Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | /* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Interrupt support for IA-32 arch * * INTERNAL * The _idt_base_address symbol is used to determine the base address of the IDT. * (It is generated by the linker script, and doesn't correspond to an actual * global variable.) */ #include <kernel.h> #include <arch/cpu.h> #include <kernel_structs.h> #include <misc/__assert.h> #include <misc/printk.h> #include <irq.h> #include <tracing.h> #include <kswap.h> #include <arch/x86/segmentation.h> extern void _SpuriousIntHandler(void *handler); extern void _SpuriousIntNoErrCodeHandler(void *handler); /* * Place the addresses of the spurious interrupt handlers into the intList * section. The genIdt tool can then populate any unused vectors with * these routines. */ void *__attribute__((section(".spurIsr"))) MK_ISR_NAME(_SpuriousIntHandler) = &_SpuriousIntHandler; void *__attribute__((section(".spurNoErrIsr"))) MK_ISR_NAME(_SpuriousIntNoErrCodeHandler) = &_SpuriousIntNoErrCodeHandler; /* FIXME: IRQ direct inline functions have to be placed here and not in * arch/cpu.h as inline functions due to nasty circular dependency between * arch/cpu.h and kernel_structs.h; the inline functions typically need to * perform operations on _kernel. For now, leave as regular functions, a * future iteration will resolve this. * * See https://github.com/zephyrproject-rtos/zephyr/issues/3056 */ #ifdef CONFIG_SYS_POWER_MANAGEMENT void z_arch_irq_direct_pm(void) { if (_kernel.idle) { s32_t idle_val = _kernel.idle; _kernel.idle = 0; z_sys_power_save_idle_exit(idle_val); } } #endif void z_arch_isr_direct_header(void) { z_int_latency_start(); z_sys_trace_isr_enter(); /* We're not going to unlock IRQs, but we still need to increment this * so that z_is_in_isr() works */ ++_kernel.nested; } void z_arch_isr_direct_footer(int swap) { _irq_controller_eoi(); z_int_latency_stop(); sys_trace_isr_exit(); --_kernel.nested; /* Call swap if all the following is true: * * 1) swap argument was enabled to this function * 2) We are not in a nested interrupt * 3) Next thread to run in the ready queue is not this thread */ if (swap != 0 && _kernel.nested == 0 && _kernel.ready_q.cache != _current) { unsigned int flags; /* Fetch EFLAGS argument to z_swap() */ __asm__ volatile ( "pushfl\n\t" "popl %0\n\t" : "=g" (flags) : : "memory" ); (void)z_swap_irqlock(flags); } } #if CONFIG_X86_DYNAMIC_IRQ_STUBS > 0 /* * z_interrupt_vectors_allocated[] bitfield is generated by the 'gen_idt' tool. * It is initialized to identify which interrupts have been statically * connected and which interrupts are available to be dynamically connected at * run time, with a 1 bit indicating a free vector. The variable itself is * defined in the linker file. */ extern unsigned int z_interrupt_vectors_allocated[]; struct dyn_irq_info { /** IRQ handler */ void (*handler)(void *param); /** Parameter to pass to the handler */ void *param; }; /* * Instead of creating a large sparse table mapping all possible IDT vectors * to dyn_irq_info, the dynamic stubs push a "stub id" onto the stack * which is used by common_dynamic_handler() to fetch the appropriate * information out of this much smaller table */ static struct dyn_irq_info dyn_irq_list[CONFIG_X86_DYNAMIC_IRQ_STUBS]; static unsigned int next_irq_stub; /* Memory address pointing to where in ROM the code for the dynamic stubs are. * Linker symbol. */ extern char z_dynamic_stubs_begin[]; #ifndef CONFIG_X86_FIXED_IRQ_MAPPING /** * @brief Allocate a free interrupt vector given <priority> * * This routine scans the z_interrupt_vectors_allocated[] array for a free vector * that satisfies the specified <priority>. * * This routine assumes that the relationship between interrupt priority and * interrupt vector is : * * priority = (vector / 16) - 2; * * Vectors 0 to 31 are reserved for CPU exceptions and do NOT fall under * the priority scheme. The first vector used for priority level 0 will be 32. * Each interrupt priority level contains 16 vectors. * * It is also assumed that the interrupt controllers are capable of managing * interrupt requests on a per-vector level as opposed to a per-priority level. * For example, the local APIC on Pentium4 and later processors, the in-service * register (ISR) and the interrupt request register (IRR) are 256 bits wide. * * @return allocated interrupt vector */ static unsigned int priority_to_free_vector(unsigned int requested_priority) { unsigned int entry; unsigned int fsb; /* first set bit in entry */ unsigned int search_set; unsigned int vector_block; unsigned int vector; static unsigned int mask[2] = {0x0000ffffU, 0xffff0000U}; vector_block = requested_priority + 2; __ASSERT(((vector_block << 4) + 15) <= CONFIG_IDT_NUM_VECTORS, "IDT too small (%d entries) to use priority %d", CONFIG_IDT_NUM_VECTORS, requested_priority); /* * Atomically allocate a vector from the * z_interrupt_vectors_allocated[] array to prevent race conditions * with other threads attempting to allocate an interrupt * vector. * * Note: As z_interrupt_vectors_allocated[] is initialized by the * 'gen_idt.py' tool, it is critical that this routine use the same * algorithm as the 'gen_idt.py' tool for allocating interrupt vectors. */ entry = vector_block >> 1; /* * The z_interrupt_vectors_allocated[] entry indexed by 'entry' * is a 32-bit quantity and thus represents the vectors for a pair of * priority levels. Mask out the unwanted priority level and then use * find_lsb_set() to scan for an available vector of the requested * priority. * * Note that find_lsb_set() returns bit position from 1 to 32, or 0 if * the argument is zero. */ search_set = mask[vector_block & 1] & z_interrupt_vectors_allocated[entry]; fsb = find_lsb_set(search_set); __ASSERT(fsb != 0U, "No remaning vectors for priority level %d", requested_priority); /* * An available vector of the requested priority was found. * Mark it as allocated by clearing the bit. */ --fsb; z_interrupt_vectors_allocated[entry] &= ~BIT(fsb); /* compute vector given allocated bit within the priority level */ vector = (entry << 5) + fsb; return vector; } #endif /* !CONFIG_X86_FIXED_IRQ_MAPPING */ /** * @brief Get the memory address of an unused dynamic IRQ or exception stub * * We generate at build time a set of dynamic stubs which push * a stub index onto the stack for use as an argument by * common handling code. * * @param stub_idx Stub number to fetch the corresponding stub function * @return Pointer to the stub code to install into the IDT */ static void *get_dynamic_stub(int stub_idx) { u32_t offset; /* * Because we want the sizes of the stubs to be consisent and minimized, * stubs are grouped into blocks, each containing a push and subsequent * 2-byte jump instruction to the end of the block, which then contains * a larger jump instruction to common dynamic IRQ handling code */ offset = (stub_idx * Z_DYN_STUB_SIZE) + ((stub_idx / Z_DYN_STUB_PER_BLOCK) * Z_DYN_STUB_LONG_JMP_EXTRA_SIZE); return (void *)((u32_t)&z_dynamic_stubs_begin + offset); } extern const struct pseudo_descriptor z_x86_idt; static void idt_vector_install(int vector, void *irq_handler) { int key; key = irq_lock(); _init_irq_gate(&z_x86_idt.entries[vector], CODE_SEG, (u32_t)irq_handler, 0); #ifdef CONFIG_MVIC /* MVIC requires IDT be reloaded if the entries table is ever changed */ _set_idt(&z_x86_idt); #endif irq_unlock(key); } /** * * @brief Connect a C routine to a hardware interrupt * * @param irq virtualized IRQ to connect to * @param priority requested priority of interrupt * @param routine the C interrupt handler * @param parameter parameter passed to C routine * @param flags IRQ flags * * This routine connects an interrupt service routine (ISR) coded in C to * the specified hardware <irq>. An interrupt vector will be allocated to * satisfy the specified <priority>. * * The specified <irq> represents a virtualized IRQ, i.e. it does not * necessarily represent a specific IRQ line on a given interrupt controller * device. The platform presents a virtualized set of IRQs from 0 to N, where * N is the total number of IRQs supported by all the interrupt controller * devices on the board. See the platform's documentation for the mapping of * virtualized IRQ to physical IRQ. * * When the device asserts an interrupt on the specified <irq>, a switch to * the interrupt stack is performed (if not already executing on the interrupt * stack), followed by saving the integer (i.e. non-floating point) thread of * the currently executing thread or ISR. The ISR specified by <routine> * will then be invoked with the single <parameter>. When the ISR returns, a * context switch may occur. * * On some platforms <flags> parameter needs to be specified to indicate if * the irq is triggered by low or high level or by rising or falling edge. * * The routine searches for the first available element in the dynamic_stubs * array and uses it for the stub. * * @return the allocated interrupt vector * * WARNINGS * This routine does not perform range checking on the requested <priority> * and thus, depending on the underlying interrupt controller, may result * in the assignment of an interrupt vector located in the reserved range of * the processor. */ int z_arch_irq_connect_dynamic(unsigned int irq, unsigned int priority, void (*routine)(void *parameter), void *parameter, u32_t flags) { int vector, stub_idx, key; key = irq_lock(); #ifdef CONFIG_X86_FIXED_IRQ_MAPPING vector = Z_IRQ_TO_INTERRUPT_VECTOR(irq); #else vector = priority_to_free_vector(priority); /* 0 indicates not used, vectors for interrupts start at 32 */ __ASSERT(_irq_to_interrupt_vector[irq] == 0U, "IRQ %d already configured", irq); _irq_to_interrupt_vector[irq] = vector; #endif z_irq_controller_irq_config(vector, irq, flags); stub_idx = next_irq_stub++; __ASSERT(stub_idx < CONFIG_X86_DYNAMIC_IRQ_STUBS, "No available interrupt stubs found"); dyn_irq_list[stub_idx].handler = routine; dyn_irq_list[stub_idx].param = parameter; idt_vector_install(vector, get_dynamic_stub(stub_idx)); irq_unlock(key); return vector; } /** * @brief Common dynamic IRQ handler function * * This gets called by the IRQ entry asm code with the stub index supplied as * an argument. Look up the required information in dyn_irq_list and * execute it. * * @param stub_idx Index into the dyn_irq_list array */ void z_x86_dynamic_irq_handler(u8_t stub_idx) { dyn_irq_list[stub_idx].handler(dyn_irq_list[stub_idx].param); } #endif /* CONFIG_X86_DYNAMIC_IRQ_STUBS > 0 */ |