Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Copyright (c) 2011-2014, Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Misc utilities
 *
 * Misc utilities usable by the kernel and application code.
 */

#ifndef _UTIL__H_
#define _UTIL__H_

#ifndef _ASMLANGUAGE

#include <zephyr/types.h>

/* Helper to pass a int as a pointer or vice-versa.
 * Those are available for 32 bits architectures:
 */
#define POINTER_TO_UINT(x) ((u32_t) (x))
#define UINT_TO_POINTER(x) ((void *) (x))
#define POINTER_TO_INT(x)  ((s32_t) (x))
#define INT_TO_POINTER(x)  ((void *) (x))

/* Evaluates to 0 if cond is true-ish; compile error otherwise */
#define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1)

/* Evaluates to 0 if array is an array; compile error if not array (e.g.
 * pointer)
 */
#define IS_ARRAY(array) \
	ZERO_OR_COMPILE_ERROR( \
		!__builtin_types_compatible_p(__typeof__(array), \
					      __typeof__(&(array)[0])))

#if defined(__cplusplus)
template < class T, size_t N >
constexpr size_t ARRAY_SIZE(T(&)[N]) { return N; }

#else
/* Evaluates to number of elements in an array; compile error if not
 * an array (e.g. pointer)
 */
#define ARRAY_SIZE(array) \
	((unsigned long) (IS_ARRAY(array) + \
		(sizeof(array) / sizeof((array)[0]))))
#endif

/* Evaluates to 1 if ptr is part of array, 0 otherwise; compile error if
 * "array" argument is not an array (e.g. "ptr" and "array" mixed up)
 */
#define PART_OF_ARRAY(array, ptr) \
	((ptr) && ((ptr) >= &array[0] && (ptr) < &array[ARRAY_SIZE(array)]))

#define CONTAINER_OF(ptr, type, field) \
	((type *)(((char *)(ptr)) - offsetof(type, field)))

/* round "x" up/down to next multiple of "align" (which must be a power of 2) */
#define ROUND_UP(x, align)                                   \
	(((unsigned long)(x) + ((unsigned long)align - 1)) & \
	 ~((unsigned long)align - 1))
#define ROUND_DOWN(x, align) ((unsigned long)(x) & ~((unsigned long)align - 1))

#define ceiling_fraction(numerator, divider) \
	(((numerator) + ((divider) - 1)) / (divider))

#ifdef INLINED
#define INLINE inline
#else
#define INLINE
#endif

#ifndef max
#define max(a, b) (((a) > (b)) ? (a) : (b))
#endif

#ifndef min
#define min(a, b) (((a) < (b)) ? (a) : (b))
#endif

static inline int is_power_of_two(unsigned int x)
{
	return (x != 0) && !(x & (x - 1));
}

static inline s64_t arithmetic_shift_right(s64_t value, u8_t shift)
{
	s64_t sign_ext;

	if (shift == 0) {
		return value;
	}

	/* extract sign bit */
	sign_ext = (value >> 63) & 1;

	/* make all bits of sign_ext be the same as the value's sign bit */
	sign_ext = -sign_ext;

	/* shift value and fill opened bit positions with sign bit */
	return (value >> shift) | (sign_ext << (64 - shift));
}

#endif /* !_ASMLANGUAGE */

/* KB, MB, GB */
#define KB(x) ((x) << 10)
#define MB(x) (KB(x) << 10)
#define GB(x) (MB(x) << 10)

/* KHZ, MHZ */
#define KHZ(x) ((x) * 1000)
#define MHZ(x) (KHZ(x) * 1000)

#ifndef BIT
#if defined(_ASMLANGUAGE)
#define BIT(n)  (1 << (n))
#else
#define BIT(n)  (1UL << (n))
#endif
#endif

/**
 * @brief Macro sets or clears bit depending on boolean value
 *
 * @param var Variable to be altered
 * @param bit Bit number
 * @param set Value 0 clears bit, any other value sets bit
 */
#define WRITE_BIT(var, bit, set) \
	((var) = (set) ? ((var) | BIT(bit)) : ((var) & ~BIT(bit)))

#define BIT_MASK(n) (BIT(n) - 1)

/**
 * @brief Check for macro definition in compiler-visible expressions
 *
 * This trick was pioneered in Linux as the config_enabled() macro.
 * The madness has the effect of taking a macro value that may be
 * defined to "1" (e.g. CONFIG_MYFEATURE), or may not be defined at
 * all and turning it into a literal expression that can be used at
 * "runtime".  That is, it works similarly to
 * "defined(CONFIG_MYFEATURE)" does except that it is an expansion
 * that can exist in a standard expression and be seen by the compiler
 * and optimizer.  Thus much ifdef usage can be replaced with cleaner
 * expressions like:
 *
 *     if (IS_ENABLED(CONFIG_MYFEATURE))
 *             myfeature_enable();
 *
 * INTERNAL
 * First pass just to expand any existing macros, we need the macro
 * value to be e.g. a literal "1" at expansion time in the next macro,
 * not "(1)", etc...  Standard recursive expansion does not work.
 */
#define IS_ENABLED(config_macro) _IS_ENABLED1(config_macro)

/* Now stick on a "_XXXX" prefix, it will now be "_XXXX1" if config_macro
 * is "1", or just "_XXXX" if it's undefined.
 *   ENABLED:   _IS_ENABLED2(_XXXX1)
 *   DISABLED   _IS_ENABLED2(_XXXX)
 */
#define _IS_ENABLED1(config_macro) _IS_ENABLED2(_XXXX##config_macro)

/* Here's the core trick, we map "_XXXX1" to "_YYYY," (i.e. a string
 * with a trailing comma), so it has the effect of making this a
 * two-argument tuple to the preprocessor only in the case where the
 * value is defined to "1"
 *   ENABLED:    _YYYY,    <--- note comma!
 *   DISABLED:   _XXXX
 */
#define _XXXX1 _YYYY,

/* Then we append an extra argument to fool the gcc preprocessor into
 * accepting it as a varargs macro.
 *                         arg1   arg2  arg3
 *   ENABLED:   _IS_ENABLED3(_YYYY,    1,    0)
 *   DISABLED   _IS_ENABLED3(_XXXX 1,  0)
 */
#define _IS_ENABLED2(one_or_two_args) _IS_ENABLED3(one_or_two_args 1, 0)

/* And our second argument is thus now cooked to be 1 in the case
 * where the value is defined to 1, and 0 if not:
 */
#define _IS_ENABLED3(ignore_this, val, ...) val

/**
 * Macros for doing code-generation with the preprocessor.
 *
 * Generally it is better to generate code with the preprocessor than
 * to copy-paste code or to generate code with the build system /
 * python script's etc.
 *
 * http://stackoverflow.com/a/12540675
 */
#define UTIL_EMPTY(...)
#define UTIL_DEFER(...) __VA_ARGS__ UTIL_EMPTY()
#define UTIL_OBSTRUCT(...) __VA_ARGS__ UTIL_DEFER(UTIL_EMPTY)()
#define UTIL_EXPAND(...) __VA_ARGS__

#define UTIL_EVAL(...)  UTIL_EVAL1(UTIL_EVAL1(UTIL_EVAL1(__VA_ARGS__)))
#define UTIL_EVAL1(...) UTIL_EVAL2(UTIL_EVAL2(UTIL_EVAL2(__VA_ARGS__)))
#define UTIL_EVAL2(...) UTIL_EVAL3(UTIL_EVAL3(UTIL_EVAL3(__VA_ARGS__)))
#define UTIL_EVAL3(...) UTIL_EVAL4(UTIL_EVAL4(UTIL_EVAL4(__VA_ARGS__)))
#define UTIL_EVAL4(...) UTIL_EVAL5(UTIL_EVAL5(UTIL_EVAL5(__VA_ARGS__)))
#define UTIL_EVAL5(...) __VA_ARGS__

#define UTIL_CAT(a, ...) UTIL_PRIMITIVE_CAT(a, __VA_ARGS__)
#define UTIL_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__

#define UTIL_INC(x) UTIL_PRIMITIVE_CAT(UTIL_INC_, x)
#define UTIL_INC_0 1
#define UTIL_INC_1 2
#define UTIL_INC_2 3
#define UTIL_INC_3 4
#define UTIL_INC_4 5
#define UTIL_INC_5 6
#define UTIL_INC_6 7
#define UTIL_INC_7 8
#define UTIL_INC_8 9
#define UTIL_INC_9 10
#define UTIL_INC_10 11
#define UTIL_INC_11 12
#define UTIL_INC_12 13
#define UTIL_INC_13 14
#define UTIL_INC_14 15
#define UTIL_INC_15 16
#define UTIL_INC_16 17
#define UTIL_INC_17 18
#define UTIL_INC_18 19
#define UTIL_INC_19 19

#define UTIL_DEC(x) UTIL_PRIMITIVE_CAT(UTIL_DEC_, x)
#define UTIL_DEC_0 0
#define UTIL_DEC_1 0
#define UTIL_DEC_2 1
#define UTIL_DEC_3 2
#define UTIL_DEC_4 3
#define UTIL_DEC_5 4
#define UTIL_DEC_6 5
#define UTIL_DEC_7 6
#define UTIL_DEC_8 7
#define UTIL_DEC_9 8
#define UTIL_DEC_10 9
#define UTIL_DEC_11 10
#define UTIL_DEC_12 11
#define UTIL_DEC_13 12
#define UTIL_DEC_14 13
#define UTIL_DEC_15 14
#define UTIL_DEC_16 15
#define UTIL_DEC_17 16
#define UTIL_DEC_18 17
#define UTIL_DEC_19 18
#define UTIL_DEC_20 19
#define UTIL_DEC_21 20
#define UTIL_DEC_22 21
#define UTIL_DEC_23 22
#define UTIL_DEC_24 23
#define UTIL_DEC_25 24
#define UTIL_DEC_26 25
#define UTIL_DEC_27 26
#define UTIL_DEC_28 27
#define UTIL_DEC_29 28
#define UTIL_DEC_30 29
#define UTIL_DEC_31 30
#define UTIL_DEC_32 31
#define UTIL_DEC_33 32
#define UTIL_DEC_34 33
#define UTIL_DEC_35 34
#define UTIL_DEC_36 35
#define UTIL_DEC_37 36
#define UTIL_DEC_38 37
#define UTIL_DEC_39 38
#define UTIL_DEC_40 39

#define UTIL_CHECK_N(x, n, ...) n
#define UTIL_CHECK(...) UTIL_CHECK_N(__VA_ARGS__, 0,)

#define UTIL_NOT(x) UTIL_CHECK(UTIL_PRIMITIVE_CAT(UTIL_NOT_, x))
#define UTIL_NOT_0 ~, 1,

#define UTIL_COMPL(b) UTIL_PRIMITIVE_CAT(UTIL_COMPL_, b)
#define UTIL_COMPL_0 1
#define UTIL_COMPL_1 0

#define UTIL_BOOL(x) UTIL_COMPL(UTIL_NOT(x))

#define UTIL_IIF(c) UTIL_PRIMITIVE_CAT(UTIL_IIF_, c)
#define UTIL_IIF_0(t, ...) __VA_ARGS__
#define UTIL_IIF_1(t, ...) t

#define UTIL_IF(c) UTIL_IIF(UTIL_BOOL(c))

#define UTIL_EAT(...)
#define UTIL_EXPAND(...) __VA_ARGS__
#define UTIL_WHEN(c) UTIL_IF(c)(UTIL_EXPAND, UTIL_EAT)

#define UTIL_REPEAT(count, macro, ...)			    \
	UTIL_WHEN(count)				    \
	(						    \
		UTIL_OBSTRUCT(UTIL_REPEAT_INDIRECT) ()	    \
		(					    \
			UTIL_DEC(count), macro, __VA_ARGS__ \
		)					    \
		UTIL_OBSTRUCT(macro)			    \
		(					    \
			UTIL_DEC(count), __VA_ARGS__	    \
		)					    \
	)
#define UTIL_REPEAT_INDIRECT() UTIL_REPEAT

/**
 * Generates a sequence of code.
 * Useful for generating code like;
 *
 * NRF_PWM0, NRF_PWM1, NRF_PWM2,
 *
 * @arg LEN: The length of the sequence. Must be defined and less than
 * 20.
 *
 * @arg F(i, F_ARG): A macro function that accepts two arguments.
 *  F is called repeatedly, the first argument
 *  is the index in the sequence, and the second argument is the third
 *  argument given to UTIL_LISTIFY.
 *
 * Example:
 *
 *    \#define FOO(i, _) NRF_PWM ## i ,
 *    { UTIL_LISTIFY(PWM_COUNT, FOO) }
 *    // The above two lines will generate the below:
 *    { NRF_PWM0 , NRF_PWM1 , }
 *
 * @note Calling UTIL_LISTIFY with undefined arguments has undefined
 * behavior.
 */
#define UTIL_LISTIFY(LEN, F, F_ARG) UTIL_EVAL(UTIL_REPEAT(LEN, F, F_ARG))

/**@brief Implementation details for NUM_VAR_ARGS */
#define NUM_VA_ARGS_LESS_1_IMPL(				\
	_ignored,						\
	_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10,		\
	_11, _12, _13, _14, _15, _16, _17, _18, _19, _20,	\
	_21, _22, _23, _24, _25, _26, _27, _28, _29, _30,	\
	_31, _32, _33, _34, _35, _36, _37, _38, _39, _40,	\
	_41, _42, _43, _44, _45, _46, _47, _48, _49, _50,	\
	_51, _52, _53, _54, _55, _56, _57, _58, _59, _60,	\
	_61, _62, N, ...) N

/**@brief Macro to get the number of arguments in a call variadic macro call.
 * First argument is not counted.
 *
 * param[in]    ...     List of arguments
 *
 * @retval  Number of variadic arguments in the argument list
 */
#define NUM_VA_ARGS_LESS_1(...) \
	NUM_VA_ARGS_LESS_1_IMPL(__VA_ARGS__, 63, 62, 61, \
	60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		 \
	50, 49, 48, 47, 46, 45, 44, 43, 42, 41,		 \
	40, 39, 38, 37, 36, 35, 34, 33, 32, 31,		 \
	30, 29, 28, 27, 26, 25, 24, 23, 22, 21,		 \
	20, 19, 18, 17, 16, 15, 14, 13, 12, 11,		 \
	10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, ~)

/**
 * @brief Mapping macro
 *
 * Macro that process all arguments using given macro
 *
 * @param ... Macro name to be used for argument processing followed by
 *            arguments to process. Macro should have following
 *            form: MACRO(argument).
 *
 * @return All arguments processed by given macro
 */
#define MACRO_MAP(...) MACRO_MAP_(__VA_ARGS__)
#define MACRO_MAP_(...)							\
	/* To make sure it works also for 2 arguments in total */	\
	MACRO_MAP_N(NUM_VA_ARGS_LESS_1(__VA_ARGS__), __VA_ARGS__)

/**
 * @brief Mapping N arguments macro
 *
 * Macro similar to @ref MACRO_MAP but maps exact number of arguments.
 * If there is more arguments given, the rest would be ignored.
 *
 * @param N   Number of arguments to map
 * @param ... Macro name to be used for argument processing followed by
 *            arguments to process. Macro should have following
 *            form: MACRO(argument).
 *
 * @return Selected number of arguments processed by given macro
 */
#define MACRO_MAP_N(N, ...) MACRO_MAP_N_(N, __VA_ARGS__)
#define MACRO_MAP_N_(N, ...) UTIL_CAT(MACRO_MAP_, N)(__VA_ARGS__,)

#define MACRO_MAP_0(...)
#define MACRO_MAP_1(macro, a, ...)  macro(a)
#define MACRO_MAP_2(macro, a, ...)  macro(a)MACRO_MAP_1(macro, __VA_ARGS__,)
#define MACRO_MAP_3(macro, a, ...)  macro(a)MACRO_MAP_2(macro, __VA_ARGS__,)
#define MACRO_MAP_4(macro, a, ...)  macro(a)MACRO_MAP_3(macro, __VA_ARGS__,)
#define MACRO_MAP_5(macro, a, ...)  macro(a)MACRO_MAP_4(macro, __VA_ARGS__,)
#define MACRO_MAP_6(macro, a, ...)  macro(a)MACRO_MAP_5(macro, __VA_ARGS__,)
#define MACRO_MAP_7(macro, a, ...)  macro(a)MACRO_MAP_6(macro, __VA_ARGS__,)
#define MACRO_MAP_8(macro, a, ...)  macro(a)MACRO_MAP_7(macro, __VA_ARGS__,)
#define MACRO_MAP_9(macro, a, ...)  macro(a)MACRO_MAP_8(macro, __VA_ARGS__,)
#define MACRO_MAP_10(macro, a, ...) macro(a)MACRO_MAP_9(macro, __VA_ARGS__,)
#define MACRO_MAP_11(macro, a, ...) macro(a)MACRO_MAP_10(macro, __VA_ARGS__,)
#define MACRO_MAP_12(macro, a, ...) macro(a)MACRO_MAP_11(macro, __VA_ARGS__,)
#define MACRO_MAP_13(macro, a, ...) macro(a)MACRO_MAP_12(macro, __VA_ARGS__,)
#define MACRO_MAP_14(macro, a, ...) macro(a)MACRO_MAP_13(macro, __VA_ARGS__,)
#define MACRO_MAP_15(macro, a, ...) macro(a)MACRO_MAP_14(macro, __VA_ARGS__,)
/*
 * The following provides variadic preprocessor macro support to
 * help eliminate multiple, repetitive function/macro calls.  This
 * allows up to 10 "arguments" in addition to _call .
 * Note - derived from work on:
 * https://codecraft.co/2014/11/25/variadic-macros-tricks/
 */

#define _GET_ARG(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N

#define _for_0(_call, ...)
#define _for_1(_call, x) _call(x)
#define _for_2(_call, x, ...) _call(x) _for_1(_call, ##__VA_ARGS__)
#define _for_3(_call, x, ...) _call(x) _for_2(_call, ##__VA_ARGS__)
#define _for_4(_call, x, ...) _call(x) _for_3(_call, ##__VA_ARGS__)
#define _for_5(_call, x, ...) _call(x) _for_4(_call, ##__VA_ARGS__)
#define _for_6(_call, x, ...) _call(x) _for_5(_call, ##__VA_ARGS__)
#define _for_7(_call, x, ...) _call(x) _for_6(_call, ##__VA_ARGS__)
#define _for_8(_call, x, ...) _call(x) _for_7(_call, ##__VA_ARGS__)
#define _for_9(_call, x, ...) _call(x) _for_8(_call, ##__VA_ARGS__)
#define _for_10(_call, x, ...) _call(x) _for_9(_call, ##__VA_ARGS__)

#define FOR_EACH(x, ...) \
	_GET_ARG(__VA_ARGS__, \
	_for_10, _for_9, _for_8, _for_7, _for_6, _for_5, \
	_for_4, _for_3, _for_2, _for_1, _for_0)(x, ##__VA_ARGS__)

#endif /* _UTIL__H_ */