Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/* buf.c - Buffer management */

/*
 * Copyright (c) 2015 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define LOG_MODULE_NAME net_buf
#define LOG_LEVEL CONFIG_NET_BUF_LOG_LEVEL

#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);

#include <stdio.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include <misc/byteorder.h>

#include <net/buf.h>

#if defined(CONFIG_NET_BUF_LOG)
#define NET_BUF_DBG(fmt, ...) LOG_DBG("(%p) " fmt, k_current_get(), \
				      ##__VA_ARGS__)
#define NET_BUF_ERR(fmt, ...) LOG_ERR(fmt, ##__VA_ARGS__)
#define NET_BUF_WARN(fmt, ...) LOG_WRN(fmt, ##__VA_ARGS__)
#define NET_BUF_INFO(fmt, ...) LOG_INF(fmt, ##__VA_ARGS__)
#define NET_BUF_ASSERT(cond) do { if (!(cond)) {			  \
			NET_BUF_ERR("assert: '" #cond "' failed"); \
		} } while (0)
#else

#define NET_BUF_DBG(fmt, ...)
#define NET_BUF_ERR(fmt, ...)
#define NET_BUF_WARN(fmt, ...)
#define NET_BUF_INFO(fmt, ...)
#define NET_BUF_ASSERT(cond)
#endif /* CONFIG_NET_BUF_LOG */

#if CONFIG_NET_BUF_WARN_ALLOC_INTERVAL > 0
#define WARN_ALLOC_INTERVAL K_SECONDS(CONFIG_NET_BUF_WARN_ALLOC_INTERVAL)
#else
#define WARN_ALLOC_INTERVAL K_FOREVER
#endif

/* Linker-defined symbol bound to the static pool structs */
extern struct net_buf_pool _net_buf_pool_list[];

struct net_buf_pool *net_buf_pool_get(int id)
{
	return &_net_buf_pool_list[id];
}

static int pool_id(struct net_buf_pool *pool)
{
	return pool - _net_buf_pool_list;
}

int net_buf_id(struct net_buf *buf)
{
	struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);

	return buf - pool->__bufs;
}

static inline struct net_buf *pool_get_uninit(struct net_buf_pool *pool,
					      u16_t uninit_count)
{
	struct net_buf *buf;

	buf = &pool->__bufs[pool->buf_count - uninit_count];

	buf->pool_id = pool_id(pool);

	return buf;
}

void net_buf_reset(struct net_buf *buf)
{
	NET_BUF_ASSERT(buf->flags == 0);
	NET_BUF_ASSERT(buf->frags == NULL);

	net_buf_simple_reset(&buf->b);
}

static u8_t *generic_data_ref(struct net_buf *buf, u8_t *data)
{
	u8_t *ref_count;

	ref_count = data - 1;
	(*ref_count)++;

	return data;
}

static u8_t *mem_pool_data_alloc(struct net_buf *buf, size_t *size,
				 s32_t timeout)
{
	struct net_buf_pool *buf_pool = net_buf_pool_get(buf->pool_id);
	struct k_mem_pool *pool = buf_pool->alloc->alloc_data;
	struct k_mem_block block;
	u8_t *ref_count;

	/* Reserve extra space for k_mem_block_id and ref-count (u8_t) */
	if (k_mem_pool_alloc(pool, &block,
			     sizeof(struct k_mem_block_id) + 1 + *size,
			     timeout)) {
		return NULL;
	}

	/* save the block descriptor info at the start of the actual block */
	memcpy(block.data, &block.id, sizeof(block.id));

	ref_count = (u8_t *)block.data + sizeof(block.id);
	*ref_count = 1U;

	/* Return pointer to the byte following the ref count */
	return ref_count + 1;
}

static void mem_pool_data_unref(struct net_buf *buf, u8_t *data)
{
	struct k_mem_block_id id;
	u8_t *ref_count;

	ref_count = data - 1;
	if (--(*ref_count)) {
		return;
	}

	/* Need to copy to local variable due to alignment */
	memcpy(&id, ref_count - sizeof(id), sizeof(id));
	k_mem_pool_free_id(&id);
}

const struct net_buf_data_cb net_buf_var_cb = {
	.alloc = mem_pool_data_alloc,
	.ref   = generic_data_ref,
	.unref = mem_pool_data_unref,
};

static u8_t *fixed_data_alloc(struct net_buf *buf, size_t *size, s32_t timeout)
{
	struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);
	const struct net_buf_pool_fixed *fixed = pool->alloc->alloc_data;

	*size = min(fixed->data_size, *size);

	return fixed->data_pool + fixed->data_size * net_buf_id(buf);
}

static void fixed_data_unref(struct net_buf *buf, u8_t *data)
{
	/* Nothing needed for fixed-size data pools */
}

const struct net_buf_data_cb net_buf_fixed_cb = {
	.alloc = fixed_data_alloc,
	.unref = fixed_data_unref,
};

#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)

static u8_t *heap_data_alloc(struct net_buf *buf, size_t *size, s32_t timeout)
{
	u8_t *ref_count;

	ref_count = k_malloc(1 + *size);
	if (!ref_count) {
		return NULL;
	}

	*ref_count = 1U;

	return ref_count + 1;
}

static void heap_data_unref(struct net_buf *buf, u8_t *data)
{
	u8_t *ref_count;

	ref_count = data - 1;
	if (--(*ref_count)) {
		return;
	}

	k_free(ref_count);
}

static const struct net_buf_data_cb net_buf_heap_cb = {
	.alloc = heap_data_alloc,
	.ref   = generic_data_ref,
	.unref = heap_data_unref,
};

const struct net_buf_data_alloc net_buf_heap_alloc = {
	.cb = &net_buf_heap_cb,
};

#endif /* CONFIG_HEAP_MEM_POOL_SIZE > 0 */

static u8_t *data_alloc(struct net_buf *buf, size_t *size, s32_t timeout)
{
	struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);

	return pool->alloc->cb->alloc(buf, size, timeout);
}

static u8_t *data_ref(struct net_buf *buf, u8_t *data)
{
	struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);

	return pool->alloc->cb->ref(buf, data);
}

static void data_unref(struct net_buf *buf, u8_t *data)
{
	struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);

	if (buf->flags & NET_BUF_EXTERNAL_DATA) {
		return;
	}

	pool->alloc->cb->unref(buf, data);
}

#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *net_buf_alloc_len_debug(struct net_buf_pool *pool, size_t size,
					s32_t timeout, const char *func,
					int line)
#else
struct net_buf *net_buf_alloc_len(struct net_buf_pool *pool, size_t size,
				  s32_t timeout)
#endif
{
	u32_t alloc_start = k_uptime_get_32();
	struct net_buf *buf;
	unsigned int key;

	NET_BUF_ASSERT(pool);

	NET_BUF_DBG("%s():%d: pool %p size %zu timeout %d", func, line, pool,
		    size, timeout);

	/* We need to lock interrupts temporarily to prevent race conditions
	 * when accessing pool->uninit_count.
	 */
	key = irq_lock();

	/* If there are uninitialized buffers we're guaranteed to succeed
	 * with the allocation one way or another.
	 */
	if (pool->uninit_count) {
		u16_t uninit_count;

		/* If this is not the first access to the pool, we can
		 * be opportunistic and try to fetch a previously used
		 * buffer from the LIFO with K_NO_WAIT.
		 */
		if (pool->uninit_count < pool->buf_count) {
			buf = k_lifo_get(&pool->free, K_NO_WAIT);
			if (buf) {
				irq_unlock(key);
				goto success;
			}
		}

		uninit_count = pool->uninit_count--;
		irq_unlock(key);

		buf = pool_get_uninit(pool, uninit_count);
		goto success;
	}

	irq_unlock(key);

#if defined(CONFIG_NET_BUF_LOG) && (CONFIG_NET_BUF_LOG_LEVEL >= LOG_LEVEL_WRN)
	if (timeout == K_FOREVER) {
		u32_t ref = k_uptime_get_32();
		buf = k_lifo_get(&pool->free, K_NO_WAIT);
		while (!buf) {
#if defined(CONFIG_NET_BUF_POOL_USAGE)
			NET_BUF_WARN("%s():%d: Pool %s low on buffers.",
				     func, line, pool->name);
#else
			NET_BUF_WARN("%s():%d: Pool %p low on buffers.",
				     func, line, pool);
#endif
			buf = k_lifo_get(&pool->free, WARN_ALLOC_INTERVAL);
#if defined(CONFIG_NET_BUF_POOL_USAGE)
			NET_BUF_WARN("%s():%d: Pool %s blocked for %u secs",
				     func, line, pool->name,
				     (k_uptime_get_32() - ref) / MSEC_PER_SEC);
#else
			NET_BUF_WARN("%s():%d: Pool %p blocked for %u secs",
				     func, line, pool,
				     (k_uptime_get_32() - ref) / MSEC_PER_SEC);
#endif
		}
	} else {
		buf = k_lifo_get(&pool->free, timeout);
	}
#else
	buf = k_lifo_get(&pool->free, timeout);
#endif
	if (!buf) {
		NET_BUF_ERR("%s():%d: Failed to get free buffer", func, line);
		return NULL;
	}

success:
	NET_BUF_DBG("allocated buf %p", buf);

	if (size) {
		if (timeout != K_NO_WAIT && timeout != K_FOREVER) {
			u32_t diff = k_uptime_get_32() - alloc_start;

			timeout -= min(timeout, diff);
		}

		buf->__buf = data_alloc(buf, &size, timeout);
		if (!buf->__buf) {
			NET_BUF_ERR("%s():%d: Failed to allocate data",
				    func, line);
			net_buf_destroy(buf);
			return NULL;
		}
	} else {
		buf->__buf = NULL;
	}

	buf->ref   = 1;
	buf->flags = 0;
	buf->frags = NULL;
	buf->size  = size;
	net_buf_reset(buf);

#if defined(CONFIG_NET_BUF_POOL_USAGE)
	pool->avail_count--;
	NET_BUF_ASSERT(pool->avail_count >= 0);
#endif

	return buf;
}

#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *net_buf_alloc_fixed_debug(struct net_buf_pool *pool,
					  s32_t timeout, const char *func,
					  int line)
{
	const struct net_buf_pool_fixed *fixed = pool->alloc->alloc_data;

	return net_buf_alloc_len_debug(pool, fixed->data_size, timeout, func,
				       line);
}
#else
struct net_buf *net_buf_alloc_fixed(struct net_buf_pool *pool, s32_t timeout)
{
	const struct net_buf_pool_fixed *fixed = pool->alloc->alloc_data;

	return net_buf_alloc_len(pool, fixed->data_size, timeout);
}
#endif

#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *net_buf_alloc_with_data_debug(struct net_buf_pool *pool,
					      void *data, size_t size,
					      s32_t timeout, const char *func,
					      int line)
#else
struct net_buf *net_buf_alloc_with_data(struct net_buf_pool *pool,
					void *data, size_t size,
					s32_t timeout)
#endif
{
	struct net_buf *buf;

#if defined(CONFIG_NET_BUF_LOG)
	buf = net_buf_alloc_len_debug(pool, 0, timeout, func, line);
#else
	buf = net_buf_alloc_len(pool, 0, timeout);
#endif
	if (!buf) {
		return NULL;
	}

	buf->__buf = data;
	buf->data  = data;
	buf->size  = size;
	buf->len   = size;
	buf->flags = NET_BUF_EXTERNAL_DATA;

	return buf;
}

#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *net_buf_get_debug(struct k_fifo *fifo, s32_t timeout,
				  const char *func, int line)
#else
struct net_buf *net_buf_get(struct k_fifo *fifo, s32_t timeout)
#endif
{
	struct net_buf *buf, *frag;

	NET_BUF_DBG("%s():%d: fifo %p timeout %d", func, line, fifo, timeout);

	buf = k_fifo_get(fifo, timeout);
	if (!buf) {
		return NULL;
	}

	NET_BUF_DBG("%s():%d: buf %p fifo %p", func, line, buf, fifo);

	/* Get any fragments belonging to this buffer */
	for (frag = buf; (frag->flags & NET_BUF_FRAGS); frag = frag->frags) {
		frag->frags = k_fifo_get(fifo, K_NO_WAIT);
		NET_BUF_ASSERT(frag->frags);

		/* The fragments flag is only for FIFO-internal usage */
		frag->flags &= ~NET_BUF_FRAGS;
	}

	/* Mark the end of the fragment list */
	frag->frags = NULL;

	return buf;
}

void net_buf_simple_reserve(struct net_buf_simple *buf, size_t reserve)
{
	NET_BUF_ASSERT(buf);
	NET_BUF_ASSERT(buf->len == 0);
	NET_BUF_DBG("buf %p reserve %zu", buf, reserve);

	buf->data = buf->__buf + reserve;
}

void net_buf_slist_put(sys_slist_t *list, struct net_buf *buf)
{
	struct net_buf *tail;
	unsigned int key;

	NET_BUF_ASSERT(list);
	NET_BUF_ASSERT(buf);

	for (tail = buf; tail->frags; tail = tail->frags) {
		tail->flags |= NET_BUF_FRAGS;
	}

	key = irq_lock();
	sys_slist_append_list(list, &buf->node, &tail->node);
	irq_unlock(key);
}

struct net_buf *net_buf_slist_get(sys_slist_t *list)
{
	struct net_buf *buf, *frag;
	unsigned int key;

	NET_BUF_ASSERT(list);

	key = irq_lock();
	buf = (void *)sys_slist_get(list);
	irq_unlock(key);

	if (!buf) {
		return NULL;
	}

	/* Get any fragments belonging to this buffer */
	for (frag = buf; (frag->flags & NET_BUF_FRAGS); frag = frag->frags) {
		key = irq_lock();
		frag->frags = (void *)sys_slist_get(list);
		irq_unlock(key);

		NET_BUF_ASSERT(frag->frags);

		/* The fragments flag is only for list-internal usage */
		frag->flags &= ~NET_BUF_FRAGS;
	}

	/* Mark the end of the fragment list */
	frag->frags = NULL;

	return buf;
}

void net_buf_put(struct k_fifo *fifo, struct net_buf *buf)
{
	struct net_buf *tail;

	NET_BUF_ASSERT(fifo);
	NET_BUF_ASSERT(buf);

	for (tail = buf; tail->frags; tail = tail->frags) {
		tail->flags |= NET_BUF_FRAGS;
	}

	k_fifo_put_list(fifo, buf, tail);
}

#if defined(CONFIG_NET_BUF_LOG)
void net_buf_unref_debug(struct net_buf *buf, const char *func, int line)
#else
void net_buf_unref(struct net_buf *buf)
#endif
{
	NET_BUF_ASSERT(buf);

	while (buf) {
		struct net_buf *frags = buf->frags;
		struct net_buf_pool *pool;

#if defined(CONFIG_NET_BUF_LOG)
		if (!buf->ref) {
			NET_BUF_ERR("%s():%d: buf %p double free", func, line,
				    buf);
			return;
		}
#endif
		NET_BUF_DBG("buf %p ref %u pool_id %u frags %p", buf, buf->ref,
			    buf->pool_id, buf->frags);

		if (--buf->ref > 0) {
			return;
		}

		if (buf->__buf) {
			data_unref(buf, buf->__buf);
			buf->__buf = NULL;
		}

		buf->data = NULL;
		buf->frags = NULL;

		pool = net_buf_pool_get(buf->pool_id);

#if defined(CONFIG_NET_BUF_POOL_USAGE)
		pool->avail_count++;
		NET_BUF_ASSERT(pool->avail_count <= pool->buf_count);
#endif

		if (pool->destroy) {
			pool->destroy(buf);
		} else {
			net_buf_destroy(buf);
		}

		buf = frags;
	}
}

struct net_buf *net_buf_ref(struct net_buf *buf)
{
	NET_BUF_ASSERT(buf);

	NET_BUF_DBG("buf %p (old) ref %u pool_id %u",
		    buf, buf->ref, buf->pool_id);
	buf->ref++;
	return buf;
}

struct net_buf *net_buf_clone(struct net_buf *buf, s32_t timeout)
{
	u32_t alloc_start = k_uptime_get_32();
	struct net_buf_pool *pool;
	struct net_buf *clone;

	NET_BUF_ASSERT(buf);

	pool = net_buf_pool_get(buf->pool_id);

	clone = net_buf_alloc_len(pool, 0, timeout);
	if (!clone) {
		return NULL;
	}

	/* If the pool supports data referencing use that. Otherwise
	 * we need to allocate new data and make a copy.
	 */
	if (pool->alloc->cb->ref && !(buf->flags & NET_BUF_EXTERNAL_DATA)) {
		clone->__buf = data_ref(buf, buf->__buf);
		clone->data = buf->data;
		clone->len = buf->len;
		clone->size = buf->size;
	} else {
		size_t size = buf->size;

		if (timeout != K_NO_WAIT && timeout != K_FOREVER) {
			u32_t diff = k_uptime_get_32() - alloc_start;

			timeout -= min(timeout, diff);
		}

		clone->__buf = data_alloc(clone, &size, timeout);
		if (!clone->__buf || size < buf->size) {
			net_buf_destroy(clone);
			return NULL;
		}

		clone->size = size;
		clone->data = clone->__buf + net_buf_headroom(buf);
		net_buf_add_mem(clone, buf->data, buf->len);
	}

	return clone;
}

struct net_buf *net_buf_frag_last(struct net_buf *buf)
{
	NET_BUF_ASSERT(buf);

	while (buf->frags) {
		buf = buf->frags;
	}

	return buf;
}

void net_buf_frag_insert(struct net_buf *parent, struct net_buf *frag)
{
	NET_BUF_ASSERT(parent);
	NET_BUF_ASSERT(frag);

	if (parent->frags) {
		net_buf_frag_last(frag)->frags = parent->frags;
	}
	/* Take ownership of the fragment reference */
	parent->frags = frag;
}

struct net_buf *net_buf_frag_add(struct net_buf *head, struct net_buf *frag)
{
	NET_BUF_ASSERT(frag);

	if (!head) {
		return net_buf_ref(frag);
	}

	net_buf_frag_insert(net_buf_frag_last(head), frag);

	return head;
}

#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *net_buf_frag_del_debug(struct net_buf *parent,
				       struct net_buf *frag,
				       const char *func, int line)
#else
struct net_buf *net_buf_frag_del(struct net_buf *parent, struct net_buf *frag)
#endif
{
	struct net_buf *next_frag;

	NET_BUF_ASSERT(frag);

	if (parent) {
		NET_BUF_ASSERT(parent->frags);
		NET_BUF_ASSERT(parent->frags == frag);
		parent->frags = frag->frags;
	}

	next_frag = frag->frags;

	frag->frags = NULL;

#if defined(CONFIG_NET_BUF_LOG)
	net_buf_unref_debug(frag, func, line);
#else
	net_buf_unref(frag);
#endif

	return next_frag;
}

size_t net_buf_linearize(void *dst, size_t dst_len, struct net_buf *src,
			 size_t offset, size_t len)
{
	struct net_buf *frag;
	size_t to_copy;
	size_t copied;

	len = min(len, dst_len);

	frag = src;

	/* find the right fragment to start copying from */
	while (frag && offset >= frag->len) {
		offset -= frag->len;
		frag = frag->frags;
	}

	/* traverse the fragment chain until len bytes are copied */
	copied = 0;
	while (frag && len > 0) {
		to_copy = min(len, frag->len - offset);
		memcpy((u8_t *)dst + copied, frag->data + offset, to_copy);

		copied += to_copy;

		/* to_copy is always <= len */
		len -= to_copy;
		frag = frag->frags;

		/* after the first iteration, this value will be 0 */
		offset = 0;
	}

	return copied;
}

/* This helper routine will append multiple bytes, if there is no place for
 * the data in current fragment then create new fragment and add it to
 * the buffer. It assumes that the buffer has at least one fragment.
 */
size_t net_buf_append_bytes(struct net_buf *buf, size_t len,
			    const void *value, s32_t timeout,
			    net_buf_allocator_cb allocate_cb, void *user_data)
{
	struct net_buf *frag = net_buf_frag_last(buf);
	size_t added_len = 0;
	const u8_t *value8 = value;

	do {
		u16_t count = min(len, net_buf_tailroom(frag));

		net_buf_add_mem(frag, value8, count);
		len -= count;
		added_len += count;
		value8 += count;

		if (len == 0) {
			return added_len;
		}

		frag = allocate_cb(timeout, user_data);
		if (!frag) {
			return added_len;
		}

		net_buf_frag_add(buf, frag);
	} while (1);

	/* Unreachable */
	return 0;
}

#if defined(CONFIG_NET_BUF_SIMPLE_LOG)
#define NET_BUF_SIMPLE_DBG(fmt, ...) NET_BUF_DBG(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_ERR(fmt, ...) NET_BUF_ERR(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_WARN(fmt, ...) NET_BUF_WARN(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_INFO(fmt, ...) NET_BUF_INFO(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_ASSERT(cond) NET_BUF_ASSERT(cond)
#else
#define NET_BUF_SIMPLE_DBG(fmt, ...)
#define NET_BUF_SIMPLE_ERR(fmt, ...)
#define NET_BUF_SIMPLE_WARN(fmt, ...)
#define NET_BUF_SIMPLE_INFO(fmt, ...)
#define NET_BUF_SIMPLE_ASSERT(cond)
#endif /* CONFIG_NET_BUF_SIMPLE_LOG */

void *net_buf_simple_add(struct net_buf_simple *buf, size_t len)
{
	u8_t *tail = net_buf_simple_tail(buf);

	NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);

	NET_BUF_SIMPLE_ASSERT(net_buf_simple_tailroom(buf) >= len);

	buf->len += len;
	return tail;
}

void *net_buf_simple_add_mem(struct net_buf_simple *buf, const void *mem,
			     size_t len)
{
	NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);

	return memcpy(net_buf_simple_add(buf, len), mem, len);
}

u8_t *net_buf_simple_add_u8(struct net_buf_simple *buf, u8_t val)
{
	u8_t *u8;

	NET_BUF_SIMPLE_DBG("buf %p val 0x%02x", buf, val);

	u8 = net_buf_simple_add(buf, 1);
	*u8 = val;

	return u8;
}

void net_buf_simple_add_le16(struct net_buf_simple *buf, u16_t val)
{
	NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);

	val = sys_cpu_to_le16(val);
	memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}

void net_buf_simple_add_be16(struct net_buf_simple *buf, u16_t val)
{
	NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);

	val = sys_cpu_to_be16(val);
	memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}

void net_buf_simple_add_le32(struct net_buf_simple *buf, u32_t val)
{
	NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);

	val = sys_cpu_to_le32(val);
	memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}

void net_buf_simple_add_be32(struct net_buf_simple *buf, u32_t val)
{
	NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);

	val = sys_cpu_to_be32(val);
	memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}

void *net_buf_simple_push(struct net_buf_simple *buf, size_t len)
{
	NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);

	NET_BUF_SIMPLE_ASSERT(net_buf_simple_headroom(buf) >= len);

	buf->data -= len;
	buf->len += len;
	return buf->data;
}

void net_buf_simple_push_le16(struct net_buf_simple *buf, u16_t val)
{
	NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);

	val = sys_cpu_to_le16(val);
	memcpy(net_buf_simple_push(buf, sizeof(val)), &val, sizeof(val));
}

void net_buf_simple_push_be16(struct net_buf_simple *buf, u16_t val)
{
	NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);

	val = sys_cpu_to_be16(val);
	memcpy(net_buf_simple_push(buf, sizeof(val)), &val, sizeof(val));
}

void net_buf_simple_push_u8(struct net_buf_simple *buf, u8_t val)
{
	u8_t *data = net_buf_simple_push(buf, 1);

	*data = val;
}

void *net_buf_simple_pull(struct net_buf_simple *buf, size_t len)
{
	NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);

	NET_BUF_SIMPLE_ASSERT(buf->len >= len);

	buf->len -= len;
	return buf->data += len;
}

void *net_buf_simple_pull_mem(struct net_buf_simple *buf, size_t len)
{
	void *data = buf->data;

	NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);

	NET_BUF_SIMPLE_ASSERT(buf->len >= len);

	buf->len -= len;
	buf->data += len;

	return data;
}

u8_t net_buf_simple_pull_u8(struct net_buf_simple *buf)
{
	u8_t val;

	val = buf->data[0];
	net_buf_simple_pull(buf, 1);

	return val;
}

u16_t net_buf_simple_pull_le16(struct net_buf_simple *buf)
{
	u16_t val;

	val = UNALIGNED_GET((u16_t *)buf->data);
	net_buf_simple_pull(buf, sizeof(val));

	return sys_le16_to_cpu(val);
}

u16_t net_buf_simple_pull_be16(struct net_buf_simple *buf)
{
	u16_t val;

	val = UNALIGNED_GET((u16_t *)buf->data);
	net_buf_simple_pull(buf, sizeof(val));

	return sys_be16_to_cpu(val);
}

u32_t net_buf_simple_pull_le32(struct net_buf_simple *buf)
{
	u32_t val;

	val = UNALIGNED_GET((u32_t *)buf->data);
	net_buf_simple_pull(buf, sizeof(val));

	return sys_le32_to_cpu(val);
}

u32_t net_buf_simple_pull_be32(struct net_buf_simple *buf)
{
	u32_t val;

	val = UNALIGNED_GET((u32_t *)buf->data);
	net_buf_simple_pull(buf, sizeof(val));

	return sys_be32_to_cpu(val);
}

size_t net_buf_simple_headroom(struct net_buf_simple *buf)
{
	return buf->data - buf->__buf;
}

size_t net_buf_simple_tailroom(struct net_buf_simple *buf)
{
	return buf->size - net_buf_simple_headroom(buf) - buf->len;
}