Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Interrupt management support for IA-32 architecture
 *
 * This module implements assembly routines to manage interrupts on
 * the Intel IA-32 architecture.  More specifically, the interrupt (asynchronous
 * exception) stubs are implemented in this module.  The stubs are invoked when
 * entering and exiting a C interrupt handler.
 */

#include <kernel_structs.h>
#include <arch/x86/asm.h>
#include <offsets_short.h>
#include <arch/cpu.h>	/* _NANO_ERR_SPURIOUS_INT */
#include <arch/x86/irq_controller.h>

	/* exports (internal APIs) */

	GTEXT(_interrupt_enter)
	GTEXT(_SpuriousIntNoErrCodeHandler)
	GTEXT(_SpuriousIntHandler)
	GTEXT(_irq_sw_handler)

	/* externs */

	GTEXT(__swap)
#if defined(CONFIG_TIMESLICING)
	GTEXT(_update_time_slice_before_swap)
#endif

#ifdef CONFIG_SYS_POWER_MANAGEMENT
	GTEXT(_sys_power_save_idle_exit)
#endif


#ifdef CONFIG_INT_LATENCY_BENCHMARK
	GTEXT(_int_latency_start)
	GTEXT(_int_latency_stop)
#endif
/**
 *
 * @brief Inform the kernel of an interrupt
 *
 * This function is called from the interrupt stub created by IRQ_CONNECT()
 * to inform the kernel of an interrupt.  This routine increments
 * _kernel.nested (to support interrupt nesting), switches to the
 * base of the interrupt stack, if not already on the interrupt stack, and then
 * saves the volatile integer registers onto the stack.  Finally, control is
 * returned back to the interrupt stub code (which will then invoke the
 * "application" interrupt service routine).
 *
 * Only the volatile integer registers are saved since ISRs are assumed not to
 * utilize floating point (or SSE) instructions.
 *
 * WARNINGS
 *
 * Host-based tools and the target-based GDB agent depend on the stack frame
 * created by this routine to determine the locations of volatile registers.
 * These tools must be updated to reflect any changes to the stack frame.
 *
 * @return N/A
 *
 * C function prototype:
 *
 * void _interrupt_enter(void *isr, void *isr_param);
 */
SECTION_FUNC(TEXT, _interrupt_enter)

#ifdef CONFIG_EXECUTION_BENCHMARKING
	pushl %eax
	pushl %edx
	rdtsc
	mov %eax, __start_intr_time
	mov %edx, __start_intr_time+4
	pop %edx
	pop %eax
#endif
	/*
	 * The gen_idt tool creates an interrupt-gate descriptor for
	 * all connections.  The processor will automatically clear the IF
	 * bit in the EFLAGS register upon execution of the handler, hence
	 * this need not issue an 'cli' as the first instruction.
	 *
	 * Clear the direction flag.  It is automatically restored when the
	 * interrupt exits via the IRET instruction.
	 */

	cld

	/*
	 * Note that the processor has pushed both the EFLAGS register
	 * and the logical return address (cs:eip) onto the stack prior
	 * to invoking the handler specified in the IDT. The stack looks
	 * like this:
	 *
	 *  EFLAGS
	 *  CS
	 *  EIP
	 *  isr_param
	 *  isr   <-- stack pointer
	 */


	/*
	 * Swap EAX with isr_param and EDX with isr.
	 * Push ECX onto the stack
	 */
	xchgl	%eax, 4(%esp)
	xchgl	%edx, (%esp)
	pushl	%ecx

	/* Now the stack looks like:
	 *
	 * EFLAGS
	 * CS
	 * EIP
	 * saved EAX
	 * saved EDX
	 * saved ECX
	 *
	 * EAX = isr_param, EDX = isr
	 */

	/* Push EDI as we will use it for scratch space.
	 * Rest of the callee-saved regs get saved by invocation of C
	 * functions (isr handler, __swap(), etc)
	 */
	pushl	%edi


#if defined(CONFIG_INT_LATENCY_BENCHMARK) || \
		defined(CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT) || \
		defined(CONFIG_KERNEL_EVENT_LOGGER_SLEEP)

	/* Save these as we are using to keep track of isr and isr_param */
	pushl	%eax
	pushl	%edx

#ifdef CONFIG_INT_LATENCY_BENCHMARK
	/*
	 * Volatile registers are now saved it is safe to start measuring
	 * how long interrupt are disabled.
	 * The interrupt gate created by IRQ_CONNECT disables the
	 * interrupt.
	 */

	call	_int_latency_start
#endif

#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
	call	_sys_k_event_logger_interrupt
#endif

#ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP
	call	_sys_k_event_logger_exit_sleep
#endif

	popl	%edx
	popl	%eax
#endif

	/* load %ecx with &_kernel */

	movl	$_kernel, %ecx

	/* switch to the interrupt stack for the non-nested case */

	incl	_kernel_offset_to_nested(%ecx)

	/* use interrupt stack if not nested */
	cmpl	$1, _kernel_offset_to_nested(%ecx)
	jne	alreadyOnIntStack

	/*
	 * switch to base of the interrupt stack: save esp in edi, then load
	 * irq_stack pointer
	 */

	movl	%esp, %edi
	movl	_kernel_offset_to_irq_stack(%ecx), %esp


	/* save thread's stack pointer onto base of interrupt stack */

	pushl	%edi			/* Save stack pointer */

#ifdef CONFIG_SYS_POWER_MANAGEMENT
	cmpl	$0, _kernel_offset_to_idle(%ecx)
	jne	handle_idle
	/* fast path is !idle, in the pipeline */
#endif /* CONFIG_SYS_POWER_MANAGEMENT */

	/* fall through to nested case */

alreadyOnIntStack:
#ifdef CONFIG_INT_LATENCY_BENCHMARK
	pushl	%eax
	pushl	%edx
	call	_int_latency_stop
	popl	%edx
	popl	%eax
#endif

#ifndef CONFIG_X86_IAMCU
	/* EAX has the interrupt handler argument, needs to go on
	 * stack for sys V calling convention
	 */
	push	%eax
#endif
#ifdef CONFIG_EXECUTION_BENCHMARKING
	/* Save the eax and edx registers before reading the time stamp
	* once done pop the values
	*/
	pushl %eax
	pushl %edx
	rdtsc
	mov %eax,__end_intr_time
	mov %edx,__end_intr_time+4
	pop %edx
	pop %eax
#endif

#ifdef CONFIG_NESTED_INTERRUPTS
	sti			/* re-enable interrupts */
#endif
	/* Now call the interrupt handler */
	INDIRECT_CALL(%edx)
#ifndef CONFIG_X86_IAMCU
	/* Discard ISR argument */
	addl	$0x4, %esp
#endif
#ifdef CONFIG_NESTED_INTERRUPTS
	cli			/* disable interrupts again */
#endif

	/* irq_controller.h interface */
	_irq_controller_eoi_macro

#ifdef CONFIG_INT_LATENCY_BENCHMARK
	call	_int_latency_start
#endif

	/* determine whether exiting from a nested interrupt */
	movl	$_kernel, %ecx
	decl	_kernel_offset_to_nested(%ecx)	/* dec interrupt nest count */
	jne	nestedInterrupt                 /* 'iret' if nested case */


#ifdef CONFIG_PREEMPT_ENABLED
	movl	_kernel_offset_to_current(%ecx), %edx

	/* reschedule only if the scheduler says that we must do so */
	cmpl	%edx, _kernel_offset_to_ready_q_cache(%ecx)
	je	noReschedule

	/*
	 * Set the _INT_ACTIVE bit in the k_thread to allow the upcoming call to
	 * __swap() to determine whether non-floating registers need to be
	 * preserved using the lazy save/restore algorithm, or to indicate to
	 * debug tools that a preemptive context switch has occurred.
	 */

#if defined(CONFIG_FP_SHARING)
	orb	$_INT_ACTIVE, _thread_offset_to_thread_state(%edx)
#endif

	/*
	 * A context reschedule is required: keep the volatile registers of
	 * the interrupted thread on the context's stack.  Utilize
	 * the existing __swap() primitive to save the remaining
	 * thread's registers (including floating point) and perform
	 * a switch to the new thread.
	 */

	popl	%esp	/* switch back to outgoing thread's stack */

#if defined(CONFIG_TIMESLICING)
	call	_update_time_slice_before_swap
#endif
#ifdef CONFIG_STACK_SENTINEL
	call	_check_stack_sentinel
#endif
	pushfl			/* push KERNEL_LOCK_KEY argument */
#ifdef CONFIG_X86_IAMCU
	/* IAMCU first argument goes into a register, not the stack.
	 */
	popl	%eax
#endif
	call	__swap

#ifndef CONFIG_X86_IAMCU
	addl 	$4, %esp	/* pop KERNEL_LOCK_KEY argument */
#endif
	/*
	 * The interrupted thread has now been scheduled,
	 * as the result of a _later_ invocation of __swap().
	 *
	 * Now need to restore the interrupted thread's environment before
	 * returning control to it at the point where it was interrupted ...
	 */

#if defined(CONFIG_FP_SHARING)
	/*
	 * __swap() has restored the floating point registers, if needed.
	 * Clear the _INT_ACTIVE bit in the interrupted thread's state
	 * since it has served its purpose.
	 */

	movl	_kernel + _kernel_offset_to_current, %eax
	andb	$~_INT_ACTIVE, _thread_offset_to_thread_state(%eax)
#endif /* CONFIG_FP_SHARING */

	/* Restore volatile registers and return to the interrupted thread */
#ifdef CONFIG_INT_LATENCY_BENCHMARK
	call	_int_latency_stop
#endif
	popl	%edi
	popl	%ecx
	popl	%edx
	popl	%eax

	/* Pop of EFLAGS will re-enable interrupts and restore direction flag */
	iret

#endif /* CONFIG_PREEMPT_ENABLED */

noReschedule:

	/*
	 * A thread reschedule is not required; switch back to the
	 * interrupted thread's stack and restore volatile registers
	 */

	popl	%esp		/* pop thread stack pointer */

#ifdef CONFIG_STACK_SENTINEL
	call	_check_stack_sentinel
#endif

	/* fall through to 'nestedInterrupt' */


	/*
	 * For the nested interrupt case, the interrupt stack must still be
	 * utilized, and more importantly, a rescheduling decision must
	 * not be performed.
	 */

nestedInterrupt:
#ifdef CONFIG_INT_LATENCY_BENCHMARK
	call	_int_latency_stop
#endif

	popl	%edi
	popl	%ecx		/* pop volatile registers in reverse order */
	popl	%edx
	popl	%eax
	/* Pop of EFLAGS will re-enable interrupts and restore direction flag */
	iret


#ifdef CONFIG_SYS_POWER_MANAGEMENT
handle_idle:
	pushl	%eax
	pushl	%edx
	/* Populate 'ticks' argument to _sys_power_save_idle_exit */
#ifdef CONFIG_X86_IAMCU
	movl	_kernel_offset_to_idle(%ecx), %eax
#else
	/* SYS V calling convention */
	push	_kernel_offset_to_idle(%ecx)
#endif
	/* Zero out _kernel.idle */
	movl	$0, _kernel_offset_to_idle(%ecx)

	/*
	 * Beware that a timer driver's _sys_power_save_idle_exit() implementation might
	 * expect that interrupts are disabled when invoked.  This ensures that
	 * the calculation and programming of the device for the next timer
	 * deadline is not interrupted.
	 */

	call	_sys_power_save_idle_exit
#ifndef CONFIG_X86_IAMCU
	/* SYS V: discard 'ticks' argument passed on the stack */
	add	$0x4, %esp
#endif
	popl	%edx
	popl	%eax
	jmp	alreadyOnIntStack
#endif /* CONFIG_SYS_POWER_MANAGEMENT */

/**
 *
 * _SpuriousIntHandler -
 * @brief Spurious interrupt handler stubs
 *
 * Interrupt-gate descriptors are statically created for all slots in the IDT
 * that point to _SpuriousIntHandler() or _SpuriousIntNoErrCodeHandler().  The
 * former stub is connected to exception vectors where the processor pushes an
 * error code onto the stack (or kernel stack) in addition to the EFLAGS/CS/EIP
 * records.
 *
 * A spurious interrupt is considered a fatal condition, thus this routine
 * merely sets up the 'reason' and 'pEsf' parameters to the routine
 *  _SysFatalHwErrorHandler().  In other words, there is no provision to return
 * to the interrupted execution context and thus the volatile registers are not
 * saved.
 *
 * @return Never returns
 *
 * C function prototype:
 *
 * void _SpuriousIntHandler (void);
 *
 * INTERNAL
 * The gen_idt tool creates an interrupt-gate descriptor for all
 * connections.  The processor will automatically clear the IF bit
 * in the EFLAGS register upon execution of the handler,
 * thus _SpuriousIntNoErrCodeHandler()/_SpuriousIntHandler() shall be
 * invoked with interrupts disabled.
 */
SECTION_FUNC(TEXT, _SpuriousIntNoErrCodeHandler)

	pushl	$0			/* push dummy err code onto stk */

	/* fall through to _SpuriousIntHandler */


SECTION_FUNC(TEXT, _SpuriousIntHandler)

	cld				/* Clear direction flag */

	/* Create the ESF */

	pushl %eax
	pushl %ecx
	pushl %edx
	pushl %edi
	pushl %esi
	pushl %ebx
	pushl %ebp

	leal	44(%esp), %ecx   /* Calculate ESP before exception occurred */
	pushl	%ecx             /* Save calculated ESP */

#ifndef CONFIG_X86_IAMCU
	pushl	%esp			/* push cur stack pointer: pEsf arg */
#else
	mov	%esp, %edx
#endif

	/* re-enable interrupts */
	sti

	/* push the 'unsigned int reason' parameter */
#ifndef CONFIG_X86_IAMCU
	pushl	$_NANO_ERR_SPURIOUS_INT
#else
	movl	$_NANO_ERR_SPURIOUS_INT, %eax
#endif
	/* call the fatal error handler */
	call	_NanoFatalErrorHandler

	/* handler doesn't  return */

#if CONFIG_IRQ_OFFLOAD
SECTION_FUNC(TEXT, _irq_sw_handler)
	push $0
	push $_irq_do_offload
	jmp _interrupt_enter

#endif