Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | /* * Copyright (c) 2013-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel fatal error handler * * This module provides the z_NanoFatalErrorHandler() routine. */ #include <toolchain.h> #include <linker/sections.h> #include <kernel.h> #include <kernel_structs.h> #include <misc/printk.h> #include <arch/x86/irq_controller.h> #include <arch/x86/segmentation.h> #include <exception.h> #include <inttypes.h> #include <exc_handle.h> #include <logging/log_ctrl.h> __weak void _debug_fatal_hook(const NANO_ESF *esf) { ARG_UNUSED(esf); } #ifdef CONFIG_THREAD_STACK_INFO /** * @brief Check if a memory address range falls within the stack * * Given a memory address range, ensure that it falls within the bounds * of the faulting context's stack. * * @param addr Starting address * @param size Size of the region, or 0 if we just want to see if addr is * in bounds * @param cs Code segment of faulting context * @return true if addr/size region is not within the thread stack */ static bool check_stack_bounds(u32_t addr, size_t size, u16_t cs) { u32_t start, end; if (z_is_in_isr()) { /* We were servicing an interrupt */ start = (u32_t)Z_ARCH_THREAD_STACK_BUFFER(_interrupt_stack); end = start + CONFIG_ISR_STACK_SIZE; } else if ((cs & 0x3U) != 0U || (_current->base.user_options & K_USER) == 0) { /* Thread was in user mode, or is not a user mode thread. * The normal stack buffer is what we will check. */ start = _current->stack_info.start; end = STACK_ROUND_DOWN(_current->stack_info.start + _current->stack_info.size); } else { /* User thread was doing a syscall, check kernel stack bounds */ start = _current->stack_info.start - MMU_PAGE_SIZE; end = _current->stack_info.start; } return (addr <= start) || (addr + size > end); } #endif #if defined(CONFIG_EXCEPTION_STACK_TRACE) struct stack_frame { u32_t next; u32_t ret_addr; u32_t args; }; #define MAX_STACK_FRAMES 8 static void unwind_stack(u32_t base_ptr, u16_t cs) { struct stack_frame *frame; int i; if (base_ptr == 0U) { printk("NULL base ptr\n"); return; } for (i = 0; i < MAX_STACK_FRAMES; i++) { if (base_ptr % sizeof(base_ptr) != 0U) { printk("unaligned frame ptr\n"); return; } frame = (struct stack_frame *)base_ptr; if (frame == NULL) { break; } #ifdef CONFIG_THREAD_STACK_INFO /* Ensure the stack frame is within the faulting context's * stack buffer */ if (check_stack_bounds((u32_t)frame, sizeof(*frame), cs)) { printk(" corrupted? (bp=%p)\n", frame); break; } #endif if (frame->ret_addr == 0U) { break; } #ifdef CONFIG_X86_IAMCU printk(" 0x%08x\n", frame->ret_addr); #else printk(" 0x%08x (0x%x)\n", frame->ret_addr, frame->args); #endif base_ptr = frame->next; } } #endif /* CONFIG_EXCEPTION_STACK_TRACE */ /** * * @brief Kernel fatal error handler * * This routine is called when a fatal error condition is detected by either * hardware or software. * * The caller is expected to always provide a usable ESF. In the event that the * fatal error does not have a hardware generated ESF, the caller should either * create its own or use a pointer to the global default ESF <_default_esf>. * * @param reason the reason that the handler was called * @param pEsf pointer to the exception stack frame * * @return This function does not return. */ FUNC_NORETURN void z_NanoFatalErrorHandler(unsigned int reason, const NANO_ESF *pEsf) { LOG_PANIC(); _debug_fatal_hook(pEsf); #ifdef CONFIG_PRINTK /* Display diagnostic information about the error */ switch (reason) { case _NANO_ERR_CPU_EXCEPTION: break; case _NANO_ERR_SPURIOUS_INT: { int vector = _irq_controller_isr_vector_get(); printk("***** Unhandled interrupt vector "); if (vector >= 0) { printk("%d ", vector); } printk("*****\n"); break; } #if defined(CONFIG_STACK_CANARIES) || defined(CONFIG_STACK_SENTINEL) || \ defined(CONFIG_HW_STACK_PROTECTION) || \ defined(CONFIG_USERSPACE) case _NANO_ERR_STACK_CHK_FAIL: printk("***** Stack Check Fail! *****\n"); break; #endif /* CONFIG_STACK_CANARIES */ case _NANO_ERR_KERNEL_OOPS: printk("***** Kernel OOPS! *****\n"); break; case _NANO_ERR_KERNEL_PANIC: printk("***** Kernel Panic! *****\n"); break; case _NANO_ERR_ALLOCATION_FAIL: printk("**** Kernel Allocation Failure! ****\n"); break; default: printk("**** Unknown Fatal Error %d! ****\n", reason); break; } printk("Current thread ID = %p\n" "eax: 0x%08x, ebx: 0x%08x, ecx: 0x%08x, edx: 0x%08x\n" "esi: 0x%08x, edi: 0x%08x, ebp: 0x%08x, esp: 0x%08x\n" "eflags: 0x%08x cs: 0x%04x\n" #ifdef CONFIG_EXCEPTION_STACK_TRACE "call trace:\n" #endif "eip: 0x%08x\n", k_current_get(), pEsf->eax, pEsf->ebx, pEsf->ecx, pEsf->edx, pEsf->esi, pEsf->edi, pEsf->ebp, pEsf->esp, pEsf->eflags, pEsf->cs & 0xFFFFU, pEsf->eip); #ifdef CONFIG_EXCEPTION_STACK_TRACE unwind_stack(pEsf->ebp, pEsf->cs); #endif #endif /* CONFIG_PRINTK */ /* * Error was fatal to a kernel task or a thread; invoke the system * fatal error handling policy defined for the platform. */ z_SysFatalErrorHandler(reason, pEsf); } FUNC_NORETURN void z_arch_syscall_oops(void *ssf_ptr) { struct _x86_syscall_stack_frame *ssf = (struct _x86_syscall_stack_frame *)ssf_ptr; NANO_ESF oops = { .eip = ssf->eip, .cs = ssf->cs, .eflags = ssf->eflags }; if (oops.cs == USER_CODE_SEG) { oops.esp = ssf->esp; } z_NanoFatalErrorHandler(_NANO_ERR_KERNEL_OOPS, &oops); } #ifdef CONFIG_X86_KERNEL_OOPS FUNC_NORETURN void _do_kernel_oops(const NANO_ESF *esf) { u32_t *stack_ptr = (u32_t *)esf->esp; z_NanoFatalErrorHandler(*stack_ptr, esf); } extern void (*_kernel_oops_handler)(void); NANO_CPU_INT_REGISTER(_kernel_oops_handler, NANO_SOFT_IRQ, CONFIG_X86_KERNEL_OOPS_VECTOR / 16, CONFIG_X86_KERNEL_OOPS_VECTOR, 0); #endif /* * Define a default ESF for use with z_NanoFatalErrorHandler() in the event * the caller does not have a NANO_ESF to pass */ const NANO_ESF _default_esf = { 0xdeaddead, /* ESP */ 0xdeaddead, /* EBP */ 0xdeaddead, /* EBX */ 0xdeaddead, /* ESI */ 0xdeaddead, /* EDI */ 0xdeaddead, /* EDX */ 0xdeaddead, /* ECX */ 0xdeaddead, /* EAX */ 0xdeaddead, /* error code */ 0xdeaddead, /* EIP */ 0xdeaddead, /* CS */ 0xdeaddead, /* EFLAGS */ }; #if CONFIG_EXCEPTION_DEBUG static FUNC_NORETURN void generic_exc_handle(unsigned int vector, const NANO_ESF *pEsf) { printk("***** "); switch (vector) { case IV_GENERAL_PROTECTION: printk("General Protection Fault\n"); break; case IV_DEVICE_NOT_AVAILABLE: printk("Floating point unit not enabled\n"); break; default: printk("CPU exception %d\n", vector); break; } if ((BIT(vector) & _EXC_ERROR_CODE_FAULTS) != 0) { printk("***** Exception code: 0x%x\n", pEsf->errorCode); } z_NanoFatalErrorHandler(_NANO_ERR_CPU_EXCEPTION, pEsf); } #define _EXC_FUNC(vector) \ FUNC_NORETURN void handle_exc_##vector(const NANO_ESF *pEsf) \ { \ generic_exc_handle(vector, pEsf); \ } #define _EXC_FUNC_CODE(vector) \ _EXC_FUNC(vector) \ _EXCEPTION_CONNECT_CODE(handle_exc_##vector, vector) #define _EXC_FUNC_NOCODE(vector) \ _EXC_FUNC(vector) \ _EXCEPTION_CONNECT_NOCODE(handle_exc_##vector, vector) /* Necessary indirection to ensure 'vector' is expanded before we expand * the handle_exc_##vector */ #define EXC_FUNC_NOCODE(vector) \ _EXC_FUNC_NOCODE(vector) #define EXC_FUNC_CODE(vector) \ _EXC_FUNC_CODE(vector) EXC_FUNC_NOCODE(IV_DIVIDE_ERROR); EXC_FUNC_NOCODE(IV_NON_MASKABLE_INTERRUPT); EXC_FUNC_NOCODE(IV_OVERFLOW); EXC_FUNC_NOCODE(IV_BOUND_RANGE); EXC_FUNC_NOCODE(IV_INVALID_OPCODE); EXC_FUNC_NOCODE(IV_DEVICE_NOT_AVAILABLE); #ifndef CONFIG_X86_ENABLE_TSS EXC_FUNC_NOCODE(IV_DOUBLE_FAULT); #endif EXC_FUNC_CODE(IV_INVALID_TSS); EXC_FUNC_CODE(IV_SEGMENT_NOT_PRESENT); EXC_FUNC_CODE(IV_STACK_FAULT); EXC_FUNC_CODE(IV_GENERAL_PROTECTION); EXC_FUNC_NOCODE(IV_X87_FPU_FP_ERROR); EXC_FUNC_CODE(IV_ALIGNMENT_CHECK); EXC_FUNC_NOCODE(IV_MACHINE_CHECK); /* Page fault error code flags */ #define PRESENT BIT(0) #define WR BIT(1) #define US BIT(2) #define RSVD BIT(3) #define ID BIT(4) #define PK BIT(5) #define SGX BIT(15) #ifdef CONFIG_X86_MMU static void dump_entry_flags(x86_page_entry_data_t flags) { printk("0x%x%x %s, %s, %s, %s\n", (u32_t)(flags>>32), (u32_t)(flags), flags & (x86_page_entry_data_t)MMU_ENTRY_PRESENT ? "Present" : "Non-present", flags & (x86_page_entry_data_t)MMU_ENTRY_WRITE ? "Writable" : "Read-only", flags & (x86_page_entry_data_t)MMU_ENTRY_USER ? "User" : "Supervisor", flags & (x86_page_entry_data_t)MMU_ENTRY_EXECUTE_DISABLE ? "Execute Disable" : "Execute Enabled"); } static void dump_mmu_flags(struct x86_mmu_pdpt *pdpt, void *addr) { x86_page_entry_data_t pde_flags, pte_flags; z_x86_mmu_get_flags(pdpt, addr, &pde_flags, &pte_flags); printk("PDE: "); dump_entry_flags(pde_flags); printk("PTE: "); dump_entry_flags(pte_flags); } #endif /* CONFIG_X86_MMU */ static void dump_page_fault(NANO_ESF *esf) { u32_t err, cr2; /* See Section 6.15 of the IA32 Software Developer's Manual vol 3 */ __asm__ ("mov %%cr2, %0" : "=r" (cr2)); err = esf->errorCode; printk("***** CPU Page Fault (error code 0x%08x)\n", err); printk("%s thread %s address 0x%08x\n", (err & US) != 0U ? "User" : "Supervisor", (err & ID) != 0U ? "executed" : ((err & WR) != 0U ? "wrote" : "read"), cr2); #ifdef CONFIG_X86_MMU #ifdef CONFIG_X86_KPTI if (err & US) { dump_mmu_flags(&z_x86_user_pdpt, (void *)cr2); return; } #endif dump_mmu_flags(&z_x86_kernel_pdpt, (void *)cr2); #endif } #endif /* CONFIG_EXCEPTION_DEBUG */ #ifdef CONFIG_USERSPACE Z_EXC_DECLARE(z_arch_user_string_nlen); static const struct z_exc_handle exceptions[] = { Z_EXC_HANDLE(z_arch_user_string_nlen) }; #endif void page_fault_handler(NANO_ESF *esf) { #ifdef CONFIG_USERSPACE int i; for (i = 0; i < ARRAY_SIZE(exceptions); i++) { if ((void *)esf->eip >= exceptions[i].start && (void *)esf->eip < exceptions[i].end) { esf->eip = (unsigned int)(exceptions[i].fixup); return; } } #endif #ifdef CONFIG_EXCEPTION_DEBUG dump_page_fault(esf); #endif #ifdef CONFIG_THREAD_STACK_INFO if (check_stack_bounds(esf->esp, 0, esf->cs)) { z_NanoFatalErrorHandler(_NANO_ERR_STACK_CHK_FAIL, esf); } #endif z_NanoFatalErrorHandler(_NANO_ERR_CPU_EXCEPTION, esf); CODE_UNREACHABLE; } _EXCEPTION_CONNECT_CODE(page_fault_handler, IV_PAGE_FAULT); #ifdef CONFIG_X86_ENABLE_TSS static __noinit volatile NANO_ESF _df_esf; /* Very tiny stack; just enough for the bogus error code pushed by the CPU * and a frame pointer push by the compiler. All _df_handler_top does is * shuffle some data around with 'mov' statements and then 'iret'. */ static __noinit char _df_stack[8]; static FUNC_NORETURN __used void _df_handler_top(void); #ifdef CONFIG_X86_KPTI extern char z_trampoline_stack_end[]; #endif Z_GENERIC_SECTION(.tss) struct task_state_segment _main_tss = { .ss0 = DATA_SEG, #ifdef CONFIG_X86_KPTI /* Stack to land on when we get a soft/hard IRQ in user mode. * In a special kernel page that, unlike all other kernel pages, * is marked present in the user page table. */ .esp0 = (u32_t)&z_trampoline_stack_end #endif }; /* Special TSS for handling double-faults with a known good stack */ Z_GENERIC_SECTION(.tss) struct task_state_segment _df_tss = { .esp = (u32_t)(_df_stack + sizeof(_df_stack)), .cs = CODE_SEG, .ds = DATA_SEG, .es = DATA_SEG, .ss = DATA_SEG, .eip = (u32_t)_df_handler_top, .cr3 = (u32_t)&z_x86_kernel_pdpt }; static FUNC_NORETURN __used void _df_handler_bottom(void) { /* We're back in the main hardware task on the interrupt stack */ int reason = _NANO_ERR_CPU_EXCEPTION; /* Restore the top half so it is runnable again */ _df_tss.esp = (u32_t)(_df_stack + sizeof(_df_stack)); _df_tss.eip = (u32_t)_df_handler_top; printk("***** Double Fault *****\n"); #ifdef CONFIG_THREAD_STACK_INFO if (check_stack_bounds(_df_esf.esp, 0, _df_esf.cs)) { reason = _NANO_ERR_STACK_CHK_FAIL; } #endif z_NanoFatalErrorHandler(reason, (NANO_ESF *)&_df_esf); } static FUNC_NORETURN __used void _df_handler_top(void) { /* State of the system when the double-fault forced a task switch * will be in _main_tss. Set up a NANO_ESF and copy system state into * it */ _df_esf.esp = _main_tss.esp; _df_esf.ebp = _main_tss.ebp; _df_esf.ebx = _main_tss.ebx; _df_esf.esi = _main_tss.esi; _df_esf.edi = _main_tss.edi; _df_esf.edx = _main_tss.edx; _df_esf.eax = _main_tss.eax; _df_esf.ecx = _main_tss.ecx; _df_esf.errorCode = 0; _df_esf.eip = _main_tss.eip; _df_esf.cs = _main_tss.cs; _df_esf.eflags = _main_tss.eflags; /* Restore the main IA task to a runnable state */ _main_tss.esp = (u32_t)(Z_ARCH_THREAD_STACK_BUFFER(_interrupt_stack) + CONFIG_ISR_STACK_SIZE); _main_tss.cs = CODE_SEG; _main_tss.ds = DATA_SEG; _main_tss.es = DATA_SEG; _main_tss.ss = DATA_SEG; _main_tss.eip = (u32_t)_df_handler_bottom; _main_tss.cr3 = (u32_t)&z_x86_kernel_pdpt; _main_tss.eflags = 0U; /* NT bit is set in EFLAGS so we will task switch back to _main_tss * and run _df_handler_bottom */ __asm__ volatile ("iret"); CODE_UNREACHABLE; } /* Configure a task gate descriptor in the IDT for the double fault * exception */ _X86_IDT_TSS_REGISTER(DF_TSS, -1, -1, IV_DOUBLE_FAULT, 0); #endif /* CONFIG_X86_ENABLE_TSS */ |