Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */
#include <kernel.h>
#include <ksched.h>
#include <spinlock.h>
#include <sched_priq.h>
#include <wait_q.h>
#include <kswap.h>
#include <kernel_arch_func.h>
#include <syscall_handler.h>

#ifdef CONFIG_SCHED_DUMB
#define _priq_run_add		_priq_dumb_add
#define _priq_run_remove	_priq_dumb_remove
#define _priq_run_best		_priq_dumb_best
#else
#define _priq_run_add		_priq_rb_add
#define _priq_run_remove	_priq_rb_remove
#define _priq_run_best		_priq_rb_best
#endif

#ifdef CONFIG_WAITQ_FAST
#define _priq_wait_add		_priq_rb_add
#define _priq_wait_remove	_priq_rb_remove
#define _priq_wait_best		_priq_rb_best
#else
#define _priq_wait_add		_priq_dumb_add
#define _priq_wait_remove	_priq_dumb_remove
#define _priq_wait_best		_priq_dumb_best
#endif

/* the only struct _kernel instance */
struct _kernel _kernel;

static struct k_spinlock sched_lock;

#define LOCKED(lck) for (k_spinlock_key_t __i = {},			\
					  __key = k_spin_lock(lck);	\
			!__i.key;					\
			k_spin_unlock(lck, __key), __i.key = 1)

static inline int _is_preempt(struct k_thread *thread)
{
#ifdef CONFIG_PREEMPT_ENABLED
	/* explanation in kernel_struct.h */
	return thread->base.preempt <= _PREEMPT_THRESHOLD;
#else
	return 0;
#endif
}

static inline int is_metairq(struct k_thread *thread)
{
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
	return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
		< CONFIG_NUM_METAIRQ_PRIORITIES;
#else
	return 0;
#endif
}

static inline int _is_thread_dummy(struct k_thread *thread)
{
	return !!(thread->base.thread_state & _THREAD_DUMMY);
}

static inline int _is_idle(struct k_thread *thread)
{
#ifdef CONFIG_SMP
	return thread->base.is_idle;
#else
	extern struct k_thread * const _idle_thread;

	return thread == _idle_thread;
#endif
}

#ifdef _NON_OPTIMIZED_TICKS_PER_SEC
s32_t _ms_to_ticks(s32_t ms)
{
	s64_t ms_ticks_per_sec = (s64_t)ms * sys_clock_ticks_per_sec;

	return (s32_t)ceiling_fraction(ms_ticks_per_sec, MSEC_PER_SEC);
}
#endif

int _is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2)
{
	if (t1->base.prio < t2->base.prio) {
		return 1;
	}

#ifdef CONFIG_SCHED_DEADLINE
	/* Note that we don't care about wraparound conditions.  The
	 * expectation is that the application will have arranged to
	 * block the threads, change their priorities or reset their
	 * deadlines when the job is complete.  Letting the deadlines
	 * go negative is fine and in fact prevents aliasing bugs.
	 */
	if (t1->base.prio == t2->base.prio) {
		int now = (int) k_cycle_get_32();
		int dt1 = t1->base.prio_deadline - now;
		int dt2 = t2->base.prio_deadline - now;

		return dt1 < dt2;
	}
#endif

	return 0;
}

static int should_preempt(struct k_thread *th, int preempt_ok)
{
	/* Preemption is OK if it's being explicitly allowed by
	 * software state (e.g. the thread called k_yield())
	 */
	if (preempt_ok) {
		return 1;
	}

	/* Or if we're pended/suspended/dummy (duh) */
	if (!_current || !_is_thread_ready(_current)) {
		return 1;
	}

	/* Otherwise we have to be running a preemptible thread or
	 * switching to a metairq
	 */
	if (_is_preempt(_current) || is_metairq(th)) {
		return 1;
	}

	/* The idle threads can look "cooperative" if there are no
	 * preemptible priorities (this is sort of an API glitch).
	 * They must always be preemptible.
	 */
	if (_is_idle(_current)) {
		return 1;
	}

	return 0;
}

static struct k_thread *next_up(void)
{
#ifndef CONFIG_SMP
	/* In uniprocessor mode, we can leave the current thread in
	 * the queue (actually we have to, otherwise the assembly
	 * context switch code for all architectures would be
	 * responsible for putting it back in _Swap and ISR return!),
	 * which makes this choice simple.
	 */
	struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);

	return th ? th : _current_cpu->idle_thread;
#else

	/* Under SMP, the "cache" mechanism for selecting the next
	 * thread doesn't work, so we have more work to do to test
	 * _current against the best choice from the queue.
	 *
	 * Subtle note on "queued": in SMP mode, _current does not
	 * live in the queue, so this isn't exactly the same thing as
	 * "ready", it means "is _current already added back to the
	 * queue such that we don't want to re-add it".
	 */
	int queued = _is_thread_queued(_current);
	int active = !_is_thread_prevented_from_running(_current);

	/* Choose the best thread that is not current */
	struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
	if (!th) {
		th = _current_cpu->idle_thread;
	}

	if (active) {
		if (!queued &&
		    !_is_t1_higher_prio_than_t2(th, _current)) {
			th = _current;
		}

		if (!should_preempt(th, _current_cpu->swap_ok)) {
			th = _current;
		}
	}

	/* Put _current back into the queue */
	if (th != _current && active && !_is_idle(_current) && !queued) {
		_priq_run_add(&_kernel.ready_q.runq, _current);
		_mark_thread_as_queued(_current);
	}

	/* Take the new _current out of the queue */
	if (_is_thread_queued(th)) {
		_priq_run_remove(&_kernel.ready_q.runq, th);
	}
	_mark_thread_as_not_queued(th);

	return th;
#endif
}

static void update_cache(int preempt_ok)
{
#ifndef CONFIG_SMP
	struct k_thread *th = next_up();

	if (should_preempt(th, preempt_ok)) {
		_kernel.ready_q.cache = th;
	} else {
		_kernel.ready_q.cache = _current;
	}

#else
	/* The way this works is that the CPU record keeps its
	 * "cooperative swapping is OK" flag until the next reschedule
	 * call or context switch.  It doesn't need to be tracked per
	 * thread because if the thread gets preempted for whatever
	 * reason the scheduler will make the same decision anyway.
	 */
	_current_cpu->swap_ok = preempt_ok;
#endif
}

void _add_thread_to_ready_q(struct k_thread *thread)
{
	LOCKED(&sched_lock) {
		_priq_run_add(&_kernel.ready_q.runq, thread);
		_mark_thread_as_queued(thread);
		update_cache(0);
	}
}

void _move_thread_to_end_of_prio_q(struct k_thread *thread)
{
	LOCKED(&sched_lock) {
		_priq_run_remove(&_kernel.ready_q.runq, thread);
		_priq_run_add(&_kernel.ready_q.runq, thread);
		_mark_thread_as_queued(thread);
		update_cache(0);
	}
}

void _remove_thread_from_ready_q(struct k_thread *thread)
{
	LOCKED(&sched_lock) {
		if (_is_thread_queued(thread)) {
			_priq_run_remove(&_kernel.ready_q.runq, thread);
			_mark_thread_as_not_queued(thread);
			update_cache(thread == _current);
		}
	}
}

static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
	_remove_thread_from_ready_q(thread);
	_mark_thread_as_pending(thread);

	/* The timeout handling is currently synchronized external to
	 * the scheduler using the legacy global lock.  Should fix
	 * that.
	 */
	if (timeout != K_FOREVER) {
		s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout);
		int key = irq_lock();

		_add_thread_timeout(thread, wait_q, ticks);
		irq_unlock(key);
	}

	if (wait_q) {
#ifdef CONFIG_WAITQ_FAST
		thread->base.pended_on = wait_q;
#endif
		_priq_wait_add(&wait_q->waitq, thread);
	}

#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
	_sys_k_event_logger_thread_pend(thread);
#endif
}

void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
	__ASSERT_NO_MSG(thread == _current || _is_thread_dummy(thread));
	pend(thread, wait_q, timeout);
}

static _wait_q_t *pended_on(struct k_thread *thread)
{
#ifdef CONFIG_WAITQ_FAST
	__ASSERT_NO_MSG(thread->base.pended_on);

	return thread->base.pended_on;
#else
	ARG_UNUSED(thread);
	return NULL;
#endif
}

struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q,
					      struct k_thread *from)
{
	ARG_UNUSED(from);

	struct k_thread *ret = NULL;

	LOCKED(&sched_lock) {
		ret = _priq_wait_best(&wait_q->waitq);
	}

	return ret;
}

void _unpend_thread_no_timeout(struct k_thread *thread)
{
	LOCKED(&sched_lock) {
		_priq_wait_remove(&pended_on(thread)->waitq, thread);
		_mark_thread_as_not_pending(thread);
	}

#if defined(CONFIG_ASSERT) && defined(CONFIG_WAITQ_FAST)
	thread->base.pended_on = NULL;
#endif
}

int _pend_current_thread(int key, _wait_q_t *wait_q, s32_t timeout)
{
	pend(_current, wait_q, timeout);
	return _Swap(key);
}

struct k_thread *_unpend_first_thread(_wait_q_t *wait_q)
{
	struct k_thread *t = _unpend1_no_timeout(wait_q);

	if (t) {
		_abort_thread_timeout(t);
	}

	return t;
}

void _unpend_thread(struct k_thread *thread)
{
	_unpend_thread_no_timeout(thread);
	_abort_thread_timeout(thread);
}

/* FIXME: this API is glitchy when used in SMP.  If the thread is
 * currently scheduled on the other CPU, it will silently set it's
 * priority but nothing will cause a reschedule until the next
 * interrupt.  An audit seems to show that all current usage is to set
 * priorities on either _current or a pended thread, though, so it's
 * fine for now.
 */
void _thread_priority_set(struct k_thread *thread, int prio)
{
	int need_sched = 0;

	LOCKED(&sched_lock) {
		need_sched = _is_thread_ready(thread);

		if (need_sched) {
			_priq_run_remove(&_kernel.ready_q.runq, thread);
			thread->base.prio = prio;
			_priq_run_add(&_kernel.ready_q.runq, thread);
			update_cache(1);
		} else {
			thread->base.prio = prio;
		}
	}

	if (need_sched) {
		_reschedule(irq_lock());
	}
}

int _reschedule(int key)
{
#ifdef CONFIG_SMP
	if (!_current_cpu->swap_ok) {
		goto noswap;
	}

	_current_cpu->swap_ok = 0;
#endif

	if (_is_in_isr()) {
		goto noswap;
	}

#ifdef CONFIG_SMP
	return _Swap(key);
#else
	if (_get_next_ready_thread() != _current) {
		return _Swap(key);
	}
#endif

 noswap:
	irq_unlock(key);
	return 0;
}

void k_sched_lock(void)
{
	LOCKED(&sched_lock) {
		_sched_lock();
	}
}

void k_sched_unlock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
	__ASSERT(_current->base.sched_locked != 0, "");
	__ASSERT(!_is_in_isr(), "");

	LOCKED(&sched_lock) {
		++_current->base.sched_locked;
		update_cache(1);
	}

	K_DEBUG("scheduler unlocked (%p:%d)\n",
		_current, _current->base.sched_locked);

	_reschedule(irq_lock());
#endif
}

#ifdef CONFIG_SMP
struct k_thread *_get_next_ready_thread(void)
{
	struct k_thread *ret = 0;

	LOCKED(&sched_lock) {
		ret = next_up();
	}

	return ret;
}
#endif

#ifdef CONFIG_USE_SWITCH
void *_get_next_switch_handle(void *interrupted)
{
	_current->switch_handle = interrupted;

#ifdef CONFIG_SMP
	LOCKED(&sched_lock) {
		struct k_thread *th = next_up();

		if (_current != th) {
			_current_cpu->swap_ok = 0;
			_current = th;
		}
	}

#else
	_current = _get_next_ready_thread();
#endif

	_check_stack_sentinel();

	return _current->switch_handle;
}
#endif

void _priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread)
{
	struct k_thread *t;

	__ASSERT_NO_MSG(!_is_idle(thread));

	SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
		if (_is_t1_higher_prio_than_t2(thread, t)) {
			sys_dlist_insert_before(pq, &t->base.qnode_dlist,
						&thread->base.qnode_dlist);
			return;
		}
	}

	sys_dlist_append(pq, &thread->base.qnode_dlist);
}

void _priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
{
	__ASSERT_NO_MSG(!_is_idle(thread));

	sys_dlist_remove(&thread->base.qnode_dlist);
}

struct k_thread *_priq_dumb_best(sys_dlist_t *pq)
{
	return CONTAINER_OF(sys_dlist_peek_head(pq),
			    struct k_thread, base.qnode_dlist);
}

int _priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
{
	struct k_thread *ta, *tb;

	ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
	tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb);

	if (_is_t1_higher_prio_than_t2(ta, tb)) {
		return 1;
	} else if (_is_t1_higher_prio_than_t2(tb, ta)) {
		return 0;
	} else {
		return ta->base.order_key < tb->base.order_key ? 1 : 0;
	}
}

void _priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
{
	struct k_thread *t;

	__ASSERT_NO_MSG(!_is_idle(thread));

	thread->base.order_key = pq->next_order_key++;

	/* Renumber at wraparound.  This is tiny code, and in practice
	 * will almost never be hit on real systems.  BUT on very
	 * long-running systems where a priq never completely empties
	 * AND that contains very large numbers of threads, it can be
	 * a latency glitch to loop over all the threads like this.
	 */
	if (!pq->next_order_key) {
		RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
			t->base.order_key = pq->next_order_key++;
		}
	}

	rb_insert(&pq->tree, &thread->base.qnode_rb);
}

void _priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
{
	__ASSERT_NO_MSG(!_is_idle(thread));

	rb_remove(&pq->tree, &thread->base.qnode_rb);

	if (!pq->tree.root) {
		pq->next_order_key = 0;
	}
}

struct k_thread *_priq_rb_best(struct _priq_rb *pq)
{
	struct rbnode *n = rb_get_min(&pq->tree);

	return CONTAINER_OF(n, struct k_thread, base.qnode_rb);
}

#ifdef CONFIG_TIMESLICING
extern s32_t _time_slice_duration;    /* Measured in ms */
extern s32_t _time_slice_elapsed;     /* Measured in ms */
extern int _time_slice_prio_ceiling;

void k_sched_time_slice_set(s32_t duration_in_ms, int prio)
{
	__ASSERT(duration_in_ms >= 0, "");
	__ASSERT((prio >= 0) && (prio < CONFIG_NUM_PREEMPT_PRIORITIES), "");

	_time_slice_duration = duration_in_ms;
	_time_slice_elapsed = 0;
	_time_slice_prio_ceiling = prio;
}

int _is_thread_time_slicing(struct k_thread *thread)
{
	int ret = 0;

	/* Should fix API.  Doesn't make sense for non-running threads
	 * to call this
	 */
	__ASSERT_NO_MSG(thread == _current);

	if (_time_slice_duration <= 0 || !_is_preempt(thread) ||
	    _is_prio_higher(thread->base.prio, _time_slice_prio_ceiling)) {
		return 0;
	}


	LOCKED(&sched_lock) {
		struct k_thread *next = _priq_run_best(&_kernel.ready_q.runq);

		if (next) {
			ret = thread->base.prio == next->base.prio;
		}
	}

	return ret;
}

/* Must be called with interrupts locked */
/* Should be called only immediately before a thread switch */
void _update_time_slice_before_swap(void)
{
#if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_SMP)
	if (!_is_thread_time_slicing(_get_next_ready_thread())) {
		return;
	}

	u32_t remaining = _get_remaining_program_time();

	if (!remaining || (_time_slice_duration < remaining)) {
		_set_time(_time_slice_duration);
	} else {
		/* Account previous elapsed time and reprogram
		 * timer with remaining time
		 */
		_set_time(remaining);
	}

#endif
	/* Restart time slice count at new thread switch */
	_time_slice_elapsed = 0;
}
#endif /* CONFIG_TIMESLICING */

int _unpend_all(_wait_q_t *waitq)
{
	int need_sched = 0;
	struct k_thread *th;

	while ((th = _waitq_head(waitq))) {
		_unpend_thread(th);
		_ready_thread(th);
		need_sched = 1;
	}

	return need_sched;
}

void _sched_init(void)
{
#ifdef CONFIG_SCHED_DUMB
	sys_dlist_init(&_kernel.ready_q.runq);
#else
	_kernel.ready_q.runq = (struct _priq_rb) {
		.tree = {
			.lessthan_fn = _priq_rb_lessthan,
		}
	};
#endif
}

int _impl_k_thread_priority_get(k_tid_t thread)
{
	return thread->base.prio;
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD,
			  struct k_thread *);
#endif

void _impl_k_thread_priority_set(k_tid_t tid, int prio)
{
	/*
	 * Use NULL, since we cannot know what the entry point is (we do not
	 * keep track of it) and idle cannot change its priority.
	 */
	_ASSERT_VALID_PRIO(prio, NULL);
	__ASSERT(!_is_in_isr(), "");

	struct k_thread *thread = (struct k_thread *)tid;

	_thread_priority_set(thread, prio);
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio)
{
	struct k_thread *thread = (struct k_thread *)thread_p;

	Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
				    "invalid thread priority %d", (int)prio));
	Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio,
				    "thread priority may only be downgraded (%d < %d)",
				    prio, thread->base.prio));

	_impl_k_thread_priority_set((k_tid_t)thread, prio);
	return 0;
}
#endif

#ifdef CONFIG_SCHED_DEADLINE
void _impl_k_thread_deadline_set(k_tid_t tid, int deadline)
{
	struct k_thread *th = tid;

	LOCKED(&sched_lock) {
		th->base.prio_deadline = k_cycle_get_32() + deadline;
		if (_is_thread_queued(th)) {
			_priq_run_remove(&_kernel.ready_q.runq, th);
			_priq_run_add(&_kernel.ready_q.runq, th);
		}
	}
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_deadline_set, thread_p, deadline)
{
	struct k_thread *thread = (struct k_thread *)thread_p;

	Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
				    "invalid thread deadline %d",
				    (int)deadline));

	_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
	return 0;
}
#endif
#endif

void _impl_k_yield(void)
{
	__ASSERT(!_is_in_isr(), "");

	if (!_is_idle(_current)) {
		LOCKED(&sched_lock) {
			_priq_run_remove(&_kernel.ready_q.runq, _current);
			_priq_run_add(&_kernel.ready_q.runq, _current);
			update_cache(1);
		}
	}

#ifdef CONFIG_SMP
	_Swap(irq_lock());
#else
	if (_get_next_ready_thread() != _current) {
		_Swap(irq_lock());
	}
#endif
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield);
#endif

void _impl_k_sleep(s32_t duration)
{
#ifdef CONFIG_MULTITHREADING
	/* volatile to guarantee that irq_lock() is executed after ticks is
	 * populated
	 */
	volatile s32_t ticks;
	unsigned int key;

	__ASSERT(!_is_in_isr(), "");
	__ASSERT(duration != K_FOREVER, "");

	K_DEBUG("thread %p for %d ns\n", _current, duration);

	/* wait of 0 ms is treated as a 'yield' */
	if (duration == 0) {
		k_yield();
		return;
	}

	ticks = _TICK_ALIGN + _ms_to_ticks(duration);
	key = irq_lock();

	_remove_thread_from_ready_q(_current);
	_add_thread_timeout(_current, NULL, ticks);

	_Swap(key);
#endif
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_sleep, duration)
{
	/* FIXME there were some discussions recently on whether we should
	 * relax this, thread would be unscheduled until k_wakeup issued
	 */
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER,
				    "sleeping forever not allowed"));
	_impl_k_sleep(duration);

	return 0;
}
#endif

void _impl_k_wakeup(k_tid_t thread)
{
	int key = irq_lock();

	/* verify first if thread is not waiting on an object */
	if (_is_thread_pending(thread)) {
		irq_unlock(key);
		return;
	}

	if (_abort_thread_timeout(thread) == _INACTIVE) {
		irq_unlock(key);
		return;
	}

	_ready_thread(thread);

	if (_is_in_isr()) {
		irq_unlock(key);
	} else {
		_reschedule(key);
	}
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t);
#endif

k_tid_t _impl_k_current_get(void)
{
	return _current;
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_current_get);
#endif

int _impl_k_is_preempt_thread(void)
{
	return !_is_in_isr() && _is_preempt(_current);
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread);
#endif