NUM_CHANNELS))) {
		LOG_ERR("Invalid selection of channels");
		return -EINVAL;
	}

	if (sequence->oversampling != 0U) {
		LOG_ERR("Oversampling is not supported");
		return -EINVAL;
	}

	if (sequence->resolution != 12U) {
		/* TODO JKW: Support the Enhanced Resolution Mode 50.6.3 page
		 * 1544.
		 */
		LOG_ERR("ADC resolution value %d is not valid",
			    sequence->resolution);
		return -EINVAL;
	}

	u8_t num_active_channels = 0U;
	u8_t channel = 0U;

	while (channels > 0) {
		if (channels & 1) {
			++num_active_channels;
		}
		channels >>= 1;
		++channel;
	}

	error = check_buffer_size(sequence, num_active_channels);
	if (error) {
		return error;
	}

	/* In the context you have a pointer to the adc_sam_data structure
	 * only.
	 */
	data->buffer = sequence->buffer;
	data->repeat_buffer = sequence->buffer;

	/* At this point we allow the scheduler to do other things while
	 * we wait for the conversions to complete. This is provided by the
	 * adc_context functions. However, the caller of this function is
	 * blocked until the results are in.
	 */
	adc_context_start_read(&data->ctx, sequence);

	error = adc_context_wait_for_completion(&data->ctx);
	return error;
}

static int adc_sam_read(struct device *dev,
			const struct adc_sequence *sequence)
{
	struct adc_sam_data *data = DEV_DATA(dev);
	int error;

	adc_context_lock(&data->ctx, false, NULL);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

static int adc_sam_init(struct device *dev)
{
	const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
	struct adc_sam_data *data = DEV_DATA(dev);
	Afec *const afec = cfg->regs;

	/* Reset the AFEC. */
	afec->AFEC_CR = AFEC_CR_SWRST;

	afec->AFEC_MR = AFEC_MR_TRGEN_DIS
		      | AFEC_MR_SLEEP_NORMAL
		      | AFEC_MR_FWUP_OFF
		      | AFEC_MR_FREERUN_OFF
		      | AFEC_MR_PRESCAL(CONF_ADC_PRESCALER)
		      | AFEC_MR_STARTUP_SUT96
		      | AFEC_MR_ONE
		      | AFEC_MR_USEQ_NUM_ORDER;

	/* Set all channels CM voltage to Vrefp/2 (512). */
	for (int i = 0; i < NUM_CHANNELS; i++) {
		afec->AFEC_CSELR = i;
		afec->AFEC_COCR = 512;
	}

	/* Enable PGA and Current Bias. */
	afec->AFEC_ACR = AFEC_ACR_PGA0EN
		       | AFEC_ACR_PGA1EN
		       | AFEC_ACR_IBCTL(1);

	soc_pmc_peripheral_enable(cfg->periph_id);

	cfg->cfg_func(dev);

	data->dev = dev;

	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

#ifdef CONFIG_ADC_ASYNC
static int adc_sam_read_async(struct device *dev,
			      const struct adc_sequence *sequence,
			      struct k_poll_signal *async)
{
	struct adc_sam_data *data = DEV_DATA(dev);
	int error;

	adc_context_lock(&data->ctx, true, async);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}
#endif

static const struct adc_driver_api adc_sam_api = {
	.channel_setup = adc_sam_channel_setup,
	.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = adc_sam_read_async,
#endif
};

static void adc_sam_isr(void *arg)
{
	struct device *dev = (struct device *)arg;
	struct adc_sam_data *data = DEV_DATA(dev);
	const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
	Afec *const afec = cfg->regs;
	u16_t result;

	afec->AFEC_CHDR |= BIT(data->channel_id);
	afec->AFEC_IDR |= BIT(data->channel_id);

	afec->AFEC_CSELR = AFEC_CSELR_CSEL(data->channel_id);
	result = (u16_t)(afec->AFEC_CDR);

	*data->buffer++ = result;
	data->channels &= ~BIT(data->channel_id);

	if (data->channels) {
		adc_sam_start_conversion(dev);
	} else {
		/* Called once all conversions have completed.*/
		adc_context_on_sampling_done(&data->ctx, dev);
	}
}

#ifdef CONFIG_ADC_0
static void adc0_sam_cfg_func(struct device *dev);

static const struct adc_sam_cfg adc0_sam_cfg = {
	.regs = (Afec *)DT_ADC_0_BASE_ADDRESS,
	.cfg_func = adc0_sam_cfg_func,
	.periph_id = DT_ADC_0_PERIPHERAL_ID,
	.afec_trg_pin = PIN_AFE0_ADTRG,
};

static struct adc_sam_data adc0_sam_data = {
	ADC_CONTEXT_INIT_TIMER(adc0_sam_data, ctx),
	ADC_CONTEXT_INIT_LOCK(adc0_sam_data, ctx),
	ADC_CONTEXT_INIT_SYNC(adc0_sam_data, ctx),
};

DEVICE_AND_API_INIT(adc0_sam, DT_ADC_0_NAME, adc_sam_init,
		    &adc0_sam_data, &adc0_sam_cfg, POST_KERNEL,
		    CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &adc_sam_api);

static void adc0_sam_cfg_func(struct device *dev)
{
	IRQ_CONNECT(DT_ADC_0_IRQ, DT_ADC_0_IRQ_PRI, adc_sam_isr,
		    DEVICE_GET(adc0_sam), 0);
	irq_enable(DT_ADC_0_IRQ);
}

#endif /* CONFIG_ADC_0 */

#ifdef CONFIG_ADC_1
static void adc1_sam_cfg_func(struct device *dev);

static const struct adc_sam_cfg adc1_sam_cfg = {
	.regs = (Afec *)DT_ADC_1_BASE_ADDRESS,
	.cfg_func = adc1_sam_cfg_func,
	.periph_id = DT_ADC_1_PERIPHERAL_ID,
	.afec_trg_pin = PIN_AFE1_ADTRG,
};

static struct adc_sam_data adc1_sam_data = {
	ADC_CONTEXT_INIT_TIMER(adc1_sam_data, ctx),
	ADC_CONTEXT_INIT_LOCK(adc1_sam_data, ctx),
	ADC_CONTEXT_INIT_SYNC(adc1_sam_data, ctx),
};

DEVICE_AND_API_INIT(adc1_sam, DT_ADC_1_NAME, adc_sam_init,
		    &adc1_sam_data, &adc1_sam_cfg, POST_KERNEL,
		    CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &adc_sam_api);

static void adc1_sam_cfg_func(struct device *dev)
{
	IRQ_CONNECT(DT_ADC_1_IRQ, DT_ADC_1_IRQ_PRI, adc_sam_isr,
		    DEVICE_GET(adc1_sam), 0);
	irq_enable(DT_ADC_1_IRQ);
}

#endif /* CONFIG_ADC_1 */