Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | /* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel initialization module * * This module contains routines that are used to initialize the kernel. */ #include <zephyr.h> #include <offsets_short.h> #include <kernel.h> #include <misc/printk.h> #include <misc/stack.h> #include <random/rand32.h> #include <linker/sections.h> #include <toolchain.h> #include <kernel_structs.h> #include <device.h> #include <init.h> #include <linker/linker-defs.h> #include <ksched.h> #include <version.h> #include <string.h> #include <misc/dlist.h> #include <kernel_internal.h> #include <kswap.h> #include <entropy.h> #include <logging/log_ctrl.h> #include <tracing.h> /* kernel build timestamp items */ #define BUILD_TIMESTAMP "BUILD: " __DATE__ " " __TIME__ /* boot banner items */ #if defined(CONFIG_BOOT_DELAY) && CONFIG_BOOT_DELAY > 0 #define BOOT_DELAY_BANNER " (delayed boot " \ STRINGIFY(CONFIG_BOOT_DELAY) "ms)" static const unsigned int boot_delay = CONFIG_BOOT_DELAY; #else #define BOOT_DELAY_BANNER "" static const unsigned int boot_delay; #endif #ifdef BUILD_VERSION #define BOOT_BANNER "Booting Zephyr OS " \ STRINGIFY(BUILD_VERSION) BOOT_DELAY_BANNER #else #define BOOT_BANNER "Booting Zephyr OS " \ KERNEL_VERSION_STRING BOOT_DELAY_BANNER #endif #if !defined(CONFIG_BOOT_BANNER) #define PRINT_BOOT_BANNER() do { } while (0) #else #define PRINT_BOOT_BANNER() printk("***** " BOOT_BANNER " *****\n") #endif /* boot time measurement items */ #ifdef CONFIG_BOOT_TIME_MEASUREMENT u64_t __noinit __start_time_stamp; /* timestamp when kernel starts */ u64_t __noinit __main_time_stamp; /* timestamp when main task starts */ u64_t __noinit __idle_time_stamp; /* timestamp when CPU goes idle */ #endif /* init/main and idle threads */ #define IDLE_STACK_SIZE CONFIG_IDLE_STACK_SIZE #define MAIN_STACK_SIZE CONFIG_MAIN_STACK_SIZE K_THREAD_STACK_DEFINE(_main_stack, MAIN_STACK_SIZE); K_THREAD_STACK_DEFINE(_idle_stack, IDLE_STACK_SIZE); static struct k_thread _main_thread_s; static struct k_thread _idle_thread_s; k_tid_t const _main_thread = (k_tid_t)&_main_thread_s; k_tid_t const _idle_thread = (k_tid_t)&_idle_thread_s; /* * storage space for the interrupt stack * * Note: This area is used as the system stack during kernel initialization, * since the kernel hasn't yet set up its own stack areas. The dual purposing * of this area is safe since interrupts are disabled until the kernel context * switches to the init thread. */ K_THREAD_STACK_DEFINE(_interrupt_stack, CONFIG_ISR_STACK_SIZE); /* * Similar idle thread & interrupt stack definitions for the * auxiliary CPUs. The declaration macros aren't set up to define an * array, so do it with a simple test for up to 4 processors. Should * clean this up in the future. */ #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 K_THREAD_STACK_DEFINE(_idle_stack1, IDLE_STACK_SIZE); static struct k_thread _idle_thread1_s; k_tid_t const _idle_thread1 = (k_tid_t)&_idle_thread1_s; K_THREAD_STACK_DEFINE(_interrupt_stack1, CONFIG_ISR_STACK_SIZE); #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 2 K_THREAD_STACK_DEFINE(_idle_stack2, IDLE_STACK_SIZE); static struct k_thread _idle_thread2_s; k_tid_t const _idle_thread2 = (k_tid_t)&_idle_thread2_s; K_THREAD_STACK_DEFINE(_interrupt_stack2, CONFIG_ISR_STACK_SIZE); #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 3 K_THREAD_STACK_DEFINE(_idle_stack3, IDLE_STACK_SIZE); static struct k_thread _idle_thread3_s; k_tid_t const _idle_thread3 = (k_tid_t)&_idle_thread3_s; K_THREAD_STACK_DEFINE(_interrupt_stack3, CONFIG_ISR_STACK_SIZE); #endif #ifdef CONFIG_SYS_CLOCK_EXISTS #define initialize_timeouts() do { \ sys_dlist_init(&_timeout_q); \ } while ((0)) #else #define initialize_timeouts() do { } while ((0)) #endif extern void idle(void *unused1, void *unused2, void *unused3); /* LCOV_EXCL_START */ #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_PRINTK) extern K_THREAD_STACK_DEFINE(sys_work_q_stack, CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE); void k_call_stacks_analyze(void) { printk("Kernel stacks:\n"); STACK_ANALYZE("main ", _main_stack); STACK_ANALYZE("idle ", _idle_stack); STACK_ANALYZE("interrupt", _interrupt_stack); STACK_ANALYZE("workqueue", sys_work_q_stack); } #else void k_call_stacks_analyze(void) { } #endif /* LCOV_EXCL_STOP */ /** * * @brief Clear BSS * * This routine clears the BSS region, so all bytes are 0. * * @return N/A */ void _bss_zero(void) { memset(&__bss_start, 0, ((u32_t) &__bss_end - (u32_t) &__bss_start)); #ifdef CONFIG_CCM_BASE_ADDRESS memset(&__ccm_bss_start, 0, ((u32_t) &__ccm_bss_end - (u32_t) &__ccm_bss_start)); #endif #ifdef CONFIG_APPLICATION_MEMORY memset(&__app_bss_start, 0, ((u32_t) &__app_bss_end - (u32_t) &__app_bss_start)); #endif } #ifdef CONFIG_XIP /** * * @brief Copy the data section from ROM to RAM * * This routine copies the data section from ROM to RAM. * * @return N/A */ void _data_copy(void) { (void)memcpy(&__data_ram_start, &__data_rom_start, ((u32_t) &__data_ram_end - (u32_t) &__data_ram_start)); #ifdef CONFIG_CCM_BASE_ADDRESS (void)memcpy(&__ccm_data_start, &__ccm_data_rom_start, ((u32_t) &__ccm_data_end - (u32_t) &__ccm_data_start)); #endif #ifdef CONFIG_APP_SHARED_MEM (void)memcpy(&_app_smem_start, &_app_smem_rom_start, ((u32_t) &_app_smem_end - (u32_t) &_app_smem_start)); #endif #ifdef CONFIG_APPLICATION_MEMORY (void)memcpy(&__app_data_ram_start, &__app_data_rom_start, ((u32_t) &__app_data_ram_end - (u32_t) &__app_data_ram_start)); #endif } #endif /** * * @brief Mainline for kernel's background thread * * This routine completes kernel initialization by invoking the remaining * init functions, then invokes application's main() routine. * * @return N/A */ static void bg_thread_main(void *unused1, void *unused2, void *unused3) { ARG_UNUSED(unused1); ARG_UNUSED(unused2); ARG_UNUSED(unused3); _sys_device_do_config_level(_SYS_INIT_LEVEL_POST_KERNEL); #if CONFIG_STACK_POINTER_RANDOM z_stack_adjust_initialized = 1; #endif if (boot_delay > 0) { printk("***** delaying boot " STRINGIFY(CONFIG_BOOT_DELAY) "ms (per build configuration) *****\n"); k_busy_wait(CONFIG_BOOT_DELAY * USEC_PER_MSEC); } PRINT_BOOT_BANNER(); /* Final init level before app starts */ _sys_device_do_config_level(_SYS_INIT_LEVEL_APPLICATION); #ifdef CONFIG_CPLUSPLUS /* Process the .ctors and .init_array sections */ extern void __do_global_ctors_aux(void); extern void __do_init_array_aux(void); __do_global_ctors_aux(); __do_init_array_aux(); #endif _init_static_threads(); #ifdef CONFIG_SMP smp_init(); #endif #ifdef CONFIG_BOOT_TIME_MEASUREMENT /* record timestamp for kernel's _main() function */ extern u64_t __main_time_stamp; __main_time_stamp = (u64_t)k_cycle_get_32(); #endif extern void main(void); main(); /* Terminate thread normally since it has no more work to do */ _main_thread->base.user_options &= ~K_ESSENTIAL; } void __weak main(void) { /* NOP default main() if the application does not provide one. */ } #if defined(CONFIG_MULTITHREADING) static void init_idle_thread(struct k_thread *thr, k_thread_stack_t *stack) { #ifdef CONFIG_SMP thr->base.is_idle = 1; #endif _setup_new_thread(thr, stack, IDLE_STACK_SIZE, idle, NULL, NULL, NULL, K_LOWEST_THREAD_PRIO, K_ESSENTIAL); _mark_thread_as_started(thr); } #endif /** * * @brief Initializes kernel data structures * * This routine initializes various kernel data structures, including * the init and idle threads and any architecture-specific initialization. * * Note that all fields of "_kernel" are set to zero on entry, which may * be all the initialization many of them require. * * @return N/A */ #ifdef CONFIG_MULTITHREADING static void prepare_multithreading(struct k_thread *dummy_thread) { #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN ARG_UNUSED(dummy_thread); #else /* * Initialize the current execution thread to permit a level of * debugging output if an exception should happen during kernel * initialization. However, don't waste effort initializing the * fields of the dummy thread beyond those needed to identify it as a * dummy thread. */ _current = dummy_thread; dummy_thread->base.user_options = K_ESSENTIAL; dummy_thread->base.thread_state = _THREAD_DUMMY; #ifdef CONFIG_THREAD_STACK_INFO dummy_thread->stack_info.start = 0; dummy_thread->stack_info.size = 0; #endif #ifdef CONFIG_USERSPACE dummy_thread->mem_domain_info.mem_domain = 0; #endif #endif /* _kernel.ready_q is all zeroes */ _sched_init(); #ifndef CONFIG_SMP /* * prime the cache with the main thread since: * * - the cache can never be NULL * - the main thread will be the one to run first * - no other thread is initialized yet and thus their priority fields * contain garbage, which would prevent the cache loading algorithm * to work as intended */ _ready_q.cache = _main_thread; #endif _setup_new_thread(_main_thread, _main_stack, MAIN_STACK_SIZE, bg_thread_main, NULL, NULL, NULL, CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL); sys_trace_thread_create(_main_thread); _mark_thread_as_started(_main_thread); _ready_thread(_main_thread); #ifdef CONFIG_MULTITHREADING init_idle_thread(_idle_thread, _idle_stack); _kernel.cpus[0].idle_thread = _idle_thread; sys_trace_thread_create(_idle_thread); #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 init_idle_thread(_idle_thread1, _idle_stack1); _kernel.cpus[1].idle_thread = _idle_thread1; _kernel.cpus[1].id = 1; _kernel.cpus[1].irq_stack = K_THREAD_STACK_BUFFER(_interrupt_stack1) + CONFIG_ISR_STACK_SIZE; #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 2 init_idle_thread(_idle_thread2, _idle_stack2); _kernel.cpus[2].idle_thread = _idle_thread2; _kernel.cpus[2].id = 2; _kernel.cpus[2].irq_stack = K_THREAD_STACK_BUFFER(_interrupt_stack2) + CONFIG_ISR_STACK_SIZE; #endif #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 3 init_idle_thread(_idle_thread3, _idle_stack3); _kernel.cpus[3].idle_thread = _idle_thread3; _kernel.cpus[3].id = 3; _kernel.cpus[3].irq_stack = K_THREAD_STACK_BUFFER(_interrupt_stack3) + CONFIG_ISR_STACK_SIZE; #endif initialize_timeouts(); } static void switch_to_main_thread(void) { #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN _arch_switch_to_main_thread(_main_thread, _main_stack, MAIN_STACK_SIZE, bg_thread_main); #else /* * Context switch to main task (entry function is _main()): the * current fake thread is not on a wait queue or ready queue, so it * will never be rescheduled in. */ _Swap(irq_lock()); #endif } #endif /* CONFIG_MULTITHREDING */ u32_t z_early_boot_rand32_get(void) { #ifdef CONFIG_ENTROPY_HAS_DRIVER struct device *entropy = device_get_binding(CONFIG_ENTROPY_NAME); int rc; u32_t retval; if (entropy == NULL) { goto sys_rand32_fallback; } /* Try to see if driver provides an ISR-specific API */ rc = entropy_get_entropy_isr(entropy, (u8_t *)&retval, sizeof(retval), ENTROPY_BUSYWAIT); if (rc == -ENOTSUP) { /* Driver does not provide an ISR-specific API, assume it can * be called from ISR context */ rc = entropy_get_entropy(entropy, (u8_t *)&retval, sizeof(retval)); } if (rc >= 0) { return retval; } /* Fall through to fallback */ sys_rand32_fallback: #endif /* FIXME: this assumes sys_rand32_get() won't use any synchronization * primitive, like semaphores or mutexes. It's too early in the boot * process to use any of them. Ideally, only the path where entropy * devices are available should be built, this is only a fallback for * those devices without a HWRNG entropy driver. */ return sys_rand32_get(); } #ifdef CONFIG_STACK_CANARIES extern uintptr_t __stack_chk_guard; #endif /* CONFIG_STACK_CANARIES */ /** * * @brief Initialize kernel * * This routine is invoked when the system is ready to run C code. The * processor must be running in 32-bit mode, and the BSS must have been * cleared/zeroed. * * @return Does not return */ FUNC_NORETURN void _Cstart(void) { #ifdef CONFIG_MULTITHREADING #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN struct k_thread *dummy_thread = NULL; #else /* Normally, kernel objects are not allowed on the stack, special case * here since this is just being used to bootstrap the first _Swap() */ char dummy_thread_memory[sizeof(struct k_thread)]; struct k_thread *dummy_thread = (struct k_thread *)&dummy_thread_memory; memset(dummy_thread_memory, 0, sizeof(dummy_thread_memory)); #endif #endif /* * The interrupt library needs to be initialized early since a series * of handlers are installed into the interrupt table to catch * spurious interrupts. This must be performed before other kernel * subsystems install bonafide handlers, or before hardware device * drivers are initialized. */ _IntLibInit(); if (IS_ENABLED(CONFIG_LOG)) { log_core_init(); } /* perform any architecture-specific initialization */ kernel_arch_init(); /* perform basic hardware initialization */ _sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_1); _sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_2); #ifdef CONFIG_STACK_CANARIES __stack_chk_guard = z_early_boot_rand32_get(); #endif #ifdef CONFIG_MULTITHREADING prepare_multithreading(dummy_thread); switch_to_main_thread(); #else bg_thread_main(NULL, NULL, NULL); while (1) { } #endif /* * Compiler can't tell that the above routines won't return and issues * a warning unless we explicitly tell it that control never gets this * far. */ CODE_UNREACHABLE; } |