Linux debugging

Check our new training course

Linux debugging, tracing, profiling & perf. analysis

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
 * Copyright (c) 2013-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief ARM specific kernel interface header
 *
 * This header contains the ARM specific kernel interface.  It is
 * included by the kernel interface architecture-abstraction header
 * (include/arc/cpu.h)
 */

#ifndef _ARM_ARCH__H_
#define _ARM_ARCH__H_

/* Add include for DTS generated information */
#include <generated_dts_board.h>

#ifdef __cplusplus
extern "C" {
#endif

/* ARM GPRs are often designated by two different names */
#define sys_define_gpr_with_alias(name1, name2) union { u32_t name1, name2; }

/* APIs need to support non-byte addressable architectures */

#define OCTET_TO_SIZEOFUNIT(X) (X)
#define SIZEOFUNIT_TO_OCTET(X) (X)

#ifdef CONFIG_CPU_CORTEX_M
#include <arch/arm/cortex_m/exc.h>
#include <arch/arm/cortex_m/irq.h>
#include <arch/arm/cortex_m/error.h>
#include <arch/arm/cortex_m/misc.h>
#include <arch/arm/cortex_m/memory_map.h>
#include <arch/arm/cortex_m/asm_inline.h>
#include <arch/arm/cortex_m/addr_types.h>
#include <arch/arm/cortex_m/sys_io.h>
#include <arch/arm/cortex_m/nmi.h>
#endif


/**
 * @brief Declare the STACK_ALIGN_SIZE
 *
 * Denotes the required alignment of the stack pointer on public API
 * boundaries
 *
 */
#ifdef CONFIG_STACK_ALIGN_DOUBLE_WORD
#define STACK_ALIGN_SIZE 8
#else
#define STACK_ALIGN_SIZE 4
#endif

/**
 * @brief Declare a minimum MPU guard alignment and size
 *
 * This specifies the minimum MPU guard alignment/size for the MPU.  This
 * will be used to denote the guard section of the stack, if it exists.
 *
 * One key note is that this guard results in extra bytes being added to
 * the stack.  APIs which give the stack ptr and stack size will take this
 * guard size into account.
 *
 * Stack is allocated, but initial stack pointer is at the end
 * (highest address).  Stack grows down to the actual allocation
 * address (lowest address).  Stack guard, if present, will comprise
 * the lowest MPU_GUARD_ALIGN_AND_SIZE bytes of the stack.
 *
 * As the stack grows down, it will reach the end of the stack when it
 * encounters either the stack guard region, or the stack allocation
 * address.
 *
 * ----------------------- <---- Stack allocation address + stack size +
 * |                     |            MPU_GUARD_ALIGN_AND_SIZE
 * |  Some thread data   | <---- Defined when thread is created
 * |        ...          |
 * |---------------------| <---- Actual initial stack ptr
 * |  Initial Stack Ptr  |       aligned to STACK_ALIGN_SIZE
 * |        ...          |
 * |        ...          |
 * |        ...          |
 * |        ...          |
 * |        ...          |
 * |        ...          |
 * |        ...          |
 * |        ...          |
 * |  Stack Ends         |
 * |---------------------- <---- Stack Buffer Ptr from API
 * |  MPU Guard,         |
 * |     if present      |
 * ----------------------- <---- Stack Allocation address
 *
 */
#if defined(CONFIG_MPU_STACK_GUARD)
#define MPU_GUARD_ALIGN_AND_SIZE	32
#else
#define MPU_GUARD_ALIGN_AND_SIZE	0
#endif

/**
 * @brief Declare a toplevel thread stack memory region
 *
 * This declares a region of memory suitable for use as a thread's stack.
 *
 * This is the generic, historical definition. Align to STACK_ALIGN_SIZE and
 * put in * 'noinit' section so that it isn't zeroed at boot
 *
 * The declared symbol will always be a character array which can be passed to
 * k_thread_create, but should otherwise not be manipulated.
 *
 * It is legal to precede this definition with the 'static' keyword.
 *
 * It is NOT legal to take the sizeof(sym) and pass that to the stackSize
 * parameter of k_thread_create(), it may not be the same as the
 * 'size' parameter. Use K_THREAD_STACK_SIZEOF() instead.
 *
 * @param sym Thread stack symbol name
 * @param size Size of the stack memory region
 */

/**
 * @brief Define alignment of a stack buffer
 *
 * This is used for two different things:
 * 1) Used in checks for stack size to be a multiple of the stack buffer
 *    alignment
 * 2) Used to determine the alignment of a stack buffer
 *
 */
#if defined(CONFIG_USERSPACE)
#define STACK_ALIGN    32
#else
#define STACK_ALIGN    max(STACK_ALIGN_SIZE, MPU_GUARD_ALIGN_AND_SIZE)
#endif

/**
 * @brief Calculate power of two ceiling for a buffer size input
 *
 */
#define POW2_CEIL(x) ((1 << (31 - __builtin_clz(x))) < x ?  \
		1 << (31 - __builtin_clz(x) + 1) : \
		1 << (31 - __builtin_clz(x)))

#if defined(CONFIG_USERSPACE) && \
	defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT)
#define _ARCH_THREAD_STACK_DEFINE(sym, size) \
	struct _k_thread_stack_element __kernel_noinit \
		__aligned(POW2_CEIL(size)) sym[POW2_CEIL(size)]
#else
#define _ARCH_THREAD_STACK_DEFINE(sym, size) \
	struct _k_thread_stack_element __kernel_noinit __aligned(STACK_ALIGN) \
		sym[size+MPU_GUARD_ALIGN_AND_SIZE]
#endif

/**
 * @brief Declare a toplevel array of thread stack memory regions
 *
 * Create an array of equally sized stacks. See K_THREAD_STACK_DEFINE
 * definition for additional details and constraints.
 *
 * This is the generic, historical definition. Align to STACK_ALIGN_SIZE and
 * put in * 'noinit' section so that it isn't zeroed at boot
 *
 * @param sym Thread stack symbol name
 * @param nmemb Number of stacks to declare
 * @param size Size of the stack memory region
 */
#if defined(CONFIG_USERSPACE) && \
	defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT)
#define _ARCH_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size) \
	struct _k_thread_stack_element __kernel_noinit \
		__aligned(POW2_CEIL(size)) \
		sym[nmemb][POW2_CEIL(size)]
#else
#define _ARCH_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size) \
	struct _k_thread_stack_element __kernel_noinit \
		__aligned(STACK_ALIGN) \
		sym[nmemb][size+MPU_GUARD_ALIGN_AND_SIZE]
#endif

/**
 * @brief Declare an embedded stack memory region
 *
 * Used for stacks embedded within other data structures. Use is highly
 * discouraged but in some cases necessary. For memory protection scenarios,
 * it is very important that any RAM preceding this member not be writable
 * by threads else a stack overflow will lead to silent corruption. In other
 * words, the containing data structure should live in RAM owned by the kernel.
 *
 * @param sym Thread stack symbol name
 * @param size Size of the stack memory region
 */
#if defined(CONFIG_USERSPACE) && \
	defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT)
#define _ARCH_THREAD_STACK_MEMBER(sym, size) \
	struct _k_thread_stack_element __aligned(POW2_CEIL(size)) \
		sym[POW2_CEIL(size)]
#else
#define _ARCH_THREAD_STACK_MEMBER(sym, size) \
	struct _k_thread_stack_element __aligned(STACK_ALIGN) \
		sym[size+MPU_GUARD_ALIGN_AND_SIZE]
#endif

/**
 * @brief Return the size in bytes of a stack memory region
 *
 * Convenience macro for passing the desired stack size to k_thread_create()
 * since the underlying implementation may actually create something larger
 * (for instance a guard area).
 *
 * The value returned here is NOT guaranteed to match the 'size' parameter
 * passed to K_THREAD_STACK_DEFINE and related macros.
 *
 * In the case of CONFIG_USERSPACE=y and
 * CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT, the size will be larger than the
 * requested size.
 *
 * In all other configurations, the size will be correct.
 *
 * @param sym Stack memory symbol
 * @return Size of the stack
 */
#define _ARCH_THREAD_STACK_SIZEOF(sym) (sizeof(sym) - MPU_GUARD_ALIGN_AND_SIZE)

/**
 * @brief Get a pointer to the physical stack buffer
 *
 * Convenience macro to get at the real underlying stack buffer used by
 * the CPU. Guaranteed to be a character pointer of size K_THREAD_STACK_SIZEOF.
 * This is really only intended for diagnostic tools which want to examine
 * stack memory contents.
 *
 * @param sym Declared stack symbol name
 * @return The buffer itself, a char *
 */
#define _ARCH_THREAD_STACK_BUFFER(sym) \
		((char *)(sym) + MPU_GUARD_ALIGN_AND_SIZE)

#ifdef CONFIG_USERSPACE
#ifdef CONFIG_ARM_MPU
#ifndef _ASMLANGUAGE
#include <arch/arm/cortex_m/mpu/arm_mpu.h>

#define K_MEM_PARTITION_P_NA_U_NA	(NO_ACCESS | NOT_EXEC)
#define K_MEM_PARTITION_P_RW_U_RW	(P_RW_U_RW | NOT_EXEC)
#define K_MEM_PARTITION_P_RW_U_RO	(P_RW_U_RO | NOT_EXEC)
#define K_MEM_PARTITION_P_RW_U_NA	(P_RW_U_NA | NOT_EXEC)
#define K_MEM_PARTITION_P_RO_U_RO	(P_RO_U_RO | NOT_EXEC)
#define K_MEM_PARTITION_P_RO_U_NA	(P_RO_U_NA | NOT_EXEC)

/* Execution-allowed attributes */
#define K_MEM_PARTITION_P_RWX_U_RWX	(P_RW_U_RW)
#define K_MEM_PARTITION_P_RWX_U_RX	(P_RW_U_RO)
#define K_MEM_PARTITION_P_RX_U_RX	(P_RO_U_RO)

#define K_MEM_PARTITION_IS_WRITABLE(attr) \
	({ \
		int __is_writable__; \
		switch (attr) { \
		case P_RW_U_RW: \
		case P_RW_U_RO: \
		case P_RW_U_NA: \
			__is_writable__ = 1; \
			break; \
		default: \
			__is_writable__ = 0; \
		} \
		__is_writable__; \
	})
#define K_MEM_PARTITION_IS_EXECUTABLE(attr) \
	(!((attr) & (NOT_EXEC)))

#endif /* _ASMLANGUAGE */
#define _ARCH_MEM_PARTITION_ALIGN_CHECK(start, size) \
	BUILD_ASSERT_MSG(!(((size) & ((size) - 1))) && (size) >= 32 && \
		!((u32_t)(start) & ((size) - 1)), \
		"the size of the partition must be power of 2" \
		" and greater than or equal to 32." \
		"start address of the partition must align with size.")
#endif /* CONFIG_ARM_MPU*/
#ifdef CONFIG_NXP_MPU
#ifndef _ASMLANGUAGE
#include <arch/arm/cortex_m/mpu/nxp_mpu.h>

#define K_MEM_PARTITION_P_NA_U_NA	(MPU_REGION_SU)
#define K_MEM_PARTITION_P_RW_U_RW	(MPU_REGION_READ | MPU_REGION_WRITE | \
					 MPU_REGION_SU)
#define K_MEM_PARTITION_P_RW_U_RO	(MPU_REGION_READ | MPU_REGION_SU_RW)
#define K_MEM_PARTITION_P_RW_U_NA	(MPU_REGION_SU_RW)
#define K_MEM_PARTITION_P_RO_U_RO	(MPU_REGION_READ | MPU_REGION_SU)
#define K_MEM_PARTITION_P_RO_U_NA	(MPU_REGION_SU_RX)

/* Execution-allowed attributes */
#define K_MEM_PARTITION_P_RWX_U_RWX	(MPU_REGION_READ | MPU_REGION_WRITE | \
					 MPU_REGION_EXEC | MPU_REGION_SU)
#define K_MEM_PARTITION_P_RWX_U_RX	(MPU_REGION_READ | MPU_REGION_EXEC | \
					 MPU_REGION_SU_RWX)
#define K_MEM_PARTITION_P_RX_U_RX	(MPU_REGION_READ | MPU_REGION_EXEC | \
					 MPU_REGION_SU)

#define K_MEM_PARTITION_IS_WRITABLE(attr) \
	({ \
		int __is_writable__; \
		switch (attr) { \
		case MPU_REGION_WRITE: \
		case MPU_REGION_SU_RW: \
			__is_writable__ = 1; \
			break; \
		default: \
			__is_writable__ = 0; \
		} \
		__is_writable__; \
	})
#define K_MEM_PARTITION_IS_EXECUTABLE(attr) \
	({ \
		int __is_executable__; \
		switch (attr) { \
		case MPU_REGION_SU_RX: \
		case MPU_REGION_EXEC: \
			__is_executable__ = 1; \
			break; \
		default: \
			__is_executable__ = 0; \
		} \
		__is_executable__; \
	})

#endif /* _ASMLANGUAGE */
#define _ARCH_MEM_PARTITION_ALIGN_CHECK(start, size) \
	BUILD_ASSERT_MSG((size) % 32 == 0 && (size) >= 32 && \
		(u32_t)(start) % 32 == 0, \
		"the size of the partition must align with 32" \
		" and greater than or equal to 32." \
		"start address of the partition must align with 32.")
#endif  /* CONFIG_NXP_MPU */
#endif /* CONFIG_USERSPACE */

#ifndef _ASMLANGUAGE
/* Typedef for the k_mem_partition attribute*/
typedef u32_t k_mem_partition_attr_t;
#endif /* _ASMLANGUAGE */

#ifdef CONFIG_USERSPACE
#ifndef _ASMLANGUAGE

/* Syscall invocation macros. arm-specific machine constraints used to ensure
 * args land in the proper registers.
 */
static inline u32_t _arch_syscall_invoke6(u32_t arg1, u32_t arg2, u32_t arg3,
					  u32_t arg4, u32_t arg5, u32_t arg6,
					  u32_t call_id)
{
	register u32_t ret __asm__("r0") = arg1;
	register u32_t r1 __asm__("r1") = arg2;
	register u32_t r2 __asm__("r2") = arg3;
	register u32_t r3 __asm__("r3") = arg4;
	register u32_t r4 __asm__("r4") = arg5;
	register u32_t r5 __asm__("r5") = arg6;
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r1), "r" (r2), "r" (r3),
			   "r" (r4), "r" (r5), "r" (r6)
			 : "r8", "memory");

	return ret;
}

static inline u32_t _arch_syscall_invoke5(u32_t arg1, u32_t arg2, u32_t arg3,
					  u32_t arg4, u32_t arg5, u32_t call_id)
{
	register u32_t ret __asm__("r0") = arg1;
	register u32_t r1 __asm__("r1") = arg2;
	register u32_t r2 __asm__("r2") = arg3;
	register u32_t r3 __asm__("r3") = arg4;
	register u32_t r4 __asm__("r4") = arg5;
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r1), "r" (r2), "r" (r3),
			   "r" (r4), "r" (r6)
			 : "r8", "memory");

	return ret;
}

static inline u32_t _arch_syscall_invoke4(u32_t arg1, u32_t arg2, u32_t arg3,
					  u32_t arg4, u32_t call_id)
{
	register u32_t ret __asm__("r0") = arg1;
	register u32_t r1 __asm__("r1") = arg2;
	register u32_t r2 __asm__("r2") = arg3;
	register u32_t r3 __asm__("r3") = arg4;
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r1), "r" (r2), "r" (r3),
			   "r" (r6)
			 : "r8", "memory");

	return ret;
}

static inline u32_t _arch_syscall_invoke3(u32_t arg1, u32_t arg2, u32_t arg3,
					  u32_t call_id)
{
	register u32_t ret __asm__("r0") = arg1;
	register u32_t r1 __asm__("r1") = arg2;
	register u32_t r2 __asm__("r2") = arg3;
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r1), "r" (r2), "r" (r6)
			 : "r8", "memory", "r3");

	return ret;
}

static inline u32_t _arch_syscall_invoke2(u32_t arg1, u32_t arg2, u32_t call_id)
{
	register u32_t ret __asm__("r0") = arg1;
	register u32_t r1 __asm__("r1") = arg2;
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r1), "r" (r6)
			 : "r8", "memory", "r2", "r3");

	return ret;
}

static inline u32_t _arch_syscall_invoke1(u32_t arg1, u32_t call_id)
{
	register u32_t ret __asm__("r0") = arg1;
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r6)
			 : "r8", "memory", "r1", "r2", "r3");
	return ret;
}

static inline u32_t _arch_syscall_invoke0(u32_t call_id)
{
	register u32_t ret __asm__("r0");
	register u32_t r6 __asm__("r6") = call_id;

	__asm__ volatile("svc %[svid]\n"
			 : "=r"(ret)
			 : [svid] "i" (_SVC_CALL_SYSTEM_CALL),
			   "r" (ret), "r" (r6)
			 : "r8", "memory", "r1", "r2", "r3");

	return ret;
}

static inline int _arch_is_user_context(void)
{
	u32_t value;

	/* check for handler mode */
	__asm__ volatile("mrs %0, IPSR\n\t" : "=r"(value));
	if (value) {
		return 0;
	}

	/* if not handler mode, return mode information */
	__asm__ volatile("mrs %0, CONTROL\n\t" : "=r"(value));
	return value & 0x1;
}

#endif /* _ASMLANGUAGE */
#endif /* CONFIG_USERSPACE */

#ifdef __cplusplus
}
#endif

#endif /* _ARM_ARCH__H_ */