Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel thread support
 *
 * This module provides general purpose thread support.
 */

#include <kernel.h>

#include <toolchain.h>
#include <linker/sections.h>

#include <kernel_structs.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <ksched.h>
#include <wait_q.h>
#include <atomic.h>
#include <syscall_handler.h>
#include <kernel_internal.h>
#include <kswap.h>

extern struct _static_thread_data _static_thread_data_list_start[];
extern struct _static_thread_data _static_thread_data_list_end[];

#define _FOREACH_STATIC_THREAD(thread_data)              \
	for (struct _static_thread_data *thread_data =   \
	     _static_thread_data_list_start;             \
	     thread_data < _static_thread_data_list_end; \
	     thread_data++)

#if defined(CONFIG_THREAD_MONITOR)
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
{
	struct k_thread *thread;
	unsigned int key;

	__ASSERT(user_cb, "user_cb can not be NULL");

	/*
	 * Lock is needed to make sure that the _kernel.threads is not being
	 * modified by the user_cb either dircetly or indircetly.
	 * The indircet ways are through calling k_thread_create and
	 * k_thread_abort from user_cb.
	 */
	key = irq_lock();
	for (thread = _kernel.threads; thread; thread = thread->next_thread) {
		user_cb(thread, user_data);
	}
	irq_unlock(key);
}
#else
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data) { }
#endif

int k_is_in_isr(void)
{
	return _is_in_isr();
}

/*
 * This function tags the current thread as essential to system operation.
 * Exceptions raised by this thread will be treated as a fatal system error.
 */
void _thread_essential_set(void)
{
	_current->base.user_options |= K_ESSENTIAL;
}

/*
 * This function tags the current thread as not essential to system operation.
 * Exceptions raised by this thread may be recoverable.
 * (This is the default tag for a thread.)
 */
void _thread_essential_clear(void)
{
	_current->base.user_options &= ~K_ESSENTIAL;
}

/*
 * This routine indicates if the current thread is an essential system thread.
 *
 * Returns non-zero if current thread is essential, zero if it is not.
 */
int _is_thread_essential(void)
{
	return _current->base.user_options & K_ESSENTIAL;
}

#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
void k_busy_wait(u32_t usec_to_wait)
{
#if defined(CONFIG_TICKLESS_KERNEL) && \
	    !defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
int saved_always_on = k_enable_sys_clock_always_on();
#endif
	/* use 64-bit math to prevent overflow when multiplying */
	u32_t cycles_to_wait = (u32_t)(
		(u64_t)usec_to_wait *
		(u64_t)sys_clock_hw_cycles_per_sec /
		(u64_t)USEC_PER_SEC
	);
	u32_t start_cycles = k_cycle_get_32();

	for (;;) {
		u32_t current_cycles = k_cycle_get_32();

		/* this handles the rollover on an unsigned 32-bit value */
		if ((current_cycles - start_cycles) >= cycles_to_wait) {
			break;
		}
	}
#if defined(CONFIG_TICKLESS_KERNEL) && \
	    !defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
	_sys_clock_always_on = saved_always_on;
#endif
}
#endif

#ifdef CONFIG_THREAD_CUSTOM_DATA
void _impl_k_thread_custom_data_set(void *value)
{
	_current->custom_data = value;
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_custom_data_set, data)
{
	_impl_k_thread_custom_data_set((void *)data);
	return 0;
}
#endif

void *_impl_k_thread_custom_data_get(void)
{
	return _current->custom_data;
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get);
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_THREAD_CUSTOM_DATA */

#if defined(CONFIG_THREAD_MONITOR)
/*
 * Remove a thread from the kernel's list of active threads.
 */
void _thread_monitor_exit(struct k_thread *thread)
{
	unsigned int key = irq_lock();

	if (thread == _kernel.threads) {
		_kernel.threads = _kernel.threads->next_thread;
	} else {
		struct k_thread *prev_thread;

		prev_thread = _kernel.threads;
		while (prev_thread != NULL &&
		       thread != prev_thread->next_thread) {
			prev_thread = prev_thread->next_thread;
		}
		if (prev_thread != NULL) {
			prev_thread->next_thread = thread->next_thread;
		}
	}

	irq_unlock(key);
}
#endif /* CONFIG_THREAD_MONITOR */

#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
 *
 * The stack sentinel feature writes a magic value to the lowest 4 bytes of
 * the thread's stack when the thread is initialized. This value gets checked
 * in a few places:
 *
 * 1) In k_yield() if the current thread is not swapped out
 * 2) After servicing a non-nested interrupt
 * 3) In _Swap(), check the sentinel in the outgoing thread
 *
 * Item 2 requires support in arch/ code.
 *
 * If the check fails, the thread will be terminated appropriately through
 * the system fatal error handler.
 */
void _check_stack_sentinel(void)
{
	u32_t *stack;

	if (_current->base.thread_state == _THREAD_DUMMY) {
		return;
	}

	stack = (u32_t *)_current->stack_info.start;
	if (*stack != STACK_SENTINEL) {
		/* Restore it so further checks don't trigger this same error */
		*stack = STACK_SENTINEL;
		_k_except_reason(_NANO_ERR_STACK_CHK_FAIL);
	}
}
#endif

#ifdef CONFIG_MULTITHREADING
void _impl_k_thread_start(struct k_thread *thread)
{
	int key = irq_lock(); /* protect kernel queues */

	if (_has_thread_started(thread)) {
		irq_unlock(key);
		return;
	}

	_mark_thread_as_started(thread);
	_ready_thread(thread);
	_reschedule(key);
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *);
#endif
#endif

#ifdef CONFIG_MULTITHREADING
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
	if (delay == 0) {
		k_thread_start(thread);
	} else {
		s32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay);
		int key = irq_lock();

		_add_thread_timeout(thread, NULL, ticks);
		irq_unlock(key);
	}
#else
	ARG_UNUSED(delay);
	k_thread_start(thread);
#endif
}
#endif

#if !CONFIG_STACK_POINTER_RANDOM
static inline size_t adjust_stack_size(size_t stack_size)
{
	return stack_size;
}
#else
static inline size_t adjust_stack_size(size_t stack_size)
{
	/* Don't need to worry about alignment of the size here, _new_thread()
	 * is required to do it
	 *
	 * FIXME: Not the best way to get a random number in a range.
	 * See #6493
	 */
	const size_t fuzz = sys_rand32_get() % CONFIG_STACK_POINTER_RANDOM;

	if (unlikely(fuzz * 2 > stack_size)) {
		return stack_size;
	}

	return stack_size - fuzz;
}

#if defined(CONFIG_STACK_GROWS_UP)
	/* This is so rare not bothering for now */
#error "Stack pointer randomization not implemented for upward growing stacks"
#endif /* CONFIG_STACK_GROWS_UP */

#endif /* CONFIG_STACK_POINTER_RANDOM */

void _setup_new_thread(struct k_thread *new_thread,
		       k_thread_stack_t *stack, size_t stack_size,
		       k_thread_entry_t entry,
		       void *p1, void *p2, void *p3,
		       int prio, u32_t options)
{
	stack_size = adjust_stack_size(stack_size);

	_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
		    prio, options);
#ifdef CONFIG_USERSPACE
	_k_object_init(new_thread);
	_k_object_init(stack);
	new_thread->stack_obj = stack;

	/* Any given thread has access to itself */
	k_object_access_grant(new_thread, new_thread);
#endif
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
	/* _current may be null if the dummy thread is not used */
	if (!_current) {
		new_thread->resource_pool = NULL;
		return;
	}
#endif
#ifdef CONFIG_USERSPACE
	/* New threads inherit any memory domain membership by the parent */
	if (_current->mem_domain_info.mem_domain) {
		k_mem_domain_add_thread(_current->mem_domain_info.mem_domain,
					new_thread);
	}

	if (options & K_INHERIT_PERMS) {
		_thread_perms_inherit(_current, new_thread);
	}
#endif
	new_thread->resource_pool = _current->resource_pool;
}

#ifdef CONFIG_MULTITHREADING
k_tid_t _impl_k_thread_create(struct k_thread *new_thread,
			      k_thread_stack_t *stack,
			      size_t stack_size, k_thread_entry_t entry,
			      void *p1, void *p2, void *p3,
			      int prio, u32_t options, s32_t delay)
{
	__ASSERT(!_is_in_isr(), "Threads may not be created in ISRs");
	_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
			  prio, options);

	if (delay != K_FOREVER) {
		schedule_new_thread(new_thread, delay);
	}
	return new_thread;
}


#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_create,
		  new_thread_p, stack_p, stack_size, entry, p1, more_args)
{
	int prio;
	u32_t options, delay;
	u32_t total_size;
#ifndef CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
	u32_t guard_size;
#endif
	struct _k_object *stack_object;
	struct k_thread *new_thread = (struct k_thread *)new_thread_p;
	volatile struct _syscall_10_args *margs =
		(volatile struct _syscall_10_args *)more_args;
	k_thread_stack_t *stack = (k_thread_stack_t *)stack_p;

	/* The thread and stack objects *must* be in an uninitialized state */
	Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
	stack_object = _k_object_find(stack);
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(!_obj_validation_check(stack_object, stack,
						K_OBJ__THREAD_STACK_ELEMENT,
						_OBJ_INIT_FALSE),
				    "bad stack object"));

#ifndef CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
	/* Verify that the stack size passed in is OK by computing the total
	 * size and comparing it with the size value in the object metadata
	 *
	 * We skip this check for SoCs which utilize MPUs with power of two
	 * alignment requirements as the guard is allocated out of the stack
	 * size and not allocated in addition to the stack size
	 */
	guard_size = (u32_t)K_THREAD_STACK_BUFFER(stack) - (u32_t)stack;
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(!__builtin_uadd_overflow(guard_size,
							     stack_size,
							     &total_size),
				    "stack size overflow (%u+%u)", stack_size,
				    guard_size));
#else
	total_size = stack_size;
#endif
	/* They really ought to be equal, make this more strict? */
	Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_object->data,
				    "stack size %u is too big, max is %u",
				    total_size, stack_object->data));

	/* Verify the struct containing args 6-10 */
	Z_OOPS(Z_SYSCALL_MEMORY_READ(margs, sizeof(*margs)));

	/* Stash struct arguments in local variables to prevent switcheroo
	 * attacks
	 */
	prio = margs->arg8;
	options = margs->arg9;
	delay = margs->arg10;
	compiler_barrier();

	/* User threads may only create other user threads and they can't
	 * be marked as essential
	 */
	Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER));
	Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));

	/* Check validity of prio argument; must be the same or worse priority
	 * than the caller
	 */
	Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
	Z_OOPS(Z_SYSCALL_VERIFY(_is_prio_lower_or_equal(prio,
							_current->base.prio)));

	_setup_new_thread((struct k_thread *)new_thread, stack, stack_size,
			  (k_thread_entry_t)entry, (void *)p1,
			  (void *)margs->arg6, (void *)margs->arg7, prio,
			  options);

	if (delay != K_FOREVER) {
		schedule_new_thread(new_thread, delay);
	}

	return new_thread_p;
}
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_MULTITHREADING */

int _impl_k_thread_cancel(k_tid_t tid)
{
	struct k_thread *thread = tid;

	int key = irq_lock();

	if (_has_thread_started(thread) ||
	    !_is_thread_timeout_active(thread)) {
		irq_unlock(key);
		return -EINVAL;
	}

	_abort_thread_timeout(thread);
	_thread_monitor_exit(thread);

	irq_unlock(key);

	return 0;
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_cancel, K_OBJ_THREAD, struct k_thread *);
#endif

void _k_thread_single_suspend(struct k_thread *thread)
{
	if (_is_thread_ready(thread)) {
		_remove_thread_from_ready_q(thread);
	}

	_mark_thread_as_suspended(thread);
}

void _impl_k_thread_suspend(struct k_thread *thread)
{
	unsigned int  key = irq_lock();

	_k_thread_single_suspend(thread);

	if (thread == _current) {
		_Swap(key);
	} else {
		irq_unlock(key);
	}
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t);
#endif

void _k_thread_single_resume(struct k_thread *thread)
{
	_mark_thread_as_not_suspended(thread);
	_ready_thread(thread);
}

void _impl_k_thread_resume(struct k_thread *thread)
{
	unsigned int  key = irq_lock();

	_k_thread_single_resume(thread);

	_reschedule(key);
}

#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t);
#endif

void _k_thread_single_abort(struct k_thread *thread)
{
	if (thread->fn_abort != NULL) {
		thread->fn_abort();
	}

	if (_is_thread_ready(thread)) {
		_remove_thread_from_ready_q(thread);
	} else {
		if (_is_thread_pending(thread)) {
			_unpend_thread_no_timeout(thread);
		}
		if (_is_thread_timeout_active(thread)) {
			_abort_thread_timeout(thread);
		}
	}

	thread->base.thread_state |= _THREAD_DEAD;
#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
	_sys_k_event_logger_thread_exit(thread);
#endif

#ifdef CONFIG_USERSPACE
	/* Clear initailized state so that this thread object may be re-used
	 * and triggers errors if API calls are made on it from user threads
	 */
	_k_object_uninit(thread->stack_obj);
	_k_object_uninit(thread);

	/* Revoke permissions on thread's ID so that it may be recycled */
	_thread_perms_all_clear(thread);
#endif
}

#ifdef CONFIG_MULTITHREADING
#ifdef CONFIG_USERSPACE
extern char __object_access_start[];
extern char __object_access_end[];

static void grant_static_access(void)
{
	struct _k_object_assignment *pos;

	for (pos = (struct _k_object_assignment *)__object_access_start;
	     pos < (struct _k_object_assignment *)__object_access_end;
	     pos++) {
		for (int i = 0; pos->objects[i] != NULL; i++) {
			k_object_access_grant(pos->objects[i],
					      pos->thread);
		}
	}
}
#endif /* CONFIG_USERSPACE */

void _init_static_threads(void)
{
	unsigned int  key;

	_FOREACH_STATIC_THREAD(thread_data) {
		_setup_new_thread(
			thread_data->init_thread,
			thread_data->init_stack,
			thread_data->init_stack_size,
			thread_data->init_entry,
			thread_data->init_p1,
			thread_data->init_p2,
			thread_data->init_p3,
			thread_data->init_prio,
			thread_data->init_options);

		thread_data->init_thread->init_data = thread_data;
	}

#ifdef CONFIG_USERSPACE
	grant_static_access();
#endif
	_sched_lock();

	/*
	 * Non-legacy static threads may be started immediately or after a
	 * previously specified delay. Even though the scheduler is locked,
	 * ticks can still be delivered and processed. Lock interrupts so
	 * that the countdown until execution begins from the same tick.
	 *
	 * Note that static threads defined using the legacy API have a
	 * delay of K_FOREVER.
	 */
	key = irq_lock();
	_FOREACH_STATIC_THREAD(thread_data) {
		if (thread_data->init_delay != K_FOREVER) {
			schedule_new_thread(thread_data->init_thread,
					    thread_data->init_delay);
		}
	}
	irq_unlock(key);
	k_sched_unlock();
}
#endif

void _init_thread_base(struct _thread_base *thread_base, int priority,
		       u32_t initial_state, unsigned int options)
{
	/* k_q_node is initialized upon first insertion in a list */

	thread_base->user_options = (u8_t)options;
	thread_base->thread_state = (u8_t)initial_state;

	thread_base->prio = priority;

	thread_base->sched_locked = 0;

	/* swap_data does not need to be initialized */

	_init_thread_timeout(thread_base);
}

void k_thread_access_grant(struct k_thread *thread, ...)
{
#ifdef CONFIG_USERSPACE
	va_list args;
	va_start(args, thread);

	while (1) {
		void *object = va_arg(args, void *);
		if (object == NULL) {
			break;
		}
		k_object_access_grant(object, thread);
	}
	va_end(args);
#else
	ARG_UNUSED(thread);
#endif
}

FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
					    void *p1, void *p2, void *p3)
{
	_current->base.user_options |= K_USER;
	_thread_essential_clear();
#ifdef CONFIG_USERSPACE
	_arch_user_mode_enter(entry, p1, p2, p3);
#else
	/* XXX In this case we do not reset the stack */
	_thread_entry(entry, p1, p2, p3);
#endif
}