Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
 * Copyright (c) 2013-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel fatal error handler
 *
 * This module provides the _NanoFatalErrorHandler() routine.
 */

#include <toolchain.h>
#include <linker/sections.h>

#include <kernel.h>
#include <kernel_structs.h>
#include <misc/printk.h>
#include <arch/x86/irq_controller.h>
#include <arch/x86/segmentation.h>
#include <exception.h>
#include <inttypes.h>
#include <exc_handle.h>
#include <logging/log_ctrl.h>

__weak void _debug_fatal_hook(const NANO_ESF *esf) { ARG_UNUSED(esf); }

#if defined(CONFIG_EXCEPTION_STACK_TRACE)
struct stack_frame {
	u32_t next;
	u32_t ret_addr;
	u32_t args;
};

#define MAX_STACK_FRAMES 8

static void unwind_stack(u32_t base_ptr)
{
	struct stack_frame *frame;
	int i;

	if (base_ptr == 0) {
		printk("NULL base ptr\n");
		return;
	}

	for (i = 0; i < MAX_STACK_FRAMES; i++) {
		if (base_ptr % sizeof(base_ptr) != 0) {
			printk("unaligned frame ptr\n");
			return;
		}

		frame = (struct stack_frame *)base_ptr;
		if ((frame == NULL) || (frame->ret_addr == 0)) {
			break;
		}
#ifdef CONFIG_X86_IAMCU
		printk("     0x%08x\n", frame->ret_addr);
#else
		printk("     0x%08x (0x%x)\n", frame->ret_addr, frame->args);
#endif
		base_ptr = frame->next;
	}
}
#endif /* CONFIG_EXCEPTION_STACK_TRACE */

/**
 *
 * @brief Kernel fatal error handler
 *
 * This routine is called when a fatal error condition is detected by either
 * hardware or software.
 *
 * The caller is expected to always provide a usable ESF.  In the event that the
 * fatal error does not have a hardware generated ESF, the caller should either
 * create its own or use a pointer to the global default ESF <_default_esf>.
 *
 * @param reason the reason that the handler was called
 * @param pEsf pointer to the exception stack frame
 *
 * @return This function does not return.
 */
FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason,
					  const NANO_ESF *pEsf)
{
	LOG_PANIC();

	_debug_fatal_hook(pEsf);

#ifdef CONFIG_PRINTK

	/* Display diagnostic information about the error */

	switch (reason) {
	case _NANO_ERR_CPU_EXCEPTION:
		break;

	case _NANO_ERR_SPURIOUS_INT: {
		int vector = _irq_controller_isr_vector_get();

		printk("***** Unhandled interrupt vector ");
		if (vector >= 0) {
			printk("%d ", vector);
		}
		printk("*****\n");
		break;
	}
#if defined(CONFIG_STACK_CANARIES) || defined(CONFIG_STACK_SENTINEL) || \
		defined(CONFIG_HW_STACK_PROTECTION) || \
		defined(CONFIG_USERSPACE)
	case _NANO_ERR_STACK_CHK_FAIL:
		printk("***** Stack Check Fail! *****\n");
		break;
#endif /* CONFIG_STACK_CANARIES */

	case _NANO_ERR_KERNEL_OOPS:
		printk("***** Kernel OOPS! *****\n");
		break;

	case _NANO_ERR_KERNEL_PANIC:
		printk("***** Kernel Panic! *****\n");
		break;

	case _NANO_ERR_ALLOCATION_FAIL:
		printk("**** Kernel Allocation Failure! ****\n");
		break;

	default:
		printk("**** Unknown Fatal Error %d! ****\n", reason);
		break;
	}

	printk("Current thread ID = %p\n"
	       "eax: 0x%08x, ebx: 0x%08x, ecx: 0x%08x, edx: 0x%08x\n"
	       "esi: 0x%08x, edi: 0x%08x, ebp: 0x%08x, esp: 0x%08x\n"
	       "eflags: 0x%08x cs: 0x%04x\n"
#ifdef CONFIG_EXCEPTION_STACK_TRACE
	       "call trace:\n"
#endif
	       "eip: 0x%08x\n",
	       k_current_get(),
	       pEsf->eax, pEsf->ebx, pEsf->ecx, pEsf->edx,
	       pEsf->esi, pEsf->edi, pEsf->ebp, pEsf->esp,
	       pEsf->eflags, pEsf->cs & 0xFFFF, pEsf->eip);
#ifdef CONFIG_EXCEPTION_STACK_TRACE
	unwind_stack(pEsf->ebp);
#endif

#endif /* CONFIG_PRINTK */


	/*
	 * Error was fatal to a kernel task or a thread; invoke the system
	 * fatal error handling policy defined for the platform.
	 */

	_SysFatalErrorHandler(reason, pEsf);
}

FUNC_NORETURN void _arch_syscall_oops(void *ssf_ptr)
{
	struct _x86_syscall_stack_frame *ssf =
		(struct _x86_syscall_stack_frame *)ssf_ptr;
	NANO_ESF oops = {
		.eip = ssf->eip,
		.cs = ssf->cs,
		.eflags = ssf->eflags
	};

	if (oops.cs == USER_CODE_SEG) {
		oops.esp = ssf->esp;
	}

	_NanoFatalErrorHandler(_NANO_ERR_KERNEL_OOPS, &oops);
}

#ifdef CONFIG_X86_KERNEL_OOPS
/* The reason code gets pushed onto the stack right before the exception is
 * triggered, so it would be after the nano_esf data
 */
struct oops_esf {
	NANO_ESF nano_esf;
	unsigned int reason;
};

FUNC_NORETURN void _do_kernel_oops(const struct oops_esf *esf)
{
	_NanoFatalErrorHandler(esf->reason, &esf->nano_esf);
}

extern void (*_kernel_oops_handler)(void);
NANO_CPU_INT_REGISTER(_kernel_oops_handler, NANO_SOFT_IRQ,
		      CONFIG_X86_KERNEL_OOPS_VECTOR / 16,
		      CONFIG_X86_KERNEL_OOPS_VECTOR, 0);
#endif

/*
 * Define a default ESF for use with _NanoFatalErrorHandler() in the event
 * the caller does not have a NANO_ESF to pass
 */
const NANO_ESF _default_esf = {
	0xdeaddead, /* ESP */
	0xdeaddead, /* EBP */
	0xdeaddead, /* EBX */
	0xdeaddead, /* ESI */
	0xdeaddead, /* EDI */
	0xdeaddead, /* EDX */
	0xdeaddead, /* ECX */
	0xdeaddead, /* EAX */
	0xdeaddead, /* error code */
	0xdeaddead, /* EIP */
	0xdeaddead, /* CS */
	0xdeaddead, /* EFLAGS */
};

#if CONFIG_EXCEPTION_DEBUG

static FUNC_NORETURN void generic_exc_handle(unsigned int vector,
					     const NANO_ESF *pEsf)
{
	printk("***** ");
	switch (vector) {
	case IV_GENERAL_PROTECTION:
		printk("General Protection Fault\n");
		break;
	case IV_DEVICE_NOT_AVAILABLE:
		printk("Floating point unit not enabled\n");
		break;
	default:
		printk("CPU exception %d\n", vector);
		break;
	}
	if ((BIT(vector) & _EXC_ERROR_CODE_FAULTS) != 0) {
		printk("***** Exception code: 0x%x\n", pEsf->errorCode);
	}
	_NanoFatalErrorHandler(_NANO_ERR_CPU_EXCEPTION, pEsf);
}

#define _EXC_FUNC(vector) \
FUNC_NORETURN void handle_exc_##vector(const NANO_ESF *pEsf) \
{ \
	generic_exc_handle(vector, pEsf); \
}

#define _EXC_FUNC_CODE(vector) \
	_EXC_FUNC(vector) \
	_EXCEPTION_CONNECT_CODE(handle_exc_##vector, vector)

#define _EXC_FUNC_NOCODE(vector) \
	_EXC_FUNC(vector) \
	_EXCEPTION_CONNECT_NOCODE(handle_exc_##vector, vector)

/* Necessary indirection to ensure 'vector' is expanded before we expand
 * the handle_exc_##vector
 */
#define EXC_FUNC_NOCODE(vector) \
	_EXC_FUNC_NOCODE(vector)

#define EXC_FUNC_CODE(vector) \
	_EXC_FUNC_CODE(vector)

EXC_FUNC_NOCODE(IV_DIVIDE_ERROR);
EXC_FUNC_NOCODE(IV_NON_MASKABLE_INTERRUPT);
EXC_FUNC_NOCODE(IV_OVERFLOW);
EXC_FUNC_NOCODE(IV_BOUND_RANGE);
EXC_FUNC_NOCODE(IV_INVALID_OPCODE);
EXC_FUNC_NOCODE(IV_DEVICE_NOT_AVAILABLE);
#ifndef CONFIG_X86_ENABLE_TSS
EXC_FUNC_NOCODE(IV_DOUBLE_FAULT);
#endif
EXC_FUNC_CODE(IV_INVALID_TSS);
EXC_FUNC_CODE(IV_SEGMENT_NOT_PRESENT);
EXC_FUNC_CODE(IV_STACK_FAULT);
EXC_FUNC_CODE(IV_GENERAL_PROTECTION);
EXC_FUNC_NOCODE(IV_X87_FPU_FP_ERROR);
EXC_FUNC_CODE(IV_ALIGNMENT_CHECK);
EXC_FUNC_NOCODE(IV_MACHINE_CHECK);

/* Page fault error code flags */
#define PRESENT	BIT(0)
#define WR	BIT(1)
#define US	BIT(2)
#define RSVD	BIT(3)
#define ID	BIT(4)
#define PK	BIT(5)
#define SGX	BIT(15)

#ifdef CONFIG_X86_MMU
static void dump_entry_flags(x86_page_entry_data_t flags)
{
	printk("0x%x%x %s, %s, %s, %s\n", (u32_t)(flags>>32),
	       (u32_t)(flags),
	       flags & (x86_page_entry_data_t)MMU_ENTRY_PRESENT ?
	       "Present" : "Non-present",
	       flags & (x86_page_entry_data_t)MMU_ENTRY_WRITE ?
	       "Writable" : "Read-only",
	       flags & (x86_page_entry_data_t)MMU_ENTRY_USER ?
	       "User" : "Supervisor",
	       flags & (x86_page_entry_data_t)MMU_ENTRY_EXECUTE_DISABLE ?
	       "Execute Disable" : "Execute Enabled");
}

static void dump_mmu_flags(void *addr)
{
	x86_page_entry_data_t pde_flags, pte_flags;

	_x86_mmu_get_flags(addr, &pde_flags, &pte_flags);

	printk("PDE: ");
	dump_entry_flags(pde_flags);

	printk("PTE: ");
	dump_entry_flags(pte_flags);
}
#endif /* CONFIG_X86_MMU */

static void dump_page_fault(NANO_ESF *esf)
{
	u32_t err, cr2;

	/* See Section 6.15 of the IA32 Software Developer's Manual vol 3 */
	__asm__ ("mov %%cr2, %0" : "=r" (cr2));

	err = esf->errorCode;
	printk("***** CPU Page Fault (error code 0x%08x)\n", err);

	printk("%s thread %s address 0x%08x\n",
	       err & US ? "User" : "Supervisor",
	       err & ID ? "executed" : (err & WR ? "wrote" : "read"),
	       cr2);

#ifdef CONFIG_X86_MMU
	dump_mmu_flags((void *)cr2);
#endif
}
#endif /* CONFIG_EXCEPTION_DEBUG */

#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(z_arch_user_string_nlen);

static const struct z_exc_handle exceptions[] = {
	Z_EXC_HANDLE(z_arch_user_string_nlen)
};
#endif

void page_fault_handler(NANO_ESF *esf)
{
#ifdef CONFIG_USERSPACE
	int i;

	for (i = 0; i < ARRAY_SIZE(exceptions); i++) {
		if ((void *)esf->eip >= exceptions[i].start &&
		    (void *)esf->eip < exceptions[i].end) {
			esf->eip = (unsigned int)(exceptions[i].fixup);
			return;
		}
	}
#endif
#ifdef CONFIG_EXCEPTION_DEBUG
	dump_page_fault(esf);
#endif
	_NanoFatalErrorHandler(_NANO_ERR_CPU_EXCEPTION, esf);
	CODE_UNREACHABLE;
}
_EXCEPTION_CONNECT_CODE(page_fault_handler, IV_PAGE_FAULT);

#ifdef CONFIG_X86_ENABLE_TSS
static __noinit volatile NANO_ESF _df_esf;

/* Very tiny stack; just enough for the bogus error code pushed by the CPU
 * and a frame pointer push by the compiler. All _df_handler_top does is
 * shuffle some data around with 'mov' statements and then 'iret'.
 */
static __noinit char _df_stack[8];

static FUNC_NORETURN __used void _df_handler_top(void);

_GENERIC_SECTION(.tss)
struct task_state_segment _main_tss = {
	.ss0 = DATA_SEG
};

/* Special TSS for handling double-faults with a known good stack */
_GENERIC_SECTION(.tss)
struct task_state_segment _df_tss = {
	.esp = (u32_t)(_df_stack + sizeof(_df_stack)),
	.cs = CODE_SEG,
	.ds = DATA_SEG,
	.es = DATA_SEG,
	.ss = DATA_SEG,
	.eip = (u32_t)_df_handler_top,
	.cr3 = (u32_t)X86_MMU_PDPT
};

static FUNC_NORETURN __used void _df_handler_bottom(void)
{
	/* We're back in the main hardware task on the interrupt stack */
	x86_page_entry_data_t pte_flags, pde_flags;
	int reason;

	/* Restore the top half so it is runnable again */
	_df_tss.esp = (u32_t)(_df_stack + sizeof(_df_stack));
	_df_tss.eip = (u32_t)_df_handler_top;

	/* Now check if the stack pointer is inside a guard area. Subtract
	 * one byte, since if a single push operation caused the fault ESP
	 * wouldn't be decremented
	 */
	_x86_mmu_get_flags((u8_t *)_df_esf.esp - 1, &pde_flags, &pte_flags);
	if ((pte_flags & MMU_ENTRY_PRESENT) != 0) {
		printk("***** Double Fault *****\n");
		reason = _NANO_ERR_CPU_EXCEPTION;
	} else {
		reason = _NANO_ERR_STACK_CHK_FAIL;
	}

	_NanoFatalErrorHandler(reason, (NANO_ESF *)&_df_esf);
}

static FUNC_NORETURN __used void _df_handler_top(void)
{
	/* State of the system when the double-fault forced a task switch
	 * will be in _main_tss. Set up a NANO_ESF and copy system state into
	 * it
	 */
	_df_esf.esp = _main_tss.esp;
	_df_esf.ebp = _main_tss.ebp;
	_df_esf.ebx = _main_tss.ebx;
	_df_esf.esi = _main_tss.esi;
	_df_esf.edi = _main_tss.edi;
	_df_esf.edx = _main_tss.edx;
	_df_esf.eax = _main_tss.eax;
	_df_esf.ecx = _main_tss.ecx;
	_df_esf.errorCode = 0;
	_df_esf.eip = _main_tss.eip;
	_df_esf.cs = _main_tss.cs;
	_df_esf.eflags = _main_tss.eflags;

	/* Restore the main IA task to a runnable state */
	_main_tss.esp = (u32_t)(_ARCH_THREAD_STACK_BUFFER(_interrupt_stack) +
				CONFIG_ISR_STACK_SIZE);
	_main_tss.cs = CODE_SEG;
	_main_tss.ds = DATA_SEG;
	_main_tss.es = DATA_SEG;
	_main_tss.ss = DATA_SEG;
	_main_tss.eip = (u32_t)_df_handler_bottom;
	_main_tss.cr3 = (u32_t)X86_MMU_PDPT;

	/* NT bit is set in EFLAGS so we will task switch back to _main_tss
	 * and run _df_handler_bottom
	 */
	__asm__ volatile ("iret");
	CODE_UNREACHABLE;
}

/* Configure a task gate descriptor in the IDT for the double fault
 * exception
 */
_X86_IDT_TSS_REGISTER(DF_TSS, -1, -1, IV_DOUBLE_FAULT, 0);

#endif /* CONFIG_X86_ENABLE_TSS */