Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 | /**
******************************************************************************
* @file stm32l4xx_hal_rcc_ex.c
* @author MCD Application Team
* @brief Extended RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities RCC extended peripheral:
* + Extended Peripheral Control functions
* + Extended Clock management functions
* + Extended Clock Recovery System Control functions
*
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @defgroup RCCEx RCCEx
* @brief RCC Extended HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
* @{
*/
#define PLLSAI1_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
#define PLLSAI2_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
#define PLL_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
#define DIVIDER_P_UPDATE 0U
#define DIVIDER_Q_UPDATE 1U
#define DIVIDER_R_UPDATE 2U
#define __LSCO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define LSCO_GPIO_PORT GPIOA
#define LSCO_PIN GPIO_PIN_2
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCCEx_Private_Functions RCCEx Private Functions
* @{
*/
#if defined(RCC_PLLSAI1_SUPPORT)
static HAL_StatusTypeDef RCCEx_PLLSAI1_Config(RCC_PLLSAI1InitTypeDef *PllSai1, uint32_t Divider);
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(RCC_PLLSAI2_SUPPORT)
static HAL_StatusTypeDef RCCEx_PLLSAI2_Config(RCC_PLLSAI2InitTypeDef *PllSai2, uint32_t Divider);
#endif /* RCC_PLLSAI2_SUPPORT */
#if defined(SAI1)
static uint32_t RCCEx_GetSAIxPeriphCLKFreq(uint32_t PeriphClk, uint32_t InputFrequency);
#endif /* SAI1 */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
* @{
*/
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
[..]
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
select the RTC clock source; in this case the Backup domain will be reset in
order to modify the RTC Clock source, as consequence RTC registers (including
the backup registers) are set to their reset values.
@endverbatim
* @{
*/
/**
* @brief Initialize the RCC extended peripherals clocks according to the specified
* parameters in the RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains a field PeriphClockSelection which can be a combination of the following values:
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
* @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
@if STM32L462xx
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral clock (only for devices with DFSDM1)
@endif
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral clock (only for devices with DFSDM1)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral clock (only for devices with DFSDM1)
@endif
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C2 I2C2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock
@if STM32L462xx
* @arg @ref RCC_PERIPHCLK_I2C4 I2C4 peripheral clock (only for devices with I2C4)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_I2C4 I2C4 peripheral clock (only for devices with I2C4)
@endif
@if STM32L4S9xx
* @arg @ref RCC_PERIPHCLK_I2C4 I2C4 peripheral clock (only for devices with I2C4)
@endif
* @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock
* @arg @ref RCC_PERIPHCLK_SAI1 SAI1 peripheral clock (only for devices with SAI1)
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_SAI2 SAI2 peripheral clock (only for devices with SAI2)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_SAI2 SAI2 peripheral clock (only for devices with SAI2)
@endif
@if STM32L4S9xx
* @arg @ref RCC_PERIPHCLK_SAI2 SAI2 peripheral clock (only for devices with SAI2)
@endif
* @arg @ref RCC_PERIPHCLK_SDMMC1 SDMMC1 peripheral clock
@if STM32L443xx
* @arg @ref RCC_PERIPHCLK_SWPMI1 SWPMI1 peripheral clock (only for devices with SWPMI1)
@endif
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_SWPMI1 SWPMI1 peripheral clock (only for devices with SWPMI1)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_SWPMI1 SWPMI1 peripheral clock (only for devices with SWPMI1)
@endif
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART2 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART3 USART1 peripheral clock
@if STM32L462xx
* @arg @ref RCC_PERIPHCLK_UART4 USART1 peripheral clock (only for devices with UART4)
@endif
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_UART4 USART1 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_UART5 USART1 peripheral clock (only for devices with UART5)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_UART4 USART1 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_UART5 USART1 peripheral clock (only for devices with UART5)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
@endif
@if STM32L4S9xx
* @arg @ref RCC_PERIPHCLK_UART4 USART1 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_UART5 USART1 peripheral clock (only for devices with UART5)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral kernel clock (only for devices with DFSDM1)
* @arg @ref RCC_PERIPHCLK_DFSDM1AUDIO DFSDM1 peripheral audio clock (only for devices with DFSDM1)
* @arg @ref RCC_PERIPHCLK_LTDC LTDC peripheral clock (only for devices with LTDC)
* @arg @ref RCC_PERIPHCLK_DSI DSI peripheral clock (only for devices with DSI)
* @arg @ref RCC_PERIPHCLK_OSPI OctoSPI peripheral clock (only for devices with OctoSPI)
@endif
*
* @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source: in this case the access to Backup domain is enabled.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tmpregister, tickstart; /* no init needed */
HAL_StatusTypeDef ret = HAL_OK; /* Intermediate status */
HAL_StatusTypeDef status = HAL_OK; /* Final status */
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
#if defined(SAI1)
/*-------------------------- SAI1 clock source configuration ---------------------*/
if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1))
{
/* Check the parameters */
assert_param(IS_RCC_SAI1CLK(PeriphClkInit->Sai1ClockSelection));
switch(PeriphClkInit->Sai1ClockSelection)
{
case RCC_SAI1CLKSOURCE_PLL: /* PLL is used as clock source for SAI1*/
/* Enable SAI Clock output generated form System PLL . */
#if defined(RCC_PLLSAI2_SUPPORT)
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
#else
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI2CLK);
#endif /* RCC_PLLSAI2_SUPPORT */
/* SAI1 clock source config set later after clock selection check */
break;
case RCC_SAI1CLKSOURCE_PLLSAI1: /* PLLSAI1 is used as clock source for SAI1*/
/* PLLSAI1 input clock, parameters M, N & P configuration and clock output (PLLSAI1ClockOut) */
ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_P_UPDATE);
/* SAI1 clock source config set later after clock selection check */
break;
#if defined(RCC_PLLSAI2_SUPPORT)
case RCC_SAI1CLKSOURCE_PLLSAI2: /* PLLSAI2 is used as clock source for SAI1*/
/* PLLSAI2 input clock, parameters M, N & P configuration clock output (PLLSAI2ClockOut) */
ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_P_UPDATE);
/* SAI1 clock source config set later after clock selection check */
break;
#endif /* RCC_PLLSAI2_SUPPORT */
case RCC_SAI1CLKSOURCE_PIN: /* External clock is used as source of SAI1 clock*/
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
case RCC_SAI1CLKSOURCE_HSI: /* HSI is used as source of SAI1 clock*/
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
/* SAI1 clock source config set later after clock selection check */
break;
default:
ret = HAL_ERROR;
break;
}
if(ret == HAL_OK)
{
/* Set the source of SAI1 clock*/
__HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection);
}
else
{
/* set overall return value */
status = ret;
}
}
#endif /* SAI1 */
#if defined(SAI2)
/*-------------------------- SAI2 clock source configuration ---------------------*/
if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2))
{
/* Check the parameters */
assert_param(IS_RCC_SAI2CLK(PeriphClkInit->Sai2ClockSelection));
switch(PeriphClkInit->Sai2ClockSelection)
{
case RCC_SAI2CLKSOURCE_PLL: /* PLL is used as clock source for SAI2*/
/* Enable SAI Clock output generated form System PLL . */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
/* SAI2 clock source config set later after clock selection check */
break;
case RCC_SAI2CLKSOURCE_PLLSAI1: /* PLLSAI1 is used as clock source for SAI2*/
/* PLLSAI1 input clock, parameters M, N & P configuration and clock output (PLLSAI1ClockOut) */
ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_P_UPDATE);
/* SAI2 clock source config set later after clock selection check */
break;
case RCC_SAI2CLKSOURCE_PLLSAI2: /* PLLSAI2 is used as clock source for SAI2*/
/* PLLSAI2 input clock, parameters M, N & P configuration and clock output (PLLSAI2ClockOut) */
ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_P_UPDATE);
/* SAI2 clock source config set later after clock selection check */
break;
case RCC_SAI2CLKSOURCE_PIN: /* External clock is used as source of SAI2 clock*/
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
case RCC_SAI2CLKSOURCE_HSI: /* HSI is used as source of SAI2 clock*/
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
/* SAI2 clock source config set later after clock selection check */
break;
default:
ret = HAL_ERROR;
break;
}
if(ret == HAL_OK)
{
/* Set the source of SAI2 clock*/
__HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection);
}
else
{
/* set overall return value */
status = ret;
}
}
#endif /* SAI2 */
/*-------------------------- RTC clock source configuration ----------------------*/
if((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
{
FlagStatus pwrclkchanged = RESET;
/* Check for RTC Parameters used to output RTCCLK */
assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
/* Enable Power Clock */
if(__HAL_RCC_PWR_IS_CLK_DISABLED() != 0U)
{
__HAL_RCC_PWR_CLK_ENABLE();
pwrclkchanged = SET;
}
/* Enable write access to Backup domain */
SET_BIT(PWR->CR1, PWR_CR1_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while(READ_BIT(PWR->CR1, PWR_CR1_DBP) == 0U)
{
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
ret = HAL_TIMEOUT;
break;
}
}
if(ret == HAL_OK)
{
/* Reset the Backup domain only if the RTC Clock source selection is modified from default */
tmpregister = READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL);
if((tmpregister != RCC_RTCCLKSOURCE_NONE) && (tmpregister != PeriphClkInit->RTCClockSelection))
{
/* Store the content of BDCR register before the reset of Backup Domain */
tmpregister = READ_BIT(RCC->BDCR, ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = tmpregister;
}
/* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */
if (HAL_IS_BIT_SET(tmpregister, RCC_BDCR_LSEON))
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
{
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
ret = HAL_TIMEOUT;
break;
}
}
}
if(ret == HAL_OK)
{
/* Apply new RTC clock source selection */
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
else
{
/* set overall return value */
status = ret;
}
}
else
{
/* set overall return value */
status = ret;
}
/* Restore clock configuration if changed */
if(pwrclkchanged == SET)
{
__HAL_RCC_PWR_CLK_DISABLE();
}
}
/*-------------------------- USART1 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
{
/* Check the parameters */
assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
/* Configure the USART1 clock source */
__HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
}
/*-------------------------- USART2 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
{
/* Check the parameters */
assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
/* Configure the USART2 clock source */
__HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
}
#if defined(USART3)
/*-------------------------- USART3 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
{
/* Check the parameters */
assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
/* Configure the USART3 clock source */
__HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
}
#endif /* USART3 */
#if defined(UART4)
/*-------------------------- UART4 clock source configuration --------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4)
{
/* Check the parameters */
assert_param(IS_RCC_UART4CLKSOURCE(PeriphClkInit->Uart4ClockSelection));
/* Configure the UART4 clock source */
__HAL_RCC_UART4_CONFIG(PeriphClkInit->Uart4ClockSelection);
}
#endif /* UART4 */
#if defined(UART5)
/*-------------------------- UART5 clock source configuration --------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5)
{
/* Check the parameters */
assert_param(IS_RCC_UART5CLKSOURCE(PeriphClkInit->Uart5ClockSelection));
/* Configure the UART5 clock source */
__HAL_RCC_UART5_CONFIG(PeriphClkInit->Uart5ClockSelection);
}
#endif /* UART5 */
/*-------------------------- LPUART1 clock source configuration ------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1)
{
/* Check the parameters */
assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection));
/* Configure the LPUAR1 clock source */
__HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection);
}
/*-------------------------- LPTIM1 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1))
{
assert_param(IS_RCC_LPTIM1CLK(PeriphClkInit->Lptim1ClockSelection));
__HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection);
}
/*-------------------------- LPTIM2 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2))
{
assert_param(IS_RCC_LPTIM2CLK(PeriphClkInit->Lptim2ClockSelection));
__HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection);
}
/*-------------------------- I2C1 clock source configuration ---------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
{
/* Check the parameters */
assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
/* Configure the I2C1 clock source */
__HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
}
#if defined(I2C2)
/*-------------------------- I2C2 clock source configuration ---------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2)
{
/* Check the parameters */
assert_param(IS_RCC_I2C2CLKSOURCE(PeriphClkInit->I2c2ClockSelection));
/* Configure the I2C2 clock source */
__HAL_RCC_I2C2_CONFIG(PeriphClkInit->I2c2ClockSelection);
}
#endif /* I2C2 */
/*-------------------------- I2C3 clock source configuration ---------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3)
{
/* Check the parameters */
assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection));
/* Configure the I2C3 clock source */
__HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection);
}
#if defined(I2C4)
/*-------------------------- I2C4 clock source configuration ---------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4)
{
/* Check the parameters */
assert_param(IS_RCC_I2C4CLKSOURCE(PeriphClkInit->I2c4ClockSelection));
/* Configure the I2C4 clock source */
__HAL_RCC_I2C4_CONFIG(PeriphClkInit->I2c4ClockSelection);
}
#endif /* I2C4 */
#if defined(USB_OTG_FS) || defined(USB)
/*-------------------------- USB clock source configuration ----------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == (RCC_PERIPHCLK_USB))
{
assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
__HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
if(PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLL)
{
/* Enable PLL48M1CLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
}
else
{
#if defined(RCC_PLLSAI1_SUPPORT)
if(PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLLSAI1)
{
/* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
#endif /* RCC_PLLSAI1_SUPPORT */
}
}
#endif /* USB_OTG_FS || USB */
#if defined(SDMMC1)
/*-------------------------- SDMMC1 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDMMC1) == (RCC_PERIPHCLK_SDMMC1))
{
assert_param(IS_RCC_SDMMC1CLKSOURCE(PeriphClkInit->Sdmmc1ClockSelection));
__HAL_RCC_SDMMC1_CONFIG(PeriphClkInit->Sdmmc1ClockSelection);
if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLL) /* PLL "Q" ? */
{
/* Enable PLL48M1CLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
}
#if defined(RCC_CCIPR2_SDMMCSEL)
else if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLLP) /* PLL "P" ? */
{
/* Enable PLLSAI3CLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
}
#endif
else if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLLSAI1)
{
/* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
else
{
/* nothing to do */
}
}
#endif /* SDMMC1 */
/*-------------------------- RNG clock source configuration ----------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == (RCC_PERIPHCLK_RNG))
{
assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection));
__HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection);
if(PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLL)
{
/* Enable PLL48M1CLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
}
#if defined(RCC_PLLSAI1_SUPPORT)
else if(PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLLSAI1)
{
/* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
#endif /* RCC_PLLSAI1_SUPPORT */
else
{
/* nothing to do */
}
}
/*-------------------------- ADC clock source configuration ----------------------*/
#if !defined(STM32L412xx) && !defined(STM32L422xx)
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
{
/* Check the parameters */
assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection));
/* Configure the ADC interface clock source */
__HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
#if defined(RCC_PLLSAI1_SUPPORT)
if(PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI1)
{
/* PLLSAI1 input clock, parameters M, N & R configuration and clock output (PLLSAI1ClockOut) */
ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_R_UPDATE);
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || defined(STM32L496xx) || defined(STM32L4A6xx)
else if(PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI2)
{
/* PLLSAI2 input clock, parameters M, N & R configuration and clock output (PLLSAI2ClockOut) */
ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_R_UPDATE);
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || STM32L496xx || STM32L4A6xx */
}
#endif /* !STM32L412xx && !STM32L422xx */
#if defined(SWPMI1)
/*-------------------------- SWPMI1 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SWPMI1) == RCC_PERIPHCLK_SWPMI1)
{
/* Check the parameters */
assert_param(IS_RCC_SWPMI1CLKSOURCE(PeriphClkInit->Swpmi1ClockSelection));
/* Configure the SWPMI1 clock source */
__HAL_RCC_SWPMI1_CONFIG(PeriphClkInit->Swpmi1ClockSelection);
}
#endif /* SWPMI1 */
#if defined(DFSDM1_Filter0)
/*-------------------------- DFSDM1 clock source configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1) == RCC_PERIPHCLK_DFSDM1)
{
/* Check the parameters */
assert_param(IS_RCC_DFSDM1CLKSOURCE(PeriphClkInit->Dfsdm1ClockSelection));
/* Configure the DFSDM1 interface clock source */
__HAL_RCC_DFSDM1_CONFIG(PeriphClkInit->Dfsdm1ClockSelection);
}
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/*-------------------------- DFSDM1 audio clock source configuration -------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1AUDIO) == RCC_PERIPHCLK_DFSDM1AUDIO)
{
/* Check the parameters */
assert_param(IS_RCC_DFSDM1AUDIOCLKSOURCE(PeriphClkInit->Dfsdm1AudioClockSelection));
/* Configure the DFSDM1 interface audio clock source */
__HAL_RCC_DFSDM1AUDIO_CONFIG(PeriphClkInit->Dfsdm1AudioClockSelection);
}
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
/*-------------------------- LTDC clock source configuration --------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC)
{
/* Check the parameters */
assert_param(IS_RCC_LTDCCLKSOURCE(PeriphClkInit->LtdcClockSelection));
/* Disable the PLLSAI2 */
__HAL_RCC_PLLSAI2_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI2 is ready */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
{
ret = HAL_TIMEOUT;
break;
}
}
if(ret == HAL_OK)
{
/* Configure the LTDC clock source */
__HAL_RCC_LTDC_CONFIG(PeriphClkInit->LtdcClockSelection);
/* PLLSAI2 input clock, parameters M, N & R configuration and clock output (PLLSAI2ClockOut) */
ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_R_UPDATE);
}
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
#endif /* LTDC */
#if defined(DSI)
/*-------------------------- DSI clock source configuration ---------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DSI) == RCC_PERIPHCLK_DSI)
{
/* Check the parameters */
assert_param(IS_RCC_DSICLKSOURCE(PeriphClkInit->DsiClockSelection));
/* Configure the DSI clock source */
__HAL_RCC_DSI_CONFIG(PeriphClkInit->DsiClockSelection);
if(PeriphClkInit->DsiClockSelection == RCC_DSICLKSOURCE_PLLSAI2)
{
/* PLLSAI2 input clock, parameters M, N & Q configuration and clock output (PLLSAI2ClockOut) */
ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_Q_UPDATE);
if(ret != HAL_OK)
{
/* set overall return value */
status = ret;
}
}
}
#endif /* DSI */
#if defined(OCTOSPI1) || defined(OCTOSPI2)
/*-------------------------- OctoSPIx clock source configuration ----------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_OSPI) == RCC_PERIPHCLK_OSPI)
{
/* Check the parameters */
assert_param(IS_RCC_OSPICLKSOURCE(PeriphClkInit->OspiClockSelection));
/* Configure the OctoSPI clock source */
__HAL_RCC_OSPI_CONFIG(PeriphClkInit->OspiClockSelection);
if(PeriphClkInit->OspiClockSelection == RCC_OSPICLKSOURCE_PLL)
{
/* Enable PLL48M1CLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
}
}
#endif /* OCTOSPI1 || OCTOSPI2 */
return status;
}
/**
* @brief Get the RCC_ClkInitStruct according to the internal RCC configuration registers.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* returns the configuration information for the Extended Peripherals
* clocks(SAI1, SAI2, LPTIM1, LPTIM2, I2C1, I2C2, I2C3, I2C4, LPUART,
* USART1, USART2, USART3, UART4, UART5, RTC, ADCx, DFSDMx, SWPMI1, USB, SDMMC1 and RNG).
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
/* Set all possible values for the extended clock type parameter------------*/
#if defined(STM32L412xx) || defined(STM32L422xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_RNG | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L431xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_SWPMI1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L432xx) || defined(STM32L442xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_SWPMI1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L433xx) || defined(STM32L443xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_SWPMI1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L451xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_I2C4 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L452xx) || defined(STM32L462xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_I2C4 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L471xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L496xx) || defined(STM32L4A6xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_I2C4 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_RTC ;
#elif defined(STM32L4R5xx) || defined(STM32L4S5xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_I2C4 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_DFSDM1AUDIO | RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_OSPI;
#elif defined(STM32L4R7xx) || defined(STM32L4S7xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_I2C4 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_DFSDM1AUDIO | RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_OSPI | RCC_PERIPHCLK_LTDC;
#elif defined(STM32L4R9xx) || defined(STM32L4S9xx)
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4 | RCC_PERIPHCLK_UART5 | \
RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | RCC_PERIPHCLK_I2C4 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 | RCC_PERIPHCLK_USB | \
RCC_PERIPHCLK_SDMMC1 | RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_DFSDM1 | \
RCC_PERIPHCLK_DFSDM1AUDIO | RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_OSPI | RCC_PERIPHCLK_LTDC | RCC_PERIPHCLK_DSI;
#endif /* STM32L431xx */
#if defined(RCC_PLLSAI1_SUPPORT)
/* Get the PLLSAI1 Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLSAI1.PLLSAI1Source = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC) >> RCC_PLLCFGR_PLLSRC_Pos;
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
PeriphClkInit->PLLSAI1.PLLSAI1M = (READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U;
#else
PeriphClkInit->PLLSAI1.PLLSAI1M = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U;
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
PeriphClkInit->PLLSAI1.PLLSAI1N = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
PeriphClkInit->PLLSAI1.PLLSAI1P = ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1P) >> RCC_PLLSAI1CFGR_PLLSAI1P_Pos) << 4U) + 7U;
PeriphClkInit->PLLSAI1.PLLSAI1Q = ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) + 1U) * 2U;
PeriphClkInit->PLLSAI1.PLLSAI1R = ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1R) >> RCC_PLLSAI1CFGR_PLLSAI1R_Pos) + 1U) * 2U;
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(RCC_PLLSAI2_SUPPORT)
/* Get the PLLSAI2 Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLSAI2.PLLSAI2Source = PeriphClkInit->PLLSAI1.PLLSAI1Source;
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
PeriphClkInit->PLLSAI2.PLLSAI2M = (READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2M) >> RCC_PLLSAI2CFGR_PLLSAI2M_Pos) + 1U;
#else
PeriphClkInit->PLLSAI2.PLLSAI2M = PeriphClkInit->PLLSAI1.PLLSAI1M;
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT */
PeriphClkInit->PLLSAI2.PLLSAI2N = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> RCC_PLLSAI2CFGR_PLLSAI2N_Pos;
PeriphClkInit->PLLSAI2.PLLSAI2P = ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2P) >> RCC_PLLSAI2CFGR_PLLSAI2P_Pos) << 4U) + 7U;
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
PeriphClkInit->PLLSAI2.PLLSAI2Q = ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2Q) >> RCC_PLLSAI2CFGR_PLLSAI2Q_Pos) + 1U) * 2U;
#endif /* RCC_PLLSAI2Q_DIV_SUPPORT */
PeriphClkInit->PLLSAI2.PLLSAI2R = ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2R)>> RCC_PLLSAI2CFGR_PLLSAI2R_Pos) + 1U) * 2U;
#endif /* RCC_PLLSAI2_SUPPORT */
/* Get the USART1 clock source ---------------------------------------------*/
PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
/* Get the USART2 clock source ---------------------------------------------*/
PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
#if defined(USART3)
/* Get the USART3 clock source ---------------------------------------------*/
PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
#endif /* USART3 */
#if defined(UART4)
/* Get the UART4 clock source ----------------------------------------------*/
PeriphClkInit->Uart4ClockSelection = __HAL_RCC_GET_UART4_SOURCE();
#endif /* UART4 */
#if defined(UART5)
/* Get the UART5 clock source ----------------------------------------------*/
PeriphClkInit->Uart5ClockSelection = __HAL_RCC_GET_UART5_SOURCE();
#endif /* UART5 */
/* Get the LPUART1 clock source --------------------------------------------*/
PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE();
/* Get the I2C1 clock source -----------------------------------------------*/
PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
#if defined(I2C2)
/* Get the I2C2 clock source ----------------------------------------------*/
PeriphClkInit->I2c2ClockSelection = __HAL_RCC_GET_I2C2_SOURCE();
#endif /* I2C2 */
/* Get the I2C3 clock source -----------------------------------------------*/
PeriphClkInit->I2c3ClockSelection = __HAL_RCC_GET_I2C3_SOURCE();
#if defined(I2C4)
/* Get the I2C4 clock source -----------------------------------------------*/
PeriphClkInit->I2c4ClockSelection = __HAL_RCC_GET_I2C4_SOURCE();
#endif /* I2C4 */
/* Get the LPTIM1 clock source ---------------------------------------------*/
PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE();
/* Get the LPTIM2 clock source ---------------------------------------------*/
PeriphClkInit->Lptim2ClockSelection = __HAL_RCC_GET_LPTIM2_SOURCE();
#if defined(SAI1)
/* Get the SAI1 clock source -----------------------------------------------*/
PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE();
#endif /* SAI1 */
#if defined(SAI2)
/* Get the SAI2 clock source -----------------------------------------------*/
PeriphClkInit->Sai2ClockSelection = __HAL_RCC_GET_SAI2_SOURCE();
#endif /* SAI2 */
/* Get the RTC clock source ------------------------------------------------*/
PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
#if defined(USB_OTG_FS) || defined(USB)
/* Get the USB clock source ------------------------------------------------*/
PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
#endif /* USB_OTG_FS || USB */
#if defined(SDMMC1)
/* Get the SDMMC1 clock source ---------------------------------------------*/
PeriphClkInit->Sdmmc1ClockSelection = __HAL_RCC_GET_SDMMC1_SOURCE();
#endif /* SDMMC1 */
/* Get the RNG clock source ------------------------------------------------*/
PeriphClkInit->RngClockSelection = __HAL_RCC_GET_RNG_SOURCE();
#if !defined(STM32L412xx) && !defined(STM32L422xx)
/* Get the ADC clock source ------------------------------------------------*/
PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE();
#endif /* !STM32L412xx && !STM32L422xx */
#if defined(SWPMI1)
/* Get the SWPMI1 clock source ---------------------------------------------*/
PeriphClkInit->Swpmi1ClockSelection = __HAL_RCC_GET_SWPMI1_SOURCE();
#endif /* SWPMI1 */
#if defined(DFSDM1_Filter0)
/* Get the DFSDM1 clock source ---------------------------------------------*/
PeriphClkInit->Dfsdm1ClockSelection = __HAL_RCC_GET_DFSDM1_SOURCE();
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* Get the DFSDM1 audio clock source ---------------------------------------*/
PeriphClkInit->Dfsdm1AudioClockSelection = __HAL_RCC_GET_DFSDM1AUDIO_SOURCE();
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
/* Get the LTDC clock source -----------------------------------------------*/
PeriphClkInit->LtdcClockSelection = __HAL_RCC_GET_LTDC_SOURCE();
#endif /* LTDC */
#if defined(DSI)
/* Get the DSI clock source ------------------------------------------------*/
PeriphClkInit->DsiClockSelection = __HAL_RCC_GET_DSI_SOURCE();
#endif /* DSI */
#if defined(OCTOSPI1) || defined(OCTOSPI2)
/* Get the OctoSPIclock source --------------------------------------------*/
PeriphClkInit->OspiClockSelection = __HAL_RCC_GET_OSPI_SOURCE();
#endif /* OCTOSPI1 || OCTOSPI2 */
}
/**
* @brief Return the peripheral clock frequency for peripherals with clock source from PLLSAIs
* @note Return 0 if peripheral clock identifier not managed by this API
* @param PeriphClk Peripheral clock identifier
* This parameter can be one of the following values:
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
* @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
@if STM32L462xx
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral clock (only for devices with DFSDM)
@endif
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral clock (only for devices with DFSDM)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral clock (only for devices with DFSDM)
@endif
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C2 I2C2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock
@if STM32L462xx
* @arg @ref RCC_PERIPHCLK_I2C4 I2C4 peripheral clock (only for devices with I2C4)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_I2C4 I2C4 peripheral clock (only for devices with I2C4)
@endif
@if STM32L4S9xx
* @arg @ref RCC_PERIPHCLK_I2C4 I2C4 peripheral clock (only for devices with I2C4)
@endif
* @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock
* @arg @ref RCC_PERIPHCLK_SAI1 SAI1 peripheral clock (only for devices with SAI1)
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_SAI2 SAI2 peripheral clock (only for devices with SAI2)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_SAI2 SAI2 peripheral clock (only for devices with SAI2)
@endif
@if STM32L4S9xx
* @arg @ref RCC_PERIPHCLK_SAI2 SAI2 peripheral clock (only for devices with SAI2)
@endif
* @arg @ref RCC_PERIPHCLK_SDMMC1 SDMMC1 peripheral clock
@if STM32L443xx
* @arg @ref RCC_PERIPHCLK_SWPMI1 SWPMI1 peripheral clock (only for devices with SWPMI1)
@endif
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_SWPMI1 SWPMI1 peripheral clock (only for devices with SWPMI1)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_SWPMI1 SWPMI1 peripheral clock (only for devices with SWPMI1)
@endif
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART2 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART3 USART1 peripheral clock
@if STM32L462xx
* @arg @ref RCC_PERIPHCLK_UART4 UART4 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
@endif
@if STM32L486xx
* @arg @ref RCC_PERIPHCLK_UART4 UART4 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_UART5 UART5 peripheral clock (only for devices with UART5)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
@endif
@if STM32L4A6xx
* @arg @ref RCC_PERIPHCLK_UART4 UART4 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_UART5 UART5 peripheral clock (only for devices with UART5)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
@endif
@if STM32L4S9xx
* @arg @ref RCC_PERIPHCLK_UART4 USART1 peripheral clock (only for devices with UART4)
* @arg @ref RCC_PERIPHCLK_UART5 USART1 peripheral clock (only for devices with UART5)
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock (only for devices with USB)
* @arg @ref RCC_PERIPHCLK_DFSDM1 DFSDM1 peripheral kernel clock (only for devices with DFSDM1)
* @arg @ref RCC_PERIPHCLK_DFSDM1AUDIO DFSDM1 peripheral audio clock (only for devices with DFSDM1)
* @arg @ref RCC_PERIPHCLK_LTDC LTDC peripheral clock (only for devices with LTDC)
* @arg @ref RCC_PERIPHCLK_DSI DSI peripheral clock (only for devices with DSI)
* @arg @ref RCC_PERIPHCLK_OSPI OctoSPI peripheral clock (only for devices with OctoSPI)
@endif
* @retval Frequency in Hz
*/
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
uint32_t frequency = 0U;
uint32_t srcclk, pll_oscsource, pllvco, plln; /* no init needed */
#if defined(SDMMC1) && defined(RCC_CCIPR2_SDMMCSEL)
uint32_t pllp; /* no init needed */
#endif
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
if(PeriphClk == RCC_PERIPHCLK_RTC)
{
/* Get the current RTC source */
srcclk = __HAL_RCC_GET_RTC_SOURCE();
switch(srcclk)
{
case RCC_RTCCLKSOURCE_LSE:
/* Check if LSE is ready */
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
case RCC_RTCCLKSOURCE_LSI:
/* Check if LSI is ready */
if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))
{
frequency = LSI_VALUE;
}
break;
case RCC_RTCCLKSOURCE_HSE_DIV32:
/* Check if HSE is ready */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))
{
frequency = HSE_VALUE / 32U;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
}
else
{
/* Other external peripheral clock source than RTC */
pll_oscsource = __HAL_RCC_GET_PLL_OSCSOURCE();
/* Compute PLL clock input */
switch(pll_oscsource)
{
case RCC_PLLSOURCE_MSI: /* MSI ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
{
/*MSI frequency range in HZ*/
pllvco = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
}
else
{
pllvco = 0U;
}
break;
case RCC_PLLSOURCE_HSI: /* HSI ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
pllvco = HSI_VALUE;
}
else
{
pllvco = 0U;
}
break;
case RCC_PLLSOURCE_HSE: /* HSE ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))
{
pllvco = HSE_VALUE;
}
else
{
pllvco = 0U;
}
break;
default:
/* No source */
pllvco = 0U;
break;
}
switch(PeriphClk)
{
#if defined(SAI1)
case RCC_PERIPHCLK_SAI1:
frequency = RCCEx_GetSAIxPeriphCLKFreq(RCC_PERIPHCLK_SAI1, pllvco);
break;
#endif
#if defined(SAI2)
case RCC_PERIPHCLK_SAI2:
frequency = RCCEx_GetSAIxPeriphCLKFreq(RCC_PERIPHCLK_SAI2, pllvco);
break;
#endif
#if defined(USB_OTG_FS) || defined(USB)
case RCC_PERIPHCLK_USB:
#endif /* USB_OTG_FS || USB */
case RCC_PERIPHCLK_RNG:
#if defined(SDMMC1) && !defined(RCC_CCIPR2_SDMMCSEL)
case RCC_PERIPHCLK_SDMMC1:
#endif /* SDMMC1 && !RCC_CCIPR2_SDMMCSEL */
{
srcclk = READ_BIT(RCC->CCIPR, RCC_CCIPR_CLK48SEL);
switch(srcclk)
{
case RCC_CCIPR_CLK48SEL: /* MSI ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
{
/*MSI frequency range in HZ*/
frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
}
break;
case RCC_CCIPR_CLK48SEL_1: /* PLL ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
{
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
/* f(PLL48M1CLK) = f(VCO input) * PLLN / PLLQ */
plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U);
}
}
break;
#if defined(RCC_PLLSAI1_SUPPORT)
case RCC_CCIPR_CLK48SEL_0: /* PLLSAI1 ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLSAI1RDY))
{
if(HAL_IS_BIT_SET(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1QEN))
{
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* PLLSAI1M exists: apply PLLSAI1M divider for PLLSAI1 output computation */
/* f(PLLSAI1 Source) / PLLSAI1M */
pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
#else
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
/* f(PLL48M2CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1Q */
plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) + 1U) << 1U);
}
}
break;
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(RCC_HSI48_SUPPORT)
case 0U:
if(HAL_IS_BIT_SET(RCC->CRRCR, RCC_CRRCR_HSI48RDY)) /* HSI48 ? */
{
frequency = HSI48_VALUE;
}
break;
#endif /* RCC_HSI48_SUPPORT */
default:
/* No clock source, frequency default init at 0 */
break;
} /* switch(srcclk) */
break;
}
#if defined(SDMMC1) && defined(RCC_CCIPR2_SDMMCSEL)
case RCC_PERIPHCLK_SDMMC1:
if(HAL_IS_BIT_SET(RCC->CCIPR2, RCC_CCIPR2_SDMMCSEL)) /* PLL "P" ? */
{
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN))
{
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
/* f(PLLSAI3CLK) = f(VCO input) * PLLN / PLLP */
plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
pllp = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos;
if(pllp == 0U)
{
if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U)
{
pllp = 17U;
}
else
{
pllp = 7U;
}
}
frequency = (pllvco * plln) / pllp;
}
}
}
else /* 48MHz from PLL "Q" or MSI or PLLSAI1Q or HSI48 */
{
srcclk = READ_BIT(RCC->CCIPR, RCC_CCIPR_CLK48SEL);
switch(srcclk)
{
case RCC_CCIPR_CLK48SEL: /* MSI ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
{
/*MSI frequency range in HZ*/
frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
}
break;
case RCC_CCIPR_CLK48SEL_1: /* PLL "Q" ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
{
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
/* f(PLL48M1CLK) = f(VCO input) * PLLN / PLLQ */
plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U);
}
}
break;
case RCC_CCIPR_CLK48SEL_0: /* PLLSAI1 ? */
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLSAI1RDY))
{
if(HAL_IS_BIT_SET(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1QEN))
{
/* f(PLLSAI1 Source) / PLLSAI1M */
pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
/* f(PLL48M2CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1Q */
plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) + 1U) << 1U);
}
}
break;
case 0U:
if(HAL_IS_BIT_SET(RCC->CRRCR, RCC_CRRCR_HSI48RDY)) /* HSI48 ? */
{
frequency = HSI48_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
} /* switch(srcclk) */
}
break;
#endif /* SDMMC1 && RCC_CCIPR2_SDMMCSEL */
case RCC_PERIPHCLK_USART1:
{
/* Get the current USART1 source */
srcclk = __HAL_RCC_GET_USART1_SOURCE();
switch(srcclk)
{
case RCC_USART1CLKSOURCE_PCLK2:
frequency = HAL_RCC_GetPCLK2Freq();
break;
case RCC_USART1CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_USART1CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_USART1CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
case RCC_PERIPHCLK_USART2:
{
/* Get the current USART2 source */
srcclk = __HAL_RCC_GET_USART2_SOURCE();
switch(srcclk)
{
case RCC_USART2CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_USART2CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_USART2CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_USART2CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#if defined(USART3)
case RCC_PERIPHCLK_USART3:
{
/* Get the current USART3 source */
srcclk = __HAL_RCC_GET_USART3_SOURCE();
switch(srcclk)
{
case RCC_USART3CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_USART3CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_USART3CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_USART3CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* USART3 */
#if defined(UART4)
case RCC_PERIPHCLK_UART4:
{
/* Get the current UART4 source */
srcclk = __HAL_RCC_GET_UART4_SOURCE();
switch(srcclk)
{
case RCC_UART4CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_UART4CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_UART4CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_UART4CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* UART4 */
#if defined(UART5)
case RCC_PERIPHCLK_UART5:
{
/* Get the current UART5 source */
srcclk = __HAL_RCC_GET_UART5_SOURCE();
switch(srcclk)
{
case RCC_UART5CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_UART5CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_UART5CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_UART5CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* UART5 */
case RCC_PERIPHCLK_LPUART1:
{
/* Get the current LPUART1 source */
srcclk = __HAL_RCC_GET_LPUART1_SOURCE();
switch(srcclk)
{
case RCC_LPUART1CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_LPUART1CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_LPUART1CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_LPUART1CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
case RCC_PERIPHCLK_ADC:
{
srcclk = __HAL_RCC_GET_ADC_SOURCE();
switch(srcclk)
{
case RCC_ADCCLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
#if defined(RCC_PLLSAI1_SUPPORT)
case RCC_ADCCLKSOURCE_PLLSAI1:
if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_ADC1CLK) != 0U)
{
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* PLLSAI1M exists: apply PLLSAI1M divider for PLLSAI1 output computation */
/* f(PLLSAI1 Source) / PLLSAI1M */
pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1M) >> RCC_PLLSAI1CFGR_PLLSAI1M_Pos) + 1U));
#else
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
/* f(PLLADC1CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1R */
plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> RCC_PLLSAI1CFGR_PLLSAI1N_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1R) >> RCC_PLLSAI1CFGR_PLLSAI1R_Pos) + 1U) << 1U);
}
break;
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || defined(STM32L496xx) || defined(STM32L4A6xx)
case RCC_ADCCLKSOURCE_PLLSAI2:
if(__HAL_RCC_GET_PLLSAI2CLKOUT_CONFIG(RCC_PLLSAI2_ADC2CLK) != 0U)
{
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
/* PLLSAI2M exists: apply PLLSAI2M divider for PLLSAI2 output computation */
/* f(PLLSAI2 Source) / PLLSAI2M */
pllvco = (pllvco / ((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2M) >> RCC_PLLSAI2CFGR_PLLSAI2M_Pos) + 1U));
#else
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
#endif
/* f(PLLADC2CLK) = f(VCOSAI2 input) * PLLSAI2N / PLLSAI2R */
plln = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> RCC_PLLSAI2CFGR_PLLSAI2N_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2R) >> RCC_PLLSAI2CFGR_PLLSAI2R_Pos) + 1U) << 1U);
}
break;
#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || STM32L496xx || STM32L4A6xx */
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#if defined(DFSDM1_Filter0)
case RCC_PERIPHCLK_DFSDM1:
{
/* Get the current DFSDM1 source */
srcclk = __HAL_RCC_GET_DFSDM1_SOURCE();
if(srcclk == RCC_DFSDM1CLKSOURCE_PCLK2)
{
frequency = HAL_RCC_GetPCLK2Freq();
}
else
{
frequency = HAL_RCC_GetSysClockFreq();
}
break;
}
#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
case RCC_PERIPHCLK_DFSDM1AUDIO:
{
/* Get the current DFSDM1 audio source */
srcclk = __HAL_RCC_GET_DFSDM1AUDIO_SOURCE();
switch(srcclk)
{
case RCC_DFSDM1AUDIOCLKSOURCE_SAI1:
frequency = RCCEx_GetSAIxPeriphCLKFreq(RCC_PERIPHCLK_SAI1, pllvco);
break;
case RCC_DFSDM1AUDIOCLKSOURCE_MSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
{
/*MSI frequency range in HZ*/
frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
}
break;
case RCC_DFSDM1AUDIOCLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
#endif /* DFSDM1_Filter0 */
case RCC_PERIPHCLK_I2C1:
{
/* Get the current I2C1 source */
srcclk = __HAL_RCC_GET_I2C1_SOURCE();
switch(srcclk)
{
case RCC_I2C1CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_I2C1CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_I2C1CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#if defined(I2C2)
case RCC_PERIPHCLK_I2C2:
{
/* Get the current I2C2 source */
srcclk = __HAL_RCC_GET_I2C2_SOURCE();
switch(srcclk)
{
case RCC_I2C2CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_I2C2CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_I2C2CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* I2C2 */
case RCC_PERIPHCLK_I2C3:
{
/* Get the current I2C3 source */
srcclk = __HAL_RCC_GET_I2C3_SOURCE();
switch(srcclk)
{
case RCC_I2C3CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_I2C3CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_I2C3CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#if defined(I2C4)
case RCC_PERIPHCLK_I2C4:
{
/* Get the current I2C4 source */
srcclk = __HAL_RCC_GET_I2C4_SOURCE();
switch(srcclk)
{
case RCC_I2C4CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_I2C4CLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_I2C4CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* I2C4 */
case RCC_PERIPHCLK_LPTIM1:
{
/* Get the current LPTIM1 source */
srcclk = __HAL_RCC_GET_LPTIM1_SOURCE();
switch(srcclk)
{
case RCC_LPTIM1CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_LPTIM1CLKSOURCE_LSI:
if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))
{
frequency = LSI_VALUE;
}
break;
case RCC_LPTIM1CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_LPTIM1CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
case RCC_PERIPHCLK_LPTIM2:
{
/* Get the current LPTIM2 source */
srcclk = __HAL_RCC_GET_LPTIM2_SOURCE();
switch(srcclk)
{
case RCC_LPTIM2CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_LPTIM2CLKSOURCE_LSI:
if(HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY))
{
frequency = LSI_VALUE;
}
break;
case RCC_LPTIM2CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
case RCC_LPTIM2CLKSOURCE_LSE:
if(HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY))
{
frequency = LSE_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#if defined(SWPMI1)
case RCC_PERIPHCLK_SWPMI1:
{
/* Get the current SWPMI1 source */
srcclk = __HAL_RCC_GET_SWPMI1_SOURCE();
switch(srcclk)
{
case RCC_SWPMI1CLKSOURCE_PCLK1:
frequency = HAL_RCC_GetPCLK1Freq();
break;
case RCC_SWPMI1CLKSOURCE_HSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
{
frequency = HSI_VALUE;
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* SWPMI1 */
#if defined(OCTOSPI1) || defined(OCTOSPI2)
case RCC_PERIPHCLK_OSPI:
{
/* Get the current OctoSPI clock source */
srcclk = __HAL_RCC_GET_OSPI_SOURCE();
switch(srcclk)
{
case RCC_OSPICLKSOURCE_SYSCLK:
frequency = HAL_RCC_GetSysClockFreq();
break;
case RCC_OSPICLKSOURCE_MSI:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
{
/*MSI frequency range in HZ*/
frequency = MSIRangeTable[(__HAL_RCC_GET_MSI_RANGE() >> 4U)];
}
break;
case RCC_OSPICLKSOURCE_PLL:
if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
if(HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
{
/* f(PLL Source) / PLLM */
pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U));
/* f(PLL48M1CLK) = f(VCO input) * PLLN / PLLQ */
plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U);
}
}
break;
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
}
#endif /* OCTOSPI1 || OCTOSPI2 */
default:
break;
}
}
return(frequency);
}
/**
* @}
*/
/** @defgroup RCCEx_Exported_Functions_Group2 Extended Clock management functions
* @brief Extended Clock management functions
*
@verbatim
===============================================================================
##### Extended clock management functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the
activation or deactivation of MSI PLL-mode, PLLSAI1, PLLSAI2, LSE CSS,
Low speed clock output and clock after wake-up from STOP mode.
@endverbatim
* @{
*/
#if defined(RCC_PLLSAI1_SUPPORT)
/**
* @brief Enable PLLSAI1.
* @param PLLSAI1Init pointer to an RCC_PLLSAI1InitTypeDef structure that
* contains the configuration information for the PLLSAI1
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI1(RCC_PLLSAI1InitTypeDef *PLLSAI1Init)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
/* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
assert_param(IS_RCC_PLLSAI1SOURCE(PLLSAI1Init->PLLSAI1Source));
assert_param(IS_RCC_PLLSAI1M_VALUE(PLLSAI1Init->PLLSAI1M));
assert_param(IS_RCC_PLLSAI1N_VALUE(PLLSAI1Init->PLLSAI1N));
assert_param(IS_RCC_PLLSAI1P_VALUE(PLLSAI1Init->PLLSAI1P));
assert_param(IS_RCC_PLLSAI1Q_VALUE(PLLSAI1Init->PLLSAI1Q));
assert_param(IS_RCC_PLLSAI1R_VALUE(PLLSAI1Init->PLLSAI1R));
assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1Init->PLLSAI1ClockOut));
/* Disable the PLLSAI1 */
__HAL_RCC_PLLSAI1_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI1 is ready to be updated */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
if(status == HAL_OK)
{
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* Configure the PLLSAI1 Multiplication factor N */
/* Configure the PLLSAI1 Division factors M, P, Q and R */
__HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLSAI1M, PLLSAI1Init->PLLSAI1N, PLLSAI1Init->PLLSAI1P, PLLSAI1Init->PLLSAI1Q, PLLSAI1Init->PLLSAI1R);
#else
/* Configure the PLLSAI1 Multiplication factor N */
/* Configure the PLLSAI1 Division factors P, Q and R */
__HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLSAI1N, PLLSAI1Init->PLLSAI1P, PLLSAI1Init->PLLSAI1Q, PLLSAI1Init->PLLSAI1R);
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
/* Configure the PLLSAI1 Clock output(s) */
__HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1Init->PLLSAI1ClockOut);
/* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
__HAL_RCC_PLLSAI1_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI1 is ready */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
}
return status;
}
/**
* @brief Disable PLLSAI1.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI1(void)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
/* Disable the PLLSAI1 */
__HAL_RCC_PLLSAI1_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI1 is ready */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
/* Disable the PLLSAI1 Clock outputs */
__HAL_RCC_PLLSAI1CLKOUT_DISABLE(RCC_PLLSAI1CFGR_PLLSAI1PEN|RCC_PLLSAI1CFGR_PLLSAI1QEN|RCC_PLLSAI1CFGR_PLLSAI1REN);
/* Reset PLL source to save power if no PLLs on */
#if defined(RCC_PLLSAI2_SUPPORT)
if(READ_BIT(RCC->CR, (RCC_CR_PLLRDY | RCC_CR_PLLSAI2RDY)) == 0U)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
}
#else
if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
}
#endif /* RCC_PLLSAI2_SUPPORT */
return status;
}
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(RCC_PLLSAI2_SUPPORT)
/**
* @brief Enable PLLSAI2.
* @param PLLSAI2Init pointer to an RCC_PLLSAI2InitTypeDef structure that
* contains the configuration information for the PLLSAI2
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI2(RCC_PLLSAI2InitTypeDef *PLLSAI2Init)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
/* check for PLLSAI2 Parameters used to output PLLSAI2CLK */
assert_param(IS_RCC_PLLSAI2SOURCE(PLLSAI2Init->PLLSAI2Source));
assert_param(IS_RCC_PLLSAI2M_VALUE(PLLSAI2Init->PLLSAI2M));
assert_param(IS_RCC_PLLSAI2N_VALUE(PLLSAI2Init->PLLSAI2N));
assert_param(IS_RCC_PLLSAI2P_VALUE(PLLSAI2Init->PLLSAI2P));
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
assert_param(IS_RCC_PLLSAI2Q_VALUE(PLLSAI2Init->PLLSAI2Q));
#endif /* RCC_PLLSAI2Q_DIV_SUPPORT */
assert_param(IS_RCC_PLLSAI2R_VALUE(PLLSAI2Init->PLLSAI2R));
assert_param(IS_RCC_PLLSAI2CLOCKOUT_VALUE(PLLSAI2Init->PLLSAI2ClockOut));
/* Disable the PLLSAI2 */
__HAL_RCC_PLLSAI2_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI2 is ready to be updated */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
if(status == HAL_OK)
{
#if defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT) && defined(RCC_PLLSAI2Q_DIV_SUPPORT)
/* Configure the PLLSAI2 Multiplication factor N */
/* Configure the PLLSAI2 Division factors M, P, Q and R */
__HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2M, PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2Q, PLLSAI2Init->PLLSAI2R);
#elif defined(RCC_PLLSAI2M_DIV_1_16_SUPPORT)
/* Configure the PLLSAI2 Multiplication factor N */
/* Configure the PLLSAI2 Division factors M, P and R */
__HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2M, PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2R);
#elif defined(RCC_PLLSAI2Q_DIV_SUPPORT)
/* Configure the PLLSAI2 Multiplication factor N */
/* Configure the PLLSAI2 Division factors P, Q and R */
__HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2Q, PLLSAI2Init->PLLSAI2R);
#else
/* Configure the PLLSAI2 Multiplication factor N */
/* Configure the PLLSAI2 Division factors P and R */
__HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2R);
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT && RCC_PLLSAI2Q_DIV_SUPPORT */
/* Configure the PLLSAI2 Clock output(s) */
__HAL_RCC_PLLSAI2CLKOUT_ENABLE(PLLSAI2Init->PLLSAI2ClockOut);
/* Enable the PLLSAI2 again by setting PLLSAI2ON to 1*/
__HAL_RCC_PLLSAI2_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI2 is ready */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
}
return status;
}
/**
* @brief Disable PLLISAI2.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI2(void)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
/* Disable the PLLSAI2 */
__HAL_RCC_PLLSAI2_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI2 is ready */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
/* Disable the PLLSAI2 Clock outputs */
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
__HAL_RCC_PLLSAI2CLKOUT_DISABLE(RCC_PLLSAI2CFGR_PLLSAI2PEN|RCC_PLLSAI2CFGR_PLLSAI2QEN|RCC_PLLSAI2CFGR_PLLSAI2REN);
#else
__HAL_RCC_PLLSAI2CLKOUT_DISABLE(RCC_PLLSAI2CFGR_PLLSAI2PEN|RCC_PLLSAI2CFGR_PLLSAI2REN);
#endif /* RCC_PLLSAI2M_DIV_1_16_SUPPORT && RCC_PLLSAI2Q_DIV_SUPPORT */
/* Reset PLL source to save power if no PLLs on */
if(READ_BIT(RCC->CR, (RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY)) == 0U)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
}
return status;
}
#endif /* RCC_PLLSAI2_SUPPORT */
/**
* @brief Configure the oscillator clock source for wakeup from Stop and CSS backup clock.
* @param WakeUpClk Wakeup clock
* This parameter can be one of the following values:
* @arg @ref RCC_STOP_WAKEUPCLOCK_MSI MSI oscillator selection
* @arg @ref RCC_STOP_WAKEUPCLOCK_HSI HSI oscillator selection
* @note This function shall not be called after the Clock Security System on HSE has been
* enabled.
* @retval None
*/
void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk)
{
assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk));
__HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk);
}
/**
* @brief Configure the MSI range after standby mode.
* @note After Standby its frequency can be selected between 4 possible values (1, 2, 4 or 8 MHz).
* @param MSIRange MSI range
* This parameter can be one of the following values:
* @arg @ref RCC_MSIRANGE_4 Range 4 around 1 MHz
* @arg @ref RCC_MSIRANGE_5 Range 5 around 2 MHz
* @arg @ref RCC_MSIRANGE_6 Range 6 around 4 MHz (reset value)
* @arg @ref RCC_MSIRANGE_7 Range 7 around 8 MHz
* @retval None
*/
void HAL_RCCEx_StandbyMSIRangeConfig(uint32_t MSIRange)
{
assert_param(IS_RCC_MSI_STANDBY_CLOCK_RANGE(MSIRange));
__HAL_RCC_MSI_STANDBY_RANGE_CONFIG(MSIRange);
}
/**
* @brief Enable the LSE Clock Security System.
* @note Prior to enable the LSE Clock Security System, LSE oscillator is to be enabled
* with HAL_RCC_OscConfig() and the LSE oscillator clock is to be selected as RTC
* clock with HAL_RCCEx_PeriphCLKConfig().
* @retval None
*/
void HAL_RCCEx_EnableLSECSS(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
}
/**
* @brief Disable the LSE Clock Security System.
* @note LSE Clock Security System can only be disabled after a LSE failure detection.
* @retval None
*/
void HAL_RCCEx_DisableLSECSS(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
/* Disable LSE CSS IT if any */
__HAL_RCC_DISABLE_IT(RCC_IT_LSECSS);
}
/**
* @brief Enable the LSE Clock Security System Interrupt & corresponding EXTI line.
* @note LSE Clock Security System Interrupt is mapped on RTC EXTI line 19
* @retval None
*/
void HAL_RCCEx_EnableLSECSS_IT(void)
{
/* Enable LSE CSS */
SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
/* Enable LSE CSS IT */
__HAL_RCC_ENABLE_IT(RCC_IT_LSECSS);
/* Enable IT on EXTI Line 19 */
__HAL_RCC_LSECSS_EXTI_ENABLE_IT();
__HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE();
}
/**
* @brief Handle the RCC LSE Clock Security System interrupt request.
* @retval None
*/
void HAL_RCCEx_LSECSS_IRQHandler(void)
{
/* Check RCC LSE CSSF flag */
if(__HAL_RCC_GET_IT(RCC_IT_LSECSS))
{
/* RCC LSE Clock Security System interrupt user callback */
HAL_RCCEx_LSECSS_Callback();
/* Clear RCC LSE CSS pending bit */
__HAL_RCC_CLEAR_IT(RCC_IT_LSECSS);
}
}
/**
* @brief RCCEx LSE Clock Security System interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_LSECSS_Callback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_LSECSS_Callback should be implemented in the user file
*/
}
/**
* @brief Select the Low Speed clock source to output on LSCO pin (PA2).
* @param LSCOSource specifies the Low Speed clock source to output.
* This parameter can be one of the following values:
* @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source
* @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source
* @retval None
*/
void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource)
{
GPIO_InitTypeDef GPIO_InitStruct;
FlagStatus pwrclkchanged = RESET;
FlagStatus backupchanged = RESET;
/* Check the parameters */
assert_param(IS_RCC_LSCOSOURCE(LSCOSource));
/* LSCO Pin Clock Enable */
__LSCO_CLK_ENABLE();
/* Configue the LSCO pin in analog mode */
GPIO_InitStruct.Pin = LSCO_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(LSCO_GPIO_PORT, &GPIO_InitStruct);
/* Update LSCOSEL clock source in Backup Domain control register */
if(__HAL_RCC_PWR_IS_CLK_DISABLED())
{
__HAL_RCC_PWR_CLK_ENABLE();
pwrclkchanged = SET;
}
if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
{
HAL_PWR_EnableBkUpAccess();
backupchanged = SET;
}
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, LSCOSource | RCC_BDCR_LSCOEN);
if(backupchanged == SET)
{
HAL_PWR_DisableBkUpAccess();
}
if(pwrclkchanged == SET)
{
__HAL_RCC_PWR_CLK_DISABLE();
}
}
/**
* @brief Disable the Low Speed clock output.
* @retval None
*/
void HAL_RCCEx_DisableLSCO(void)
{
FlagStatus pwrclkchanged = RESET;
FlagStatus backupchanged = RESET;
/* Update LSCOEN bit in Backup Domain control register */
if(__HAL_RCC_PWR_IS_CLK_DISABLED())
{
__HAL_RCC_PWR_CLK_ENABLE();
pwrclkchanged = SET;
}
if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
{
/* Enable access to the backup domain */
HAL_PWR_EnableBkUpAccess();
backupchanged = SET;
}
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);
/* Restore previous configuration */
if(backupchanged == SET)
{
/* Disable access to the backup domain */
HAL_PWR_DisableBkUpAccess();
}
if(pwrclkchanged == SET)
{
__HAL_RCC_PWR_CLK_DISABLE();
}
}
/**
* @brief Enable the PLL-mode of the MSI.
* @note Prior to enable the PLL-mode of the MSI for automatic hardware
* calibration LSE oscillator is to be enabled with HAL_RCC_OscConfig().
* @retval None
*/
void HAL_RCCEx_EnableMSIPLLMode(void)
{
SET_BIT(RCC->CR, RCC_CR_MSIPLLEN) ;
}
/**
* @brief Disable the PLL-mode of the MSI.
* @note PLL-mode of the MSI is automatically reset when LSE oscillator is disabled.
* @retval None
*/
void HAL_RCCEx_DisableMSIPLLMode(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_MSIPLLEN) ;
}
/**
* @}
*/
#if defined(CRS)
/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions
* @brief Extended Clock Recovery System Control functions
*
@verbatim
===============================================================================
##### Extended Clock Recovery System Control functions #####
===============================================================================
[..]
For devices with Clock Recovery System feature (CRS), RCC Extention HAL driver can be used as follows:
(#) In System clock config, HSI48 needs to be enabled
(#) Enable CRS clock in IP MSP init which will use CRS functions
(#) Call CRS functions as follows:
(##) Prepare synchronization configuration necessary for HSI48 calibration
(+++) Default values can be set for frequency Error Measurement (reload and error limit)
and also HSI48 oscillator smooth trimming.
(+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate
directly reload value with target and sychronization frequencies values
(##) Call function HAL_RCCEx_CRSConfig which
(+++) Resets CRS registers to their default values.
(+++) Configures CRS registers with synchronization configuration
(+++) Enables automatic calibration and frequency error counter feature
Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
should be used as SYNC signal.
(##) A polling function is provided to wait for complete synchronization
(+++) Call function HAL_RCCEx_CRSWaitSynchronization()
(+++) According to CRS status, user can decide to adjust again the calibration or continue
application if synchronization is OK
(#) User can retrieve information related to synchronization in calling function
HAL_RCCEx_CRSGetSynchronizationInfo()
(#) Regarding synchronization status and synchronization information, user can try a new calibration
in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
it means that the actual frequency is lower than the target (and so, that the TRIM value should be
incremented), while when it is detected during the upcounting phase it means that the actual frequency
is higher (and that the TRIM value should be decremented).
(#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go
through CRS Handler (CRS_IRQn/CRS_IRQHandler)
(++) Call function HAL_RCCEx_CRSConfig()
(++) Enable CRS_IRQn (thanks to NVIC functions)
(++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT)
(++) Implement CRS status management in the following user callbacks called from
HAL_RCCEx_CRS_IRQHandler():
(+++) HAL_RCCEx_CRS_SyncOkCallback()
(+++) HAL_RCCEx_CRS_SyncWarnCallback()
(+++) HAL_RCCEx_CRS_ExpectedSyncCallback()
(+++) HAL_RCCEx_CRS_ErrorCallback()
(#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
@endverbatim
* @{
*/
/**
* @brief Start automatic synchronization for polling mode
* @param pInit Pointer on RCC_CRSInitTypeDef structure
* @retval None
*/
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
{
uint32_t value; /* no init needed */
/* Check the parameters */
assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
/* CONFIGURATION */
/* Before configuration, reset CRS registers to their default values*/
__HAL_RCC_CRS_FORCE_RESET();
__HAL_RCC_CRS_RELEASE_RESET();
/* Set the SYNCDIV[2:0] bits according to Prescaler value */
/* Set the SYNCSRC[1:0] bits according to Source value */
/* Set the SYNCSPOL bit according to Polarity value */
value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
/* Set the RELOAD[15:0] bits according to ReloadValue value */
value |= pInit->ReloadValue;
/* Set the FELIM[7:0] bits according to ErrorLimitValue value */
value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_Pos);
WRITE_REG(CRS->CFGR, value);
/* Adjust HSI48 oscillator smooth trimming */
/* Set the TRIM[6:0] bits for STM32L412xx/L422xx or TRIM[5:0] bits otherwise
according to RCC_CRS_HSI48CalibrationValue value */
MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_Pos));
/* START AUTOMATIC SYNCHRONIZATION*/
/* Enable Automatic trimming & Frequency error counter */
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
}
/**
* @brief Generate the software synchronization event
* @retval None
*/
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
{
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}
/**
* @brief Return synchronization info
* @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
* @retval None
*/
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
{
/* Check the parameter */
assert_param(pSynchroInfo != (void *)NULL);
/* Get the reload value */
pSynchroInfo->ReloadValue = (READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
/* Get HSI48 oscillator smooth trimming */
pSynchroInfo->HSI48CalibrationValue = (READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_Pos);
/* Get Frequency error capture */
pSynchroInfo->FreqErrorCapture = (READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_Pos);
/* Get Frequency error direction */
pSynchroInfo->FreqErrorDirection = (READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}
/**
* @brief Wait for CRS Synchronization status.
* @param Timeout Duration of the timeout
* @note Timeout is based on the maximum time to receive a SYNC event based on synchronization
* frequency.
* @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
* @retval Combination of Synchronization status
* This parameter can be a combination of the following values:
* @arg @ref RCC_CRS_TIMEOUT
* @arg @ref RCC_CRS_SYNCOK
* @arg @ref RCC_CRS_SYNCWARN
* @arg @ref RCC_CRS_SYNCERR
* @arg @ref RCC_CRS_SYNCMISS
* @arg @ref RCC_CRS_TRIMOVF
*/
uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
{
uint32_t crsstatus = RCC_CRS_NONE;
uint32_t tickstart;
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait for CRS flag or timeout detection */
do
{
if(Timeout != HAL_MAX_DELAY)
{
if(((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
crsstatus = RCC_CRS_TIMEOUT;
}
}
/* Check CRS SYNCOK flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
{
/* CRS SYNC event OK */
crsstatus |= RCC_CRS_SYNCOK;
/* Clear CRS SYNC event OK bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
}
/* Check CRS SYNCWARN flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
{
/* CRS SYNC warning */
crsstatus |= RCC_CRS_SYNCWARN;
/* Clear CRS SYNCWARN bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
}
/* Check CRS TRIM overflow flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
{
/* CRS SYNC Error */
crsstatus |= RCC_CRS_TRIMOVF;
/* Clear CRS Error bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
}
/* Check CRS Error flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
{
/* CRS SYNC Error */
crsstatus |= RCC_CRS_SYNCERR;
/* Clear CRS Error bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
}
/* Check CRS SYNC Missed flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
{
/* CRS SYNC Missed */
crsstatus |= RCC_CRS_SYNCMISS;
/* Clear CRS SYNC Missed bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
}
/* Check CRS Expected SYNC flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
{
/* frequency error counter reached a zero value */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
}
} while(RCC_CRS_NONE == crsstatus);
return crsstatus;
}
/**
* @brief Handle the Clock Recovery System interrupt request.
* @retval None
*/
void HAL_RCCEx_CRS_IRQHandler(void)
{
uint32_t crserror = RCC_CRS_NONE;
/* Get current IT flags and IT sources values */
uint32_t itflags = READ_REG(CRS->ISR);
uint32_t itsources = READ_REG(CRS->CR);
/* Check CRS SYNCOK flag */
if(((itflags & RCC_CRS_FLAG_SYNCOK) != 0U) && ((itsources & RCC_CRS_IT_SYNCOK) != 0U))
{
/* Clear CRS SYNC event OK flag */
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
/* user callback */
HAL_RCCEx_CRS_SyncOkCallback();
}
/* Check CRS SYNCWARN flag */
else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != 0U) && ((itsources & RCC_CRS_IT_SYNCWARN) != 0U))
{
/* Clear CRS SYNCWARN flag */
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
/* user callback */
HAL_RCCEx_CRS_SyncWarnCallback();
}
/* Check CRS Expected SYNC flag */
else if(((itflags & RCC_CRS_FLAG_ESYNC) != 0U) && ((itsources & RCC_CRS_IT_ESYNC) != 0U))
{
/* frequency error counter reached a zero value */
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
/* user callback */
HAL_RCCEx_CRS_ExpectedSyncCallback();
}
/* Check CRS Error flags */
else
{
if(((itflags & RCC_CRS_FLAG_ERR) != 0U) && ((itsources & RCC_CRS_IT_ERR) != 0U))
{
if((itflags & RCC_CRS_FLAG_SYNCERR) != 0U)
{
crserror |= RCC_CRS_SYNCERR;
}
if((itflags & RCC_CRS_FLAG_SYNCMISS) != 0U)
{
crserror |= RCC_CRS_SYNCMISS;
}
if((itflags & RCC_CRS_FLAG_TRIMOVF) != 0U)
{
crserror |= RCC_CRS_TRIMOVF;
}
/* Clear CRS Error flags */
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
/* user error callback */
HAL_RCCEx_CRS_ErrorCallback(crserror);
}
}
}
/**
* @brief RCCEx Clock Recovery System SYNCOK interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
*/
}
/**
* @brief RCCEx Clock Recovery System SYNCWARN interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
*/
}
/**
* @brief RCCEx Clock Recovery System Expected SYNC interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
*/
}
/**
* @brief RCCEx Clock Recovery System Error interrupt callback.
* @param Error Combination of Error status.
* This parameter can be a combination of the following values:
* @arg @ref RCC_CRS_SYNCERR
* @arg @ref RCC_CRS_SYNCMISS
* @arg @ref RCC_CRS_TRIMOVF
* @retval none
*/
__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(Error);
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
*/
}
/**
* @}
*/
#endif /* CRS */
/**
* @}
*/
/** @addtogroup RCCEx_Private_Functions
* @{
*/
#if defined(RCC_PLLSAI1_SUPPORT)
/**
* @brief Configure the parameters N & P & optionally M of PLLSAI1 and enable PLLSAI1 output clock(s).
* @param PllSai1 pointer to an RCC_PLLSAI1InitTypeDef structure that
* contains the configuration parameters N & P & optionally M as well as PLLSAI1 output clock(s)
* @param Divider divider parameter to be updated
*
* @note PLLSAI1 is temporary disable to apply new parameters
*
* @retval HAL status
*/
static HAL_StatusTypeDef RCCEx_PLLSAI1_Config(RCC_PLLSAI1InitTypeDef *PllSai1, uint32_t Divider)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
/* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
/* P, Q and R dividers are verified in each specific divider case below */
assert_param(IS_RCC_PLLSAI1SOURCE(PllSai1->PLLSAI1Source));
assert_param(IS_RCC_PLLSAI1M_VALUE(PllSai1->PLLSAI1M));
assert_param(IS_RCC_PLLSAI1N_VALUE(PllSai1->PLLSAI1N));
assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PllSai1->PLLSAI1ClockOut));
/* Check that PLLSAI1 clock source and divider M can be applied */
if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_NONE)
{
/* PLL clock source and divider M already set, check that no request for change */
if((__HAL_RCC_GET_PLL_OSCSOURCE() != PllSai1->PLLSAI1Source)
||
(PllSai1->PLLSAI1Source == RCC_PLLSOURCE_NONE)
#if !defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
||
(((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U) != PllSai1->PLLSAI1M)
#endif
)
{
status = HAL_ERROR;
}
}
else
{
/* Check PLLSAI1 clock source availability */
switch(PllSai1->PLLSAI1Source)
{
case RCC_PLLSOURCE_MSI:
if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_MSIRDY))
{
status = HAL_ERROR;
}
break;
case RCC_PLLSOURCE_HSI:
if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSIRDY))
{
status = HAL_ERROR;
}
break;
case RCC_PLLSOURCE_HSE:
if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSERDY))
{
if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSEBYP))
{
status = HAL_ERROR;
}
}
break;
default:
status = HAL_ERROR;
break;
}
if(status == HAL_OK)
{
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* Set PLLSAI1 clock source */
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PllSai1->PLLSAI1Source);
#else
/* Set PLLSAI1 clock source and divider M */
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM, PllSai1->PLLSAI1Source | (PllSai1->PLLSAI1M - 1U) << RCC_PLLCFGR_PLLM_Pos);
#endif
}
}
if(status == HAL_OK)
{
/* Disable the PLLSAI1 */
__HAL_RCC_PLLSAI1_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI1 is ready to be updated */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
if(status == HAL_OK)
{
if(Divider == DIVIDER_P_UPDATE)
{
assert_param(IS_RCC_PLLSAI1P_VALUE(PllSai1->PLLSAI1P));
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* Configure the PLLSAI1 Division factor M, P and Multiplication factor N*/
#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1PDIV | RCC_PLLSAI1CFGR_PLLSAI1M,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
(PllSai1->PLLSAI1P << RCC_PLLSAI1CFGR_PLLSAI1PDIV_Pos) |
((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#else
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1P | RCC_PLLSAI1CFGR_PLLSAI1M,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
((PllSai1->PLLSAI1P >> 4U) << RCC_PLLSAI1CFGR_PLLSAI1P_Pos) |
((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#endif /* RCC_PLLSAI1P_DIV_2_31_SUPPORT */
#else
/* Configure the PLLSAI1 Division factor P and Multiplication factor N*/
#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1PDIV,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
(PllSai1->PLLSAI1P << RCC_PLLSAI1CFGR_PLLSAI1PDIV_Pos));
#else
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1P,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
((PllSai1->PLLSAI1P >> 4U) << RCC_PLLSAI1CFGR_PLLSAI1P_Pos));
#endif /* RCC_PLLSAI1P_DIV_2_31_SUPPORT */
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
}
else if(Divider == DIVIDER_Q_UPDATE)
{
assert_param(IS_RCC_PLLSAI1Q_VALUE(PllSai1->PLLSAI1Q));
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* Configure the PLLSAI1 Division factor M, Q and Multiplication factor N*/
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1Q | RCC_PLLSAI1CFGR_PLLSAI1M,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
(((PllSai1->PLLSAI1Q >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1Q_Pos) |
((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#else
/* Configure the PLLSAI1 Division factor Q and Multiplication factor N*/
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1Q,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
(((PllSai1->PLLSAI1Q >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1Q_Pos));
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
}
else
{
assert_param(IS_RCC_PLLSAI1R_VALUE(PllSai1->PLLSAI1R));
#if defined(RCC_PLLSAI1M_DIV_1_16_SUPPORT)
/* Configure the PLLSAI1 Division factor M, R and Multiplication factor N*/
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1R | RCC_PLLSAI1CFGR_PLLSAI1M,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
(((PllSai1->PLLSAI1R >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1R_Pos) |
((PllSai1->PLLSAI1M - 1U) << RCC_PLLSAI1CFGR_PLLSAI1M_Pos));
#else
/* Configure the PLLSAI1 Division factor R and Multiplication factor N*/
MODIFY_REG(RCC->PLLSAI1CFGR,
RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1R,
(PllSai1->PLLSAI1N << RCC_PLLSAI1CFGR_PLLSAI1N_Pos) |
(((PllSai1->PLLSAI1R >> 1U) - 1U) << RCC_PLLSAI1CFGR_PLLSAI1R_Pos));
#endif /* RCC_PLLSAI1M_DIV_1_16_SUPPORT */
}
/* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
__HAL_RCC_PLLSAI1_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLLSAI1 is ready */
while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == 0U)
{
if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
{
status = HAL_TIMEOUT;
break;
}
}
if(status == HAL_OK)
{
/* Configure the PLLSAI1 Clock output(s) */
__HAL_RCC_PLLSAI1CLKOUT_ENABLE(PllSai1->PLLSAI1ClockOut);
}
}
}
return status;
}
#endif /* RCC_PLLSAI1_SUPPORT */
#if defined(RCC_PLLSAI2_SUPPORT)
/**
* @brief Configure the parameters N & P & optionally M of PLLSAI2 and enable PLLSAI2 output clock(s).
* @param PllSai2 pointer to an RCC_PLLSAI2InitTypeDef structure that
* contains the configuration parameters N & P & optionally M as well as PLLSAI2 output clock(s)
* @param Divider divider parameter to be updated
*
* @note PLLSAI2 is temporary disable to apply new parameters
*
* @retval HAL status
*/
static HAL_StatusTypeDef RCCEx_PLLSAI2_Config(RCC_PLLSAI2InitTypeDef *PllSai2, uint32_t Divider)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
/* check for PLLSAI2 Parameters used to output PLLSAI2CLK */
/* P, Q and R dividers are verified in each specific divider case below */
assert_param(IS_RCC_PLLSAI2SOURCE(PllSai2->PLLSAI2Source));
assert_param(IS_RCC_PLLSAI2M_VALUE(PllSai2->PLLSAI2M));
assert_param(IS_RCC_PLLSAI2N_VALUE(PllSai2->PLLSAI2N));
assert_param(IS_RCC_PLLSAI2CLOCKOUT_VALUE(PllSai2-> |