Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 | /* ieee802154_mcr20a.c - NXP MCR20A driver */ /* * Copyright (c) 2017 PHYTEC Messtechnik GmbH * * SPDX-License-Identifier: Apache-2.0 */ #define SYS_LOG_LEVEL CONFIG_SYS_LOG_IEEE802154_DRIVER_LEVEL #define SYS_LOG_DOMAIN "dev/mcr20a" #include <logging/sys_log.h> #include <errno.h> #include <kernel.h> #include <arch/cpu.h> #include <board.h> #include <device.h> #include <init.h> #include <net/net_if.h> #include <net/net_pkt.h> #include <misc/byteorder.h> #include <string.h> #include <random/rand32.h> #include <gpio.h> #include <net/ieee802154_radio.h> #include "ieee802154_mcr20a.h" #include "MCR20Overwrites.h" /* * max. TX duraton = (PR + SFD + FLI + PDU + FCS) * + RX_warmup + cca + TX_warmup * TODO: Calculate the value from frame length. * Invalid for the SLOTTED mode. */ #define _MAX_PKT_TX_DURATION (133 + 9 + 8 + 9) #if (SYS_LOG_LEVEL == 4) /* Prevent timer overflow during SYS_LOG_* output */ #define _MACACKWAITDURATION (864 / 16 + 11625) #define MCR20A_SEQ_SYNC_TIMEOUT (200) #else #define MCR20A_SEQ_SYNC_TIMEOUT (20) #define _MACACKWAITDURATION (864 / 16) /* 864us * 62500Hz */ #endif #define MCR20A_FCS_LENGTH (2) #define MCR20A_PSDU_LENGTH (125) #define MCR20A_GET_SEQ_STATE_RETRIES (3) /* Values for the clock output (CLK_OUT) configuration */ #ifdef CONFIG_MCR20A_CLK_OUT_DISABLED #define MCR20A_CLK_OUT_CONFIG (MCR20A_CLK_OUT_HIZ) #elif CONFIG_MCR20A_CLK_OUT_32MHZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(0) | MCR20A_CLK_OUT_DS |\ MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_16MHZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(1) | MCR20A_CLK_OUT_DS |\ MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_8MHZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(2) | MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_4MHZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(3) | MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_1MHZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(4) | MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_250KHZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(5) | MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_62500HZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(6) | MCR20A_CLK_OUT_EN) #elif CONFIG_MCR20A_CLK_OUT_32768HZ #define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(7) | MCR20A_CLK_OUT_EN) #endif #ifdef CONFIG_MCR20A_IS_PART_OF_KW2XD_SIP #define PART_OF_KW2XD_SIP 1 #else #define PART_OF_KW2XD_SIP 0 #endif /* Values for the power mode (PM) configuration */ #define MCR20A_PM_HIBERNATE 0 #define MCR20A_PM_DOZE MCR20A_PWR_MODES_XTALEN #define MCR20A_PM_IDLE (MCR20A_PWR_MODES_XTALEN |\ MCR20A_PWR_MODES_PMC_MODE) #define MCR20A_PM_AUTODOZE (MCR20A_PWR_MODES_XTALEN |\ MCR20A_PWR_MODES_AUTODOZE) /* Default settings for the device initialization */ #define MCR20A_DEFAULT_TX_POWER (0) #define MCR20A_DEFAULT_CHANNEL (26) /* RF TX power max/min values (dBm) */ #define MCR20A_OUTPUT_POWER_MAX (8) #define MCR20A_OUTPUT_POWER_MIN (-35) /* Lookup table for the Power Control register */ static const u8_t pow_lt[44] = { 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 31 }; /* PLL integer and fractional lookup tables * * Fc = 2405 + 5(k - 11) , k = 11,12,...,26 * * Equation for PLL frequency, MKW2xD Reference Manual, p.255 : * F = ((PLL_INT0 + 64) + (PLL_FRAC0/65536))32MHz * */ static const u8_t pll_int_lt[16] = { 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13 }; static const u16_t pll_frac_lt[16] = { 10240, 20480, 30720, 40960, 51200, 61440, 6144, 16384, 26624, 36864, 47104, 57344, 2048, 12288, 22528, 32768 }; #define _usleep(usec) k_busy_wait(usec) /* Read direct (dreg is true) or indirect register (dreg is false) */ u8_t _mcr20a_read_reg(struct mcr20a_context *dev, bool dreg, u8_t addr) { u8_t cmd_buf[3] = { dreg ? (MCR20A_REG_READ | addr) : (MCR20A_IAR_INDEX | MCR20A_REG_WRITE), dreg ? 0 : (addr | MCR20A_REG_READ), 0 }; u8_t len = dreg ? 2 : 3; const struct spi_buf buf = { .buf = cmd_buf, .len = len }; const struct spi_buf_set tx = { .buffers = &buf, .count = 1 }; const struct spi_buf_set rx = { .buffers = &buf, .count = 1 }; if (spi_transceive(dev->spi, &dev->spi_cfg, &tx, &rx) == 0) { return cmd_buf[len - 1]; } SYS_LOG_ERR("Failed"); return 0; } /* Write direct (dreg is true) or indirect register (dreg is false) */ bool _mcr20a_write_reg(struct mcr20a_context *dev, bool dreg, u8_t addr, u8_t value) { u8_t cmd_buf[3] = { dreg ? (MCR20A_REG_WRITE | addr) : (MCR20A_IAR_INDEX | MCR20A_REG_WRITE), dreg ? value : (addr | MCR20A_REG_WRITE), dreg ? 0 : value }; const struct spi_buf buf = { .buf = cmd_buf, .len = dreg ? 2 : 3 }; const struct spi_buf_set tx = { .buffers = &buf, .count = 1 }; return (spi_write(dev->spi, &dev->spi_cfg, &tx) == 0); } /* Write multiple bytes to direct or indirect register */ bool _mcr20a_write_burst(struct mcr20a_context *dev, bool dreg, u16_t addr, u8_t *data_buf, u8_t len) { u8_t cmd_buf[2] = { dreg ? MCR20A_REG_WRITE | addr : MCR20A_IAR_INDEX | MCR20A_REG_WRITE, dreg ? 0 : addr | MCR20A_REG_WRITE }; struct spi_buf bufs[2] = { { .buf = cmd_buf, .len = dreg ? 1 : 2 }, { .buf = data_buf, .len = len } }; const struct spi_buf_set tx = { .buffers = bufs, .count = 2 }; return (spi_write(dev->spi, &dev->spi_cfg, &tx) == 0); } /* Read multiple bytes from direct or indirect register */ bool _mcr20a_read_burst(struct mcr20a_context *dev, bool dreg, u16_t addr, u8_t *data_buf, u8_t len) { u8_t cmd_buf[2] = { dreg ? MCR20A_REG_READ | addr : MCR20A_IAR_INDEX | MCR20A_REG_WRITE, dreg ? 0 : addr | MCR20A_REG_READ }; struct spi_buf bufs[2] = { { .buf = cmd_buf, .len = dreg ? 1 : 2 }, { .buf = data_buf, .len = len } }; const struct spi_buf_set tx = { .buffers = bufs, .count = 1 }; const struct spi_buf_set rx = { .buffers = bufs, .count = 2 }; return (spi_transceive(dev->spi, &dev->spi_cfg, &tx, &rx) == 0); } /* Mask (msk is true) or unmask all interrupts from asserting IRQ_B */ static bool mcr20a_mask_irqb(struct mcr20a_context *dev, bool msk) { u8_t ctrl4 = read_reg_phy_ctrl4(dev); if (msk) { ctrl4 |= MCR20A_PHY_CTRL4_TRCV_MSK; } else { ctrl4 &= ~MCR20A_PHY_CTRL4_TRCV_MSK; } return write_reg_phy_ctrl4(dev, ctrl4); } /** Set an timeout value for the given compare register */ static int mcr20a_timer_set(struct mcr20a_context *mcr20a, u8_t cmp_reg, u32_t timeout) { u32_t now = 0; u32_t next; bool retval; if (!read_burst_event_timer(mcr20a, (u8_t *)&now)) { goto error; } now = sys_le32_to_cpu(now); next = now + timeout; SYS_LOG_DBG("now: 0x%x set 0x%x", now, next); next = sys_cpu_to_le32(next); switch (cmp_reg) { case 1: retval = write_burst_t1cmp(mcr20a, (u8_t *)&next); break; case 2: retval = write_burst_t2cmp(mcr20a, (u8_t *)&next); break; case 3: retval = write_burst_t3cmp(mcr20a, (u8_t *)&next); break; case 4: retval = write_burst_t4cmp(mcr20a, (u8_t *)&next); break; default: goto error; } if (!retval) { goto error; } return 0; error: SYS_LOG_ERR("Failed"); return -EIO; } static int mcr20a_timer_init(struct device *dev, u8_t tb) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t buf[3] = {0, 0, 0}; u8_t ctrl4; if (!write_reg_tmr_prescale(mcr20a, set_bits_tmr_prescale(tb))) { goto error; } if (!write_burst_t1cmp(mcr20a, buf)) { goto error; } ctrl4 = read_reg_phy_ctrl4(mcr20a); ctrl4 |= MCR20A_PHY_CTRL4_TMRLOAD; if (!write_reg_phy_ctrl4(mcr20a, ctrl4)) { goto error; } SYS_LOG_DBG("done, timebase %d", tb); return 0; error: SYS_LOG_ERR("Failed"); return -EIO; } /* Set Timer Comparator 4 */ static int mcr20a_t4cmp_set(struct mcr20a_context *mcr20a, u32_t timeout) { u8_t irqsts3; u8_t ctrl3; if (mcr20a_timer_set(mcr20a, 4, timeout)) { goto error; } /* enable and clear irq for the timer 4 */ irqsts3 = read_reg_irqsts3(mcr20a); irqsts3 &= ~MCR20A_IRQSTS3_TMR4MSK; irqsts3 |= MCR20A_IRQSTS3_TMR4IRQ; if (!write_reg_irqsts3(mcr20a, irqsts3)) { goto error; } ctrl3 = read_reg_phy_ctrl3(mcr20a); ctrl3 |= MCR20A_PHY_CTRL3_TMR4CMP_EN; if (!write_reg_phy_ctrl3(mcr20a, ctrl3)) { goto error; } return 0; error: SYS_LOG_DBG("Failed"); return -EIO; } /* Clear Timer Comparator 4 */ static int mcr20a_t4cmp_clear(struct mcr20a_context *mcr20a) { u8_t irqsts3; u8_t ctrl3; ctrl3 = read_reg_phy_ctrl3(mcr20a); ctrl3 &= ~MCR20A_PHY_CTRL3_TMR4CMP_EN; if (!write_reg_phy_ctrl3(mcr20a, ctrl3)) { goto error; } irqsts3 = read_reg_irqsts3(mcr20a); irqsts3 |= MCR20A_IRQSTS3_TMR4IRQ; if (!write_reg_irqsts3(mcr20a, irqsts3)) { goto error; } return 0; error: SYS_LOG_DBG("Failed"); return -EIO; } static inline void _xcvseq_wait_until_idle(struct mcr20a_context *mcr20a) { u8_t state; u8_t retries = MCR20A_GET_SEQ_STATE_RETRIES; do { state = read_reg_seq_state(mcr20a); retries--; } while ((state & MCR20A_SEQ_STATE_MASK) && retries); if (state & MCR20A_SEQ_STATE_MASK) { SYS_LOG_ERR("Timeout"); } } static inline int mcr20a_abort_sequence(struct mcr20a_context *mcr20a, bool force) { u8_t ctrl1; ctrl1 = read_reg_phy_ctrl1(mcr20a); SYS_LOG_DBG("CTRL1 0x%02x", ctrl1); if (((ctrl1 & MCR20A_PHY_CTRL1_XCVSEQ_MASK) == MCR20A_XCVSEQ_TX) || ((ctrl1 & MCR20A_PHY_CTRL1_XCVSEQ_MASK) == MCR20A_XCVSEQ_TX_RX)) { if (!force) { return -1; } } /* Abort ongoing sequence */ ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK; if (!write_reg_phy_ctrl1(mcr20a, ctrl1)) { return -1; } _xcvseq_wait_until_idle(mcr20a); /* Clear relevant interrupt flags */ if (!write_reg_irqsts1(mcr20a, MCR20A_IRQSTS1_IRQ_MASK)) { return -1; } return 0; } /* Initiate a (new) Transceiver Sequence */ static inline int mcr20a_set_sequence(struct mcr20a_context *mcr20a, u8_t seq) { u8_t ctrl1 = 0; seq = set_bits_phy_ctrl1_xcvseq(seq); ctrl1 = read_reg_phy_ctrl1(mcr20a); ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK; if ((seq == MCR20A_XCVSEQ_TX_RX) && (ctrl1 & MCR20A_PHY_CTRL1_RXACKRQD)) { /* RXACKRQD enabled, timer should be set. */ mcr20a_t4cmp_set(mcr20a, _MACACKWAITDURATION + _MAX_PKT_TX_DURATION); } ctrl1 |= seq; if (!write_reg_phy_ctrl1(mcr20a, ctrl1)) { return -EIO; } return 0; } static inline u32_t mcr20a_get_rssi(u32_t lqi) { /* Get rssi (Received Signal Strength Indicator, unit is dBm) * from lqi (Link Quality Indicator) value. * There are two different equations for RSSI: * RF = (LQI – 286.6) / 2.69333 (MKW2xD Reference Manual) * RF = (LQI – 295.4) / 2.84 (MCR20A Reference Manual) * The last appears more to match the graphic (Figure 3-10). * Since RSSI value is always positive and we want to * avoid the floating point computation: * -RF * 65536 = (LQI / 2.84 - 295.4 / 2.84) * 65536 * RF * 65536 = (295.4 * 65536 / 2.84) - (LQI * 65536 / 2.84) */ u32_t a = (u32_t)(295.4 * 65536 / 2.84); u32_t b = (u32_t)(65536 / 2.84); return (a - (b * lqi)) >> 16; } static inline u8_t *get_mac(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; u32_t *ptr = (u32_t *)(mcr20a->mac_addr); UNALIGNED_PUT(sys_rand32_get(), ptr); ptr = (u32_t *)(mcr20a->mac_addr + 4); UNALIGNED_PUT(sys_rand32_get(), ptr); mcr20a->mac_addr[0] = (mcr20a->mac_addr[0] & ~0x01) | 0x02; return mcr20a->mac_addr; } static inline bool read_rxfifo_content(struct mcr20a_context *dev, struct net_buf *buf, u8_t len) { u8_t cmd = MCR20A_BUF_READ; struct spi_buf bufs[2] = { { .buf = &cmd, .len = 1 }, { .buf = buf->data, .len = len } }; const struct spi_buf_set tx = { .buffers = bufs, .count = 1 }; const struct spi_buf_set rx = { .buffers = bufs, .count = 2 }; if (spi_transceive(dev->spi, &dev->spi_cfg, &tx, &rx) == 0) { net_buf_add(buf, len); } return true; } static inline void mcr20a_rx(struct mcr20a_context *mcr20a, u8_t len) { struct net_pkt *pkt = NULL; struct net_buf *frag; u8_t pkt_len; pkt_len = len - MCR20A_FCS_LENGTH; pkt = net_pkt_get_reserve_rx(0, K_NO_WAIT); if (!pkt) { SYS_LOG_ERR("No buf available"); goto out; } frag = net_pkt_get_frag(pkt, K_NO_WAIT); if (!frag) { SYS_LOG_ERR("No frag available"); goto out; } net_pkt_frag_insert(pkt, frag); if (!read_rxfifo_content(mcr20a, frag, pkt_len)) { SYS_LOG_ERR("No content read"); goto out; } if (ieee802154_radio_handle_ack(mcr20a->iface, pkt) == NET_OK) { SYS_LOG_DBG("ACK packet handled"); goto out; } net_pkt_set_ieee802154_lqi(pkt, read_reg_lqi_value(mcr20a)); net_pkt_set_ieee802154_rssi(pkt, mcr20a_get_rssi( net_pkt_ieee802154_lqi(pkt))); SYS_LOG_DBG("Caught a packet (%u) (LQI: %u, RSSI: %u)", pkt_len, net_pkt_ieee802154_lqi(pkt), net_pkt_ieee802154_rssi(pkt)); if (net_recv_data(mcr20a->iface, pkt) < 0) { SYS_LOG_DBG("Packet dropped by NET stack"); goto out; } net_analyze_stack("MCR20A Rx Fiber stack", K_THREAD_STACK_BUFFER(mcr20a->mcr20a_rx_stack), K_THREAD_STACK_SIZEOF(mcr20a->mcr20a_rx_stack)); return; out: if (pkt) { net_pkt_unref(pkt); } } /* * The function checks how the XCV sequence has been completed * and sets the variable seq_retval accordingly. It returns true * if a new sequence is to be set. This function is only to be called * when a sequence has been completed. */ static inline bool _irqsts1_event(struct mcr20a_context *mcr20a, u8_t *dregs) { u8_t seq = dregs[MCR20A_PHY_CTRL1] & MCR20A_PHY_CTRL1_XCVSEQ_MASK; u8_t new_seq = MCR20A_XCVSEQ_RECEIVE; bool retval = false; switch (seq) { case MCR20A_XCVSEQ_RECEIVE: if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_RXIRQ)) { if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_TXIRQ)) { SYS_LOG_DBG("Finished RxSeq + TxAck"); } else { SYS_LOG_DBG("Finished RxSeq"); } mcr20a_rx(mcr20a, dregs[MCR20A_RX_FRM_LEN]); retval = true; } break; case MCR20A_XCVSEQ_TX: case MCR20A_XCVSEQ_TX_RX: if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_CCAIRQ) { if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_CCA) { SYS_LOG_DBG("Finished CCA, CH busy"); atomic_set(&mcr20a->seq_retval, -EBUSY); retval = true; break; } } if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_TXIRQ) { atomic_set(&mcr20a->seq_retval, 0); if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_RXIRQ)) { SYS_LOG_DBG("Finished TxSeq + RxAck"); /* Got Ack, timer should be disabled. */ mcr20a_t4cmp_clear(mcr20a); } else { SYS_LOG_DBG("Finished TxSeq"); } retval = true; } break; case MCR20A_XCVSEQ_CONTINUOUS_CCA: case MCR20A_XCVSEQ_CCA: if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_CCAIRQ)) { /* If CCCA, then timer should be disabled. */ /* mcr20a_t4cmp_clear(mcr20a); */ if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_CCA) { SYS_LOG_DBG("Finished CCA, CH busy"); atomic_set(&mcr20a->seq_retval, -EBUSY); } else { /** * Assume that after the CCA, * a transmit sequence follows and * set here the sequence manager to Idle. */ SYS_LOG_DBG("Finished CCA, CH idle"); new_seq = MCR20A_XCVSEQ_IDLE; atomic_set(&mcr20a->seq_retval, 0); } retval = true; } break; case MCR20A_XCVSEQ_IDLE: default: SYS_LOG_ERR("SEQ triggered, but XCVSEQ is in the Idle state"); SYS_LOG_ERR("IRQSTS: 0x%02x", dregs[MCR20A_IRQSTS1]); break; } dregs[MCR20A_PHY_CTRL1] &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK; dregs[MCR20A_PHY_CTRL1] |= new_seq; return retval; } /* * Check the Timer Comparator IRQ register IRQSTS3. * Currently we use only T4CMP to cancel the running sequence, * usually the TR. */ static inline bool _irqsts3_event(struct mcr20a_context *mcr20a, u8_t *dregs) { bool retval = false; if (dregs[MCR20A_IRQSTS3] & MCR20A_IRQSTS3_TMR4IRQ) { SYS_LOG_DBG("Sequence timeout, IRQSTSs 0x%02x 0x%02x 0x%02x", dregs[MCR20A_IRQSTS1], dregs[MCR20A_IRQSTS2], dregs[MCR20A_IRQSTS3]); atomic_set(&mcr20a->seq_retval, -EBUSY); mcr20a_t4cmp_clear(mcr20a); dregs[MCR20A_PHY_CTRL1] &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK; dregs[MCR20A_PHY_CTRL1] |= MCR20A_XCVSEQ_RECEIVE; /* Clear all interrupts */ dregs[MCR20A_IRQSTS1] = MCR20A_IRQSTS1_IRQ_MASK; retval = true; } else { SYS_LOG_ERR("IRQSTS3 contains untreated IRQs: 0x%02x", dregs[MCR20A_IRQSTS3]); } return retval; } static void mcr20a_thread_main(void *arg) { struct device *dev = (struct device *)arg; struct mcr20a_context *mcr20a = dev->driver_data; u8_t dregs[MCR20A_PHY_CTRL4 + 1]; bool set_new_seq; u8_t ctrl1 = 0; while (true) { k_sem_take(&mcr20a->isr_sem, K_FOREVER); k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); set_new_seq = false; if (!mcr20a_mask_irqb(mcr20a, true)) { SYS_LOG_ERR("Failed to mask IRQ_B"); goto unmask_irqb; } /* Read the register from IRQSTS1 until CTRL4 */ if (!read_burst_irqsts1_ctrl4(mcr20a, dregs)) { SYS_LOG_ERR("Failed to read register"); goto unmask_irqb; } /* make backup from PHY_CTRL1 register */ ctrl1 = dregs[MCR20A_PHY_CTRL1]; if (dregs[MCR20A_IRQSTS3] & MCR20A_IRQSTS3_IRQ_MASK) { set_new_seq = _irqsts3_event(mcr20a, dregs); } else if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_SEQIRQ) { set_new_seq = _irqsts1_event(mcr20a, dregs); } if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_IRQ_MASK) { SYS_LOG_ERR("IRQSTS2 contains untreated IRQs: 0x%02x", dregs[MCR20A_IRQSTS2]); } SYS_LOG_DBG("WB: 0x%02x | 0x%02x | 0x%02x", dregs[MCR20A_IRQSTS1], dregs[MCR20A_IRQSTS2], dregs[MCR20A_IRQSTS3]); /* Write back register, clear IRQs and set new sequence */ if (set_new_seq) { /* Reset sequence manager */ ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK; if (!write_reg_phy_ctrl1(mcr20a, ctrl1)) { SYS_LOG_ERR("Failed to reset SEQ manager"); } _xcvseq_wait_until_idle(mcr20a); if (!write_burst_irqsts1_ctrl1(mcr20a, dregs)) { SYS_LOG_ERR("Failed to write CTRL1"); } } else { if (!write_burst_irqsts1_irqsts3(mcr20a, dregs)) { SYS_LOG_ERR("Failed to write IRQSTS3"); } } unmask_irqb: if (!mcr20a_mask_irqb(mcr20a, false)) { SYS_LOG_ERR("Failed to unmask IRQ_B"); } k_mutex_unlock(&mcr20a->phy_mutex); if (set_new_seq) { k_sem_give(&mcr20a->seq_sync); } } } static inline void irqb_int_handler(struct device *port, struct gpio_callback *cb, u32_t pins) { struct mcr20a_context *mcr20a = CONTAINER_OF(cb, struct mcr20a_context, irqb_cb); k_sem_give(&mcr20a->isr_sem); } static inline void set_reset(struct device *dev, u32_t value) { struct mcr20a_context *mcr20a = dev->driver_data; gpio_pin_write(mcr20a->reset_gpio, CONFIG_MCR20A_GPIO_RESET_PIN, value); } static void enable_irqb_interrupt(struct mcr20a_context *mcr20a, bool enable) { if (enable) { gpio_pin_enable_callback(mcr20a->irq_gpio, CONFIG_MCR20A_GPIO_IRQ_B_PIN); } else { gpio_pin_disable_callback(mcr20a->irq_gpio, CONFIG_MCR20A_GPIO_IRQ_B_PIN); } } static inline void setup_gpio_callbacks(struct mcr20a_context *mcr20a) { gpio_init_callback(&mcr20a->irqb_cb, irqb_int_handler, BIT(CONFIG_MCR20A_GPIO_IRQ_B_PIN)); gpio_add_callback(mcr20a->irq_gpio, &mcr20a->irqb_cb); } static int mcr20a_set_cca_mode(struct device *dev, u8_t mode) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t ctrl4; ctrl4 = read_reg_phy_ctrl4(mcr20a); ctrl4 &= ~MCR20A_PHY_CTRL4_CCATYPE_MASK; ctrl4 |= set_bits_phy_ctrl4_ccatype(mode); if (!write_reg_phy_ctrl4(mcr20a, ctrl4)) { SYS_LOG_ERR("Failed"); return -EIO; } return 0; } static enum ieee802154_hw_caps mcr20a_get_capabilities(struct device *dev) { return IEEE802154_HW_FCS | IEEE802154_HW_2_4_GHZ | IEEE802154_HW_TX_RX_ACK | IEEE802154_HW_FILTER; } /* Note: CCA before TX is enabled by default */ static int mcr20a_cca(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; int retval; k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); if (!mcr20a_mask_irqb(mcr20a, true)) { SYS_LOG_ERR("Failed to mask IRQ_B"); goto error; } k_sem_init(&mcr20a->seq_sync, 0, 1); if (mcr20a_abort_sequence(mcr20a, false)) { SYS_LOG_ERR("Failed to reset XCV sequence"); goto error; } SYS_LOG_DBG("start CCA sequence"); if (mcr20a_set_sequence(mcr20a, MCR20A_XCVSEQ_CCA)) { SYS_LOG_ERR("Failed to reset XCV sequence"); goto error; } if (!mcr20a_mask_irqb(mcr20a, false)) { SYS_LOG_ERR("Failed to unmask IRQ_B"); goto error; } k_mutex_unlock(&mcr20a->phy_mutex); retval = k_sem_take(&mcr20a->seq_sync, MCR20A_SEQ_SYNC_TIMEOUT); if (retval) { SYS_LOG_ERR("Timeout occurred, %d", retval); return retval; } SYS_LOG_DBG("done"); return mcr20a->seq_retval; error: k_mutex_unlock(&mcr20a->phy_mutex); return -EIO; } static int mcr20a_set_channel(struct device *dev, u16_t channel) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t buf[3]; u8_t ctrl1; int retval = -EIO; if (channel < 11 || channel > 26) { SYS_LOG_ERR("Unsupported channel %u", channel); return -EINVAL; } k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); if (!mcr20a_mask_irqb(mcr20a, true)) { SYS_LOG_ERR("Failed to mask IRQ_B"); goto out; } ctrl1 = read_reg_phy_ctrl1(mcr20a); if (mcr20a_abort_sequence(mcr20a, true)) { SYS_LOG_ERR("Failed to reset XCV sequence"); goto out; } SYS_LOG_DBG("%u", channel); channel -= 11; buf[0] = set_bits_pll_int0_val(pll_int_lt[channel]); buf[1] = (u8_t)pll_frac_lt[channel]; buf[2] = (u8_t)(pll_frac_lt[channel] >> 8); if (!write_burst_pll_int0(mcr20a, buf)) { SYS_LOG_ERR("Failed to set PLL"); goto out; } if (mcr20a_set_sequence(mcr20a, ctrl1)) { SYS_LOG_ERR("Failed to restore XCV sequence"); goto out; } retval = 0; out: if (!mcr20a_mask_irqb(mcr20a, false)) { SYS_LOG_ERR("Failed to unmask IRQ_B"); retval = -EIO; } k_mutex_unlock(&mcr20a->phy_mutex); return retval; } static int mcr20a_set_pan_id(struct device *dev, u16_t pan_id) { struct mcr20a_context *mcr20a = dev->driver_data; pan_id = sys_le16_to_cpu(pan_id); k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); if (!write_burst_pan_id(mcr20a, (u8_t *) &pan_id)) { SYS_LOG_ERR("Failed"); k_mutex_unlock(&mcr20a->phy_mutex); return -EIO; } k_mutex_unlock(&mcr20a->phy_mutex); SYS_LOG_DBG("0x%x", pan_id); return 0; } static int mcr20a_set_short_addr(struct device *dev, u16_t short_addr) { struct mcr20a_context *mcr20a = dev->driver_data; short_addr = sys_le16_to_cpu(short_addr); k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); if (!write_burst_short_addr(mcr20a, (u8_t *) &short_addr)) { SYS_LOG_ERR("Failed"); k_mutex_unlock(&mcr20a->phy_mutex); return -EIO; } k_mutex_unlock(&mcr20a->phy_mutex); SYS_LOG_DBG("0x%x", short_addr); return 0; } static int mcr20a_set_ieee_addr(struct device *dev, const u8_t *ieee_addr) { struct mcr20a_context *mcr20a = dev->driver_data; k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); if (!write_burst_ext_addr(mcr20a, (void *)ieee_addr)) { SYS_LOG_ERR("Failed"); k_mutex_unlock(&mcr20a->phy_mutex); return -EIO; } k_mutex_unlock(&mcr20a->phy_mutex); SYS_LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4], ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]); return 0; } static int mcr20a_filter(struct device *dev, bool set, enum ieee802154_filter_type type, const struct ieee802154_filter *filter) { SYS_LOG_DBG("Applying filter %u", type); if (!set) { return -ENOTSUP; } if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) { return mcr20a_set_ieee_addr(dev, filter->ieee_addr); } else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) { return mcr20a_set_short_addr(dev, filter->short_addr); } else if (type == IEEE802154_FILTER_TYPE_PAN_ID) { return mcr20a_set_pan_id(dev, filter->pan_id); } return -ENOTSUP; } static int mcr20a_set_txpower(struct device *dev, s16_t dbm) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t pwr; k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); SYS_LOG_DBG("%d", dbm); if ((dbm > MCR20A_OUTPUT_POWER_MAX) || (dbm < MCR20A_OUTPUT_POWER_MIN)) { goto error; } pwr = pow_lt[dbm - MCR20A_OUTPUT_POWER_MIN]; if (!write_reg_pa_pwr(mcr20a, set_bits_pa_pwr_val(pwr))) { goto error; } k_mutex_unlock(&mcr20a->phy_mutex); return 0; error: k_mutex_unlock(&mcr20a->phy_mutex); SYS_LOG_DBG("Failed"); return -EIO; } static inline bool write_txfifo_content(struct mcr20a_context *dev, struct net_pkt *pkt, struct net_buf *frag) { size_t payload_len = net_pkt_ll_reserve(pkt) + frag->len; u8_t cmd_buf[2] = { MCR20A_BUF_WRITE, payload_len + MCR20A_FCS_LENGTH }; const struct spi_buf bufs[2] = { { .buf = cmd_buf, .len = 2 }, { .buf = frag->data - net_pkt_ll_reserve(pkt), .len = payload_len } }; const struct spi_buf_set tx = { .buffers = bufs, .count = 2 }; if (payload_len > MCR20A_PSDU_LENGTH) { SYS_LOG_ERR("Payload too long"); return 0; } return (spi_write(dev->spi, &dev->spi_cfg, &tx) == 0); } static int mcr20a_tx(struct device *dev, struct net_pkt *pkt, struct net_buf *frag) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t seq = ieee802154_is_ar_flag_set(pkt) ? MCR20A_XCVSEQ_TX_RX : MCR20A_XCVSEQ_TX; int retval; k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); SYS_LOG_DBG("%p (%u)", frag, net_pkt_ll_reserve(pkt) + frag->len); if (!mcr20a_mask_irqb(mcr20a, true)) { SYS_LOG_ERR("Failed to mask IRQ_B"); goto error; } if (mcr20a_abort_sequence(mcr20a, false)) { SYS_LOG_ERR("Failed to reset XCV sequence"); goto error; } if (!write_txfifo_content(mcr20a, pkt, frag)) { SYS_LOG_ERR("Did not write properly into TX FIFO"); goto error; } k_sem_init(&mcr20a->seq_sync, 0, 1); if (mcr20a_set_sequence(mcr20a, seq)) { SYS_LOG_ERR("Cannot start transmission"); goto error; } if (!mcr20a_mask_irqb(mcr20a, false)) { SYS_LOG_ERR("Failed to unmask IRQ_B"); goto error; } k_mutex_unlock(&mcr20a->phy_mutex); retval = k_sem_take(&mcr20a->seq_sync, MCR20A_SEQ_SYNC_TIMEOUT); if (retval) { SYS_LOG_ERR("Timeout occurred, %d", retval); return retval; } SYS_LOG_DBG("done"); return mcr20a->seq_retval; error: k_mutex_unlock(&mcr20a->phy_mutex); return -EIO; } static int mcr20a_start(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t timeout = 6; u8_t status; k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); enable_irqb_interrupt(mcr20a, false); if (!write_reg_pwr_modes(mcr20a, MCR20A_PM_AUTODOZE)) { SYS_LOG_ERR("Error starting MCR20A"); goto error; } do { _usleep(50); timeout--; status = read_reg_pwr_modes(mcr20a); } while (!(status & MCR20A_PWR_MODES_XTAL_READY) && timeout); if (!(status & MCR20A_PWR_MODES_XTAL_READY)) { SYS_LOG_ERR("Timeout, failed to wake up"); goto error; } /* Clear all interrupt flags */ write_reg_irqsts1(mcr20a, MCR20A_IRQSTS1_IRQ_MASK); write_reg_irqsts2(mcr20a, MCR20A_IRQSTS2_IRQ_MASK); write_reg_irqsts3(mcr20a, MCR20A_IRQSTS3_IRQ_MASK | MCR20A_IRQSTS3_TMR_MASK); if (mcr20a_abort_sequence(mcr20a, true)) { SYS_LOG_ERR("Failed to reset XCV sequence"); goto error; } if (mcr20a_set_sequence(mcr20a, MCR20A_XCVSEQ_RECEIVE)) { SYS_LOG_ERR("Failed to set XCV sequence"); goto error; } enable_irqb_interrupt(mcr20a, true); if (!mcr20a_mask_irqb(mcr20a, false)) { SYS_LOG_ERR("Failed to unmask IRQ_B"); goto error; } k_mutex_unlock(&mcr20a->phy_mutex); SYS_LOG_DBG("started"); return 0; error: k_mutex_unlock(&mcr20a->phy_mutex); return -EIO; } static int mcr20a_stop(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t power_mode; k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER); if (!mcr20a_mask_irqb(mcr20a, true)) { SYS_LOG_ERR("Failed to mask IRQ_B"); goto error; } if (mcr20a_abort_sequence(mcr20a, true)) { SYS_LOG_ERR("Failed to reset XCV sequence"); goto error; } enable_irqb_interrupt(mcr20a, false); if (PART_OF_KW2XD_SIP) { power_mode = MCR20A_PM_DOZE; } else { power_mode = MCR20A_PM_HIBERNATE; } if (!write_reg_pwr_modes(mcr20a, power_mode)) { goto error; } SYS_LOG_DBG("stopped"); k_mutex_unlock(&mcr20a->phy_mutex); return 0; error: k_mutex_unlock(&mcr20a->phy_mutex); SYS_LOG_ERR("Error stopping MCR20A"); return -EIO; } static int mcr20a_update_overwrites(struct mcr20a_context *dev) { if (!write_reg_overwrite_ver(dev, overwrites_direct[0].data)) { goto error; } for (u8_t i = 0; i < sizeof(overwrites_indirect) / sizeof(overwrites_t); i++) { if (!_mcr20a_write_reg(dev, true, overwrites_indirect[i].address, overwrites_indirect[i].data)) { goto error; } } return 0; error: SYS_LOG_ERR("Error update overwrites"); return -EIO; } static int power_on_and_setup(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; u8_t timeout = 6; u32_t status; u8_t tmp = 0; if (!PART_OF_KW2XD_SIP) { set_reset(dev, 0); _usleep(150); set_reset(dev, 1); do { _usleep(50); timeout--; gpio_pin_read(mcr20a->irq_gpio, CONFIG_MCR20A_GPIO_IRQ_B_PIN, &status); } while (status && timeout); if (status) { SYS_LOG_ERR("Timeout, failed to get WAKE IRQ"); return -EIO; } } tmp = MCR20A_CLK_OUT_CONFIG | MCR20A_CLK_OUT_EXTEND; write_reg_clk_out_ctrl(mcr20a, tmp); if (read_reg_clk_out_ctrl(mcr20a) != tmp) { SYS_LOG_ERR("Failed to get device up"); return -EIO; } /* Clear all interrupt flags */ write_reg_irqsts1(mcr20a, MCR20A_IRQSTS1_IRQ_MASK); write_reg_irqsts2(mcr20a, MCR20A_IRQSTS2_IRQ_MASK); write_reg_irqsts3(mcr20a, MCR20A_IRQSTS3_IRQ_MASK | MCR20A_IRQSTS3_TMR_MASK); mcr20a_update_overwrites(mcr20a); mcr20a_timer_init(dev, MCR20A_TIMEBASE_62500HZ); mcr20a_set_txpower(dev, MCR20A_DEFAULT_TX_POWER); mcr20a_set_channel(dev, MCR20A_DEFAULT_CHANNEL); mcr20a_set_cca_mode(dev, 1); write_reg_rx_wtr_mark(mcr20a, 8); /* Configure PHY behaviour */ tmp = MCR20A_PHY_CTRL1_CCABFRTX | MCR20A_PHY_CTRL1_AUTOACK | MCR20A_PHY_CTRL1_RXACKRQD; write_reg_phy_ctrl1(mcr20a, tmp); /* Enable Sequence-end interrupt */ tmp = MCR20A_PHY_CTRL2_SEQMSK; write_reg_phy_ctrl2(mcr20a, ~tmp); setup_gpio_callbacks(mcr20a); return 0; } static inline int configure_gpios(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; /* setup gpio for the modem interrupt */ mcr20a->irq_gpio = device_get_binding(CONFIG_MCR20A_GPIO_IRQ_B_NAME); if (mcr20a->irq_gpio == NULL) { SYS_LOG_ERR("Failed to get pointer to %s device", CONFIG_MCR20A_GPIO_IRQ_B_NAME); return -EINVAL; } gpio_pin_configure(mcr20a->irq_gpio, CONFIG_MCR20A_GPIO_IRQ_B_PIN, GPIO_DIR_IN | GPIO_INT | GPIO_INT_EDGE | GPIO_PUD_PULL_UP | GPIO_INT_ACTIVE_LOW); /* setup gpio for the modems reset */ mcr20a->reset_gpio = device_get_binding(CONFIG_MCR20A_GPIO_RESET_NAME); if (mcr20a->reset_gpio == NULL) { SYS_LOG_ERR("Failed to get pointer to %s device", CONFIG_MCR20A_GPIO_RESET_NAME); return -EINVAL; } gpio_pin_configure(mcr20a->reset_gpio, CONFIG_MCR20A_GPIO_RESET_PIN, GPIO_DIR_OUT); set_reset(dev, 1); return 0; } static inline int configure_spi(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; mcr20a->spi = device_get_binding( CONFIG_IEEE802154_MCR20A_SPI_DRV_NAME); if (!mcr20a->spi) { SYS_LOG_ERR("Unable to get SPI device"); return -ENODEV; } #if defined(CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS) mcr20a->cs_ctrl.gpio_dev = device_get_binding( CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_DRV_NAME); if (!mcr20a->cs_ctrl.gpio_dev) { SYS_LOG_ERR("Unable to get GPIO SPI CS device"); return -ENODEV; } mcr20a->cs_ctrl.gpio_pin = CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_PIN; mcr20a->cs_ctrl.delay = 0; mcr20a->spi_cfg.cs = &mcr20a->cs_ctrl; SYS_LOG_DBG("SPI GPIO CS configured on %s:%u", CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_DRV_NAME, CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_PIN); #endif /* CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS */ mcr20a->spi_cfg.frequency = CONFIG_IEEE802154_MCR20A_SPI_FREQ; mcr20a->spi_cfg.operation = SPI_WORD_SET(8); mcr20a->spi_cfg.slave = CONFIG_IEEE802154_MCR20A_SPI_SLAVE; SYS_LOG_DBG("SPI configured %s, %d", CONFIG_IEEE802154_MCR20A_SPI_DRV_NAME, CONFIG_IEEE802154_MCR20A_SPI_SLAVE); return 0; } static int mcr20a_init(struct device *dev) { struct mcr20a_context *mcr20a = dev->driver_data; k_mutex_init(&mcr20a->phy_mutex); k_sem_init(&mcr20a->isr_sem, 0, 1); SYS_LOG_DBG("\nInitialize MCR20A Transceiver\n"); if (configure_gpios(dev) != 0) { SYS_LOG_ERR("Configuring GPIOS failed"); return -EIO; } if (configure_spi(dev) != 0) { SYS_LOG_ERR("Configuring SPI failed"); return -EIO; } SYS_LOG_DBG("GPIO and SPI configured"); if (power_on_and_setup(dev) != 0) { SYS_LOG_ERR("Configuring MCR20A failed"); return -EIO; } k_thread_create(&mcr20a->mcr20a_rx_thread, mcr20a->mcr20a_rx_stack, CONFIG_IEEE802154_MCR20A_RX_STACK_SIZE, (k_thread_entry_t)mcr20a_thread_main, dev, NULL, NULL, K_PRIO_COOP(2), 0, 0); return 0; } static void mcr20a_iface_init(struct net_if *iface) { struct device *dev = net_if_get_device(iface); struct mcr20a_context *mcr20a = dev->driver_data; u8_t *mac = get_mac(dev); net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154); mcr20a->iface = iface; ieee802154_init(iface); SYS_LOG_DBG("done"); } static struct mcr20a_context mcr20a_context_data; static struct ieee802154_radio_api mcr20a_radio_api = { .iface_api.init = mcr20a_iface_init, .iface_api.send = ieee802154_radio_send, .get_capabilities = mcr20a_get_capabilities, .cca = mcr20a_cca, .set_channel = mcr20a_set_channel, .filter = mcr20a_filter, .set_txpower = mcr20a_set_txpower, .start = mcr20a_start, .stop = mcr20a_stop, .tx = mcr20a_tx, }; #if defined(CONFIG_IEEE802154_RAW_MODE) DEVICE_AND_API_INIT(mcr20a, CONFIG_IEEE802154_MCR20A_DRV_NAME, mcr20a_init, &mcr20a_context_data, NULL, POST_KERNEL, CONFIG_IEEE802154_MCR20A_INIT_PRIO, &mcr20a_radio_api); #else NET_DEVICE_INIT(mcr20a, CONFIG_IEEE802154_MCR20A_DRV_NAME, mcr20a_init, &mcr20a_context_data, NULL, CONFIG_IEEE802154_MCR20A_INIT_PRIO, &mcr20a_radio_api, IEEE802154_L2, NET_L2_GET_CTX_TYPE(IEEE802154_L2), MCR20A_PSDU_LENGTH); #endif |