Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 | /* * Copyright (c) 2016, Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Public kernel APIs. */ #ifndef _kernel__h_ #define _kernel__h_ #if !defined(_ASMLANGUAGE) #include <stddef.h> #include <zephyr/types.h> #include <limits.h> #include <toolchain.h> #include <linker/sections.h> #include <atomic.h> #include <errno.h> #include <misc/__assert.h> #include <sched_priq.h> #include <misc/dlist.h> #include <misc/slist.h> #include <misc/sflist.h> #include <misc/util.h> #include <misc/mempool_base.h> #include <kernel_version.h> #include <random/rand32.h> #include <kernel_arch_thread.h> #include <syscall.h> #include <misc/printk.h> #include <arch/cpu.h> #include <misc/rb.h> #ifdef __cplusplus extern "C" { #endif /** * @brief Kernel APIs * @defgroup kernel_apis Kernel APIs * @{ * @} */ #ifdef CONFIG_KERNEL_DEBUG #define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__) #else #define K_DEBUG(fmt, ...) #endif #if defined(CONFIG_COOP_ENABLED) && defined(CONFIG_PREEMPT_ENABLED) #define _NUM_COOP_PRIO (CONFIG_NUM_COOP_PRIORITIES) #define _NUM_PREEMPT_PRIO (CONFIG_NUM_PREEMPT_PRIORITIES + 1) #elif defined(CONFIG_COOP_ENABLED) #define _NUM_COOP_PRIO (CONFIG_NUM_COOP_PRIORITIES + 1) #define _NUM_PREEMPT_PRIO (0) #elif defined(CONFIG_PREEMPT_ENABLED) #define _NUM_COOP_PRIO (0) #define _NUM_PREEMPT_PRIO (CONFIG_NUM_PREEMPT_PRIORITIES + 1) #else #error "invalid configuration" #endif #define K_PRIO_COOP(x) (-(_NUM_COOP_PRIO - (x))) #define K_PRIO_PREEMPT(x) (x) #define K_ANY NULL #define K_END NULL #if defined(CONFIG_COOP_ENABLED) && defined(CONFIG_PREEMPT_ENABLED) #define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES) #elif defined(CONFIG_COOP_ENABLED) #define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES - 1) #elif defined(CONFIG_PREEMPT_ENABLED) #define K_HIGHEST_THREAD_PRIO 0 #else #error "invalid configuration" #endif #ifdef CONFIG_PREEMPT_ENABLED #define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES #else #define K_LOWEST_THREAD_PRIO -1 #endif #define K_IDLE_PRIO K_LOWEST_THREAD_PRIO #define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO) #define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1) #ifdef CONFIG_WAITQ_FAST typedef struct { struct _priq_rb waitq; } _wait_q_t; extern int _priq_rb_lessthan(struct rbnode *a, struct rbnode *b); #define _WAIT_Q_INIT(wait_q) { { { .lessthan_fn = _priq_rb_lessthan } } } #else typedef struct { sys_dlist_t waitq; } _wait_q_t; #define _WAIT_Q_INIT(wait_q) { SYS_DLIST_STATIC_INIT(&(wait_q)->waitq) } #endif #ifdef CONFIG_OBJECT_TRACING #define _OBJECT_TRACING_NEXT_PTR(type) struct type *__next #define _OBJECT_TRACING_INIT .__next = NULL, #else #define _OBJECT_TRACING_INIT #define _OBJECT_TRACING_NEXT_PTR(type) #endif #ifdef CONFIG_POLL #define _POLL_EVENT_OBJ_INIT(obj) \ .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), #define _POLL_EVENT sys_dlist_t poll_events #else #define _POLL_EVENT_OBJ_INIT(obj) #define _POLL_EVENT #endif struct k_thread; struct k_mutex; struct k_sem; struct k_alert; struct k_msgq; struct k_mbox; struct k_pipe; struct k_queue; struct k_fifo; struct k_lifo; struct k_stack; struct k_mem_slab; struct k_mem_pool; struct k_timer; struct k_poll_event; struct k_poll_signal; struct k_mem_domain; struct k_mem_partition; /* This enumeration needs to be kept in sync with the lists of kernel objects * and subsystems in scripts/gen_kobject_list.py, as well as the otype_to_str() * function in kernel/userspace.c */ enum k_objects { K_OBJ_ANY, /** @cond * Doxygen should ignore this build-time generated include file * when genrating API documentation. Enumeration values are * generated during build by gen_kobject_list.py. It includes * basic kernel objects (e.g. pipes and mutexes) and driver types. */ #include <kobj-types-enum.h> /** @endcond */ K_OBJ_LAST }; #ifdef CONFIG_USERSPACE /* Table generated by gperf, these objects are retrieved via * _k_object_find() */ struct _k_object { char *name; u8_t perms[CONFIG_MAX_THREAD_BYTES]; u8_t type; u8_t flags; u32_t data; } __packed; struct _k_object_assignment { struct k_thread *thread; void * const *objects; }; /** * @brief Grant a static thread access to a list of kernel objects * * For threads declared with K_THREAD_DEFINE(), grant the thread access to * a set of kernel objects. These objects do not need to be in an initialized * state. The permissions will be granted when the threads are initialized * in the early boot sequence. * * All arguments beyond the first must be pointers to kernel objects. * * @param name_ Name of the thread, as passed to K_THREAD_DEFINE() */ #define K_THREAD_ACCESS_GRANT(name_, ...) \ static void * const _CONCAT(_object_list_, name_)[] = \ { __VA_ARGS__, NULL }; \ static __used __in_section_unique(object_access) \ const struct _k_object_assignment \ _CONCAT(_object_access_, name_) = \ { (&_k_thread_obj_ ## name_), \ (_CONCAT(_object_list_, name_)) } #define K_OBJ_FLAG_INITIALIZED BIT(0) #define K_OBJ_FLAG_PUBLIC BIT(1) #define K_OBJ_FLAG_ALLOC BIT(2) /** * Lookup a kernel object and init its metadata if it exists * * Calling this on an object will make it usable from userspace. * Intended to be called as the last statement in kernel object init * functions. * * @param object Address of the kernel object */ void _k_object_init(void *obj); #else #define K_THREAD_ACCESS_GRANT(thread, ...) /** * @internal */ static inline void _k_object_init(void *obj) { ARG_UNUSED(obj); } /** * @internal */ static inline void _impl_k_object_access_grant(void *object, struct k_thread *thread) { ARG_UNUSED(object); ARG_UNUSED(thread); } /** * @internal */ static inline void k_object_access_revoke(void *object, struct k_thread *thread) { ARG_UNUSED(object); ARG_UNUSED(thread); } /** * @internal */ static inline void _impl_k_object_release(void *object) { ARG_UNUSED(object); } static inline void k_object_access_all_grant(void *object) { ARG_UNUSED(object); } #endif /* !CONFIG_USERSPACE */ /** * grant a thread access to a kernel object * * The thread will be granted access to the object if the caller is from * supervisor mode, or the caller is from user mode AND has permissions * on both the object and the thread whose access is being granted. * * @param object Address of kernel object * @param thread Thread to grant access to the object */ __syscall void k_object_access_grant(void *object, struct k_thread *thread); /** * grant a thread access to a kernel object * * The thread will lose access to the object if the caller is from * supervisor mode, or the caller is from user mode AND has permissions * on both the object and the thread whose access is being revoked. * * @param object Address of kernel object * @param thread Thread to remove access to the object */ void k_object_access_revoke(void *object, struct k_thread *thread); __syscall void k_object_release(void *object); /** * grant all present and future threads access to an object * * If the caller is from supervisor mode, or the caller is from user mode and * have sufficient permissions on the object, then that object will have * permissions granted to it for *all* current and future threads running in * the system, effectively becoming a public kernel object. * * Use of this API should be avoided on systems that are running untrusted code * as it is possible for such code to derive the addresses of kernel objects * and perform unwanted operations on them. * * It is not possible to revoke permissions on public objects; once public, * any thread may use it. * * @param object Address of kernel object */ void k_object_access_all_grant(void *object); /** * Allocate a kernel object of a designated type * * This will instantiate at runtime a kernel object of the specified type, * returning a pointer to it. The object will be returned in an uninitialized * state, with the calling thread being granted permission on it. The memory * for the object will be allocated out of the calling thread's resource pool. * * Currently, allocation of thread stacks is not supported. * * @param otype Requested kernel object type * @return A pointer to the allocated kernel object, or NULL if memory wasn't * available */ __syscall void *k_object_alloc(enum k_objects otype); #ifdef CONFIG_DYNAMIC_OBJECTS /** * Free a kernel object previously allocated with k_object_alloc() * * This will return memory for a kernel object back to resource pool it was * allocated from. Care must be exercised that the object will not be used * during or after when this call is made. * * @param obj Pointer to the kernel object memory address. */ void k_object_free(void *obj); #else static inline void *_impl_k_object_alloc(enum k_objects otype) { ARG_UNUSED(otype); return NULL; } static inline void k_obj_free(void *obj) { ARG_UNUSED(obj); } #endif /* CONFIG_DYNAMIC_OBJECTS */ /* Using typedef deliberately here, this is quite intended to be an opaque * type. K_THREAD_STACK_BUFFER() should be used to access the data within. * * The purpose of this data type is to clearly distinguish between the * declared symbol for a stack (of type k_thread_stack_t) and the underlying * buffer which composes the stack data actually used by the underlying * thread; they cannot be used interchangably as some arches precede the * stack buffer region with guard areas that trigger a MPU or MMU fault * if written to. * * APIs that want to work with the buffer inside should continue to use * char *. * * Stacks should always be created with K_THREAD_STACK_DEFINE(). */ struct __packed _k_thread_stack_element { char data; }; typedef struct _k_thread_stack_element k_thread_stack_t; /* timeouts */ struct _timeout; typedef void (*_timeout_func_t)(struct _timeout *t); struct _timeout { sys_dnode_t node; struct k_thread *thread; sys_dlist_t *wait_q; s32_t delta_ticks_from_prev; _timeout_func_t func; }; extern s32_t _timeout_remaining_get(struct _timeout *timeout); /** * @typedef k_thread_entry_t * @brief Thread entry point function type. * * A thread's entry point function is invoked when the thread starts executing. * Up to 3 argument values can be passed to the function. * * The thread terminates execution permanently if the entry point function * returns. The thread is responsible for releasing any shared resources * it may own (such as mutexes and dynamically allocated memory), prior to * returning. * * @param p1 First argument. * @param p2 Second argument. * @param p3 Third argument. * * @return N/A */ typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3); #ifdef CONFIG_THREAD_MONITOR struct __thread_entry { k_thread_entry_t pEntry; void *parameter1; void *parameter2; void *parameter3; }; #endif /* can be used for creating 'dummy' threads, e.g. for pending on objects */ struct _thread_base { /* this thread's entry in a ready/wait queue */ union { sys_dlist_t qnode_dlist; struct rbnode qnode_rb; }; #ifdef CONFIG_WAITQ_FAST /* wait queue on which the thread is pended (needed only for * trees, not dumb lists) */ _wait_q_t *pended_on; #endif /* user facing 'thread options'; values defined in include/kernel.h */ u8_t user_options; /* thread state */ u8_t thread_state; /* * scheduler lock count and thread priority * * These two fields control the preemptibility of a thread. * * When the scheduler is locked, sched_locked is decremented, which * means that the scheduler is locked for values from 0xff to 0x01. A * thread is coop if its prio is negative, thus 0x80 to 0xff when * looked at the value as unsigned. * * By putting them end-to-end, this means that a thread is * non-preemptible if the bundled value is greater than or equal to * 0x0080. */ union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8_t sched_locked; s8_t prio; #else /* LITTLE and PDP */ s8_t prio; u8_t sched_locked; #endif }; u16_t preempt; }; u32_t order_key; #ifdef CONFIG_SMP /* True for the per-CPU idle threads */ u8_t is_idle; /* CPU index on which thread was last run */ u8_t cpu; /* Recursive count of irq_lock() calls */ u8_t global_lock_count; #endif /* data returned by APIs */ void *swap_data; #ifdef CONFIG_SYS_CLOCK_EXISTS /* this thread's entry in a timeout queue */ struct _timeout timeout; #endif }; typedef struct _thread_base _thread_base_t; #if defined(CONFIG_THREAD_STACK_INFO) /* Contains the stack information of a thread */ struct _thread_stack_info { /* Stack Start */ u32_t start; /* Stack Size */ u32_t size; }; typedef struct _thread_stack_info _thread_stack_info_t; #endif /* CONFIG_THREAD_STACK_INFO */ #if defined(CONFIG_USERSPACE) struct _mem_domain_info { /* memory domain queue node */ sys_dnode_t mem_domain_q_node; /* memory domain of the thread */ struct k_mem_domain *mem_domain; }; #endif /* CONFIG_USERSPACE */ struct k_thread { struct _thread_base base; /* defined by the architecture, but all archs need these */ struct _caller_saved caller_saved; struct _callee_saved callee_saved; /* static thread init data */ void *init_data; /* abort function */ void (*fn_abort)(void); #if defined(CONFIG_THREAD_MONITOR) /* thread entry and parameters description */ struct __thread_entry *entry; /* next item in list of all threads */ struct k_thread *next_thread; #endif #ifdef CONFIG_THREAD_CUSTOM_DATA /* crude thread-local storage */ void *custom_data; #endif #ifdef CONFIG_ERRNO /* per-thread errno variable */ int errno_var; #endif #if defined(CONFIG_THREAD_STACK_INFO) /* Stack Info */ struct _thread_stack_info stack_info; #endif /* CONFIG_THREAD_STACK_INFO */ #if defined(CONFIG_USERSPACE) /* memory domain info of the thread */ struct _mem_domain_info mem_domain_info; /* Base address of thread stack */ k_thread_stack_t *stack_obj; #endif /* CONFIG_USERSPACE */ #if defined(CONFIG_USE_SWITCH) /* When using __switch() a few previously arch-specific items * become part of the core OS */ /* _Swap() return value */ int swap_retval; /* Context handle returned via _arch_switch() */ void *switch_handle; #endif struct k_mem_pool *resource_pool; /* arch-specifics: must always be at the end */ struct _thread_arch arch; }; typedef struct k_thread _thread_t; typedef struct k_thread *k_tid_t; #define tcs k_thread enum execution_context_types { K_ISR = 0, K_COOP_THREAD, K_PREEMPT_THREAD, }; /** * @defgroup profiling_apis Profiling APIs * @ingroup kernel_apis * @{ */ typedef void (*k_thread_user_cb_t)(const struct k_thread *thread, void *user_data); /** * @brief Analyze the main, idle, interrupt and system workqueue call stacks * * This routine calls @ref STACK_ANALYZE on the 4 call stacks declared and * maintained by the kernel. The sizes of those 4 call stacks are defined by: * * CONFIG_MAIN_STACK_SIZE * CONFIG_IDLE_STACK_SIZE * CONFIG_ISR_STACK_SIZE * CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE * * @note CONFIG_INIT_STACKS and CONFIG_PRINTK must be set for this function to * produce output. * * @return N/A * * @deprecated This API is deprecated. Use k_thread_foreach(). */ __deprecated extern void k_call_stacks_analyze(void); /** * @brief Iterate over all the threads in the system. * * This routine iterates over all the threads in the system and * calls the user_cb function for each thread. * * @param user_cb Pointer to the user callback function. * @param user_data Pointer to user data. * * @note CONFIG_THREAD_MONITOR must be set for this function * to be effective. Also this API uses irq_lock to protect the * _kernel.threads list which means creation of new threads and * terminations of existing threads are blocked until this * API returns. * * @return N/A */ extern void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data); /** @} */ /** * @defgroup thread_apis Thread APIs * @ingroup kernel_apis * @{ */ #endif /* !_ASMLANGUAGE */ /* * Thread user options. May be needed by assembly code. Common part uses low * bits, arch-specific use high bits. */ /* system thread that must not abort */ #define K_ESSENTIAL (1 << 0) #if defined(CONFIG_FP_SHARING) /* thread uses floating point registers */ #define K_FP_REGS (1 << 1) #endif /* This thread has dropped from supervisor mode to user mode and consequently * has additional restrictions */ #define K_USER (1 << 2) /* Indicates that the thread being created should inherit all kernel object * permissions from the thread that created it. No effect if CONFIG_USERSPACE * is not enabled. */ #define K_INHERIT_PERMS (1 << 3) #ifdef CONFIG_X86 /* x86 Bitmask definitions for threads user options */ #if defined(CONFIG_FP_SHARING) && defined(CONFIG_SSE) /* thread uses SSEx (and also FP) registers */ #define K_SSE_REGS (1 << 7) #endif #endif /* end - thread options */ #if !defined(_ASMLANGUAGE) /** * @brief Create a thread. * * This routine initializes a thread, then schedules it for execution. * * The new thread may be scheduled for immediate execution or a delayed start. * If the newly spawned thread does not have a delayed start the kernel * scheduler may preempt the current thread to allow the new thread to * execute. * * Thread options are architecture-specific, and can include K_ESSENTIAL, * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating * them using "|" (the logical OR operator). * * Historically, users often would use the beginning of the stack memory region * to store the struct k_thread data, although corruption will occur if the * stack overflows this region and stack protection features may not detect this * situation. * * @param new_thread Pointer to uninitialized struct k_thread * @param stack Pointer to the stack space. * @param stack_size Stack size in bytes. * @param entry Thread entry function. * @param p1 1st entry point parameter. * @param p2 2nd entry point parameter. * @param p3 3rd entry point parameter. * @param prio Thread priority. * @param options Thread options. * @param delay Scheduling delay (in milliseconds), or K_NO_WAIT (for no delay). * * @return ID of new thread. */ __syscall k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, u32_t options, s32_t delay); /** * @brief Drop a thread's privileges permanently to user mode * * @param entry Function to start executing from * @param p1 1st entry point parameter * @param p2 2nd entry point parameter * @param p3 3rd entry point parameter */ extern FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3); /** * @brief Grant a thread access to a NULL-terminated set of kernel objects * * This is a convenience function. For the provided thread, grant access to * the remaining arguments, which must be pointers to kernel objects. * The final argument must be a NULL. * * The thread object must be initialized (i.e. running). The objects don't * need to be. * * @param thread Thread to grant access to objects * @param ... NULL-terminated list of kernel object pointers */ extern void __attribute__((sentinel)) k_thread_access_grant(struct k_thread *thread, ...); /** * @brief Assign a resource memory pool to a thread * * By default, threads have no resource pool assigned unless their parent * thread has a resource pool, in which case it is inherited. Multiple * threads may be assigned to the same memory pool. * * Changing a thread's resource pool will not migrate allocations from the * previous pool. * * @param thread Target thread to assign a memory pool for resource requests, * or NULL if the thread should no longer have a memory pool. * @param pool Memory pool to use for resources. */ static inline void k_thread_resource_pool_assign(struct k_thread *thread, struct k_mem_pool *pool) { thread->resource_pool = pool; } #if (CONFIG_HEAP_MEM_POOL_SIZE > 0) /** * @brief Assign the system heap as a thread's resource pool * * Similar to k_thread_resource_pool_assign(), but the thread will use * the kernel heap to draw memory. * * Use with caution, as a malicious thread could perform DoS attacks on the * kernel heap. * * @param thread Target thread to assign the system heap for resource requests */ void k_thread_system_pool_assign(struct k_thread *thread); #endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */ /** * @brief Put the current thread to sleep. * * This routine puts the current thread to sleep for @a duration * milliseconds. * * @param duration Number of milliseconds to sleep. * * @return N/A */ __syscall void k_sleep(s32_t duration); /** * @brief Cause the current thread to busy wait. * * This routine causes the current thread to execute a "do nothing" loop for * @a usec_to_wait microseconds. * * @return N/A */ extern void k_busy_wait(u32_t usec_to_wait); /** * @brief Yield the current thread. * * This routine causes the current thread to yield execution to another * thread of the same or higher priority. If there are no other ready threads * of the same or higher priority, the routine returns immediately. * * @return N/A */ __syscall void k_yield(void); /** * @brief Wake up a sleeping thread. * * This routine prematurely wakes up @a thread from sleeping. * * If @a thread is not currently sleeping, the routine has no effect. * * @param thread ID of thread to wake. * * @return N/A */ __syscall void k_wakeup(k_tid_t thread); /** * @brief Get thread ID of the current thread. * * @return ID of current thread. */ __syscall k_tid_t k_current_get(void); /** * @brief Cancel thread performing a delayed start. * * This routine prevents @a thread from executing if it has not yet started * execution. The thread must be re-spawned before it will execute. * * @param thread ID of thread to cancel. * * @retval 0 Thread spawning canceled. * @retval -EINVAL Thread has already started executing. * * @deprecated This API is deprecated. Use k_thread_abort(). */ __deprecated __syscall int k_thread_cancel(k_tid_t thread); /** * @brief Abort a thread. * * This routine permanently stops execution of @a thread. The thread is taken * off all kernel queues it is part of (i.e. the ready queue, the timeout * queue, or a kernel object wait queue). However, any kernel resources the * thread might currently own (such as mutexes or memory blocks) are not * released. It is the responsibility of the caller of this routine to ensure * all necessary cleanup is performed. * * @param thread ID of thread to abort. * * @return N/A */ __syscall void k_thread_abort(k_tid_t thread); /** * @brief Start an inactive thread * * If a thread was created with K_FOREVER in the delay parameter, it will * not be added to the scheduling queue until this function is called * on it. * * @param thread thread to start */ __syscall void k_thread_start(k_tid_t thread); /** * @cond INTERNAL_HIDDEN */ /* timeout has timed out and is not on _timeout_q anymore */ #define _EXPIRED (-2) /* timeout is not in use */ #define _INACTIVE (-1) struct _static_thread_data { struct k_thread *init_thread; k_thread_stack_t *init_stack; unsigned int init_stack_size; k_thread_entry_t init_entry; void *init_p1; void *init_p2; void *init_p3; int init_prio; u32_t init_options; s32_t init_delay; void (*init_abort)(void); }; #define _THREAD_INITIALIZER(thread, stack, stack_size, \ entry, p1, p2, p3, \ prio, options, delay, abort, groups) \ { \ .init_thread = (thread), \ .init_stack = (stack), \ .init_stack_size = (stack_size), \ .init_entry = (k_thread_entry_t)entry, \ .init_p1 = (void *)p1, \ .init_p2 = (void *)p2, \ .init_p3 = (void *)p3, \ .init_prio = (prio), \ .init_options = (options), \ .init_delay = (delay), \ .init_abort = (abort), \ } /** * INTERNAL_HIDDEN @endcond */ /** * @brief Statically define and initialize a thread. * * The thread may be scheduled for immediate execution or a delayed start. * * Thread options are architecture-specific, and can include K_ESSENTIAL, * K_FP_REGS, and K_SSE_REGS. Multiple options may be specified by separating * them using "|" (the logical OR operator). * * The ID of the thread can be accessed using: * * @code extern const k_tid_t <name>; @endcode * * @param name Name of the thread. * @param stack_size Stack size in bytes. * @param entry Thread entry function. * @param p1 1st entry point parameter. * @param p2 2nd entry point parameter. * @param p3 3rd entry point parameter. * @param prio Thread priority. * @param options Thread options. * @param delay Scheduling delay (in milliseconds), or K_NO_WAIT (for no delay). * * @internal It has been observed that the x86 compiler by default aligns * these _static_thread_data structures to 32-byte boundaries, thereby * wasting space. To work around this, force a 4-byte alignment. */ #define K_THREAD_DEFINE(name, stack_size, \ entry, p1, p2, p3, \ prio, options, delay) \ K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \ struct k_thread __kernel _k_thread_obj_##name; \ struct _static_thread_data _k_thread_data_##name __aligned(4) \ __in_section(_static_thread_data, static, name) = \ _THREAD_INITIALIZER(&_k_thread_obj_##name, \ _k_thread_stack_##name, stack_size, \ entry, p1, p2, p3, prio, options, delay, \ NULL, 0); \ const k_tid_t name = (k_tid_t)&_k_thread_obj_##name /** * @brief Get a thread's priority. * * This routine gets the priority of @a thread. * * @param thread ID of thread whose priority is needed. * * @return Priority of @a thread. */ __syscall int k_thread_priority_get(k_tid_t thread); /** * @brief Set a thread's priority. * * This routine immediately changes the priority of @a thread. * * Rescheduling can occur immediately depending on the priority @a thread is * set to: * * - If its priority is raised above the priority of the caller of this * function, and the caller is preemptible, @a thread will be scheduled in. * * - If the caller operates on itself, it lowers its priority below that of * other threads in the system, and the caller is preemptible, the thread of * highest priority will be scheduled in. * * Priority can be assigned in the range of -CONFIG_NUM_COOP_PRIORITIES to * CONFIG_NUM_PREEMPT_PRIORITIES-1, where -CONFIG_NUM_COOP_PRIORITIES is the * highest priority. * * @param thread ID of thread whose priority is to be set. * @param prio New priority. * * @warning Changing the priority of a thread currently involved in mutex * priority inheritance may result in undefined behavior. * * @return N/A */ __syscall void k_thread_priority_set(k_tid_t thread, int prio); /** * @brief Suspend a thread. * * This routine prevents the kernel scheduler from making @a thread the * current thread. All other internal operations on @a thread are still * performed; for example, any timeout it is waiting on keeps ticking, * kernel objects it is waiting on are still handed to it, etc. * * If @a thread is already suspended, the routine has no effect. * * @param thread ID of thread to suspend. * * @return N/A */ __syscall void k_thread_suspend(k_tid_t thread); /** * @brief Resume a suspended thread. * * This routine allows the kernel scheduler to make @a thread the current * thread, when it is next eligible for that role. * * If @a thread is not currently suspended, the routine has no effect. * * @param thread ID of thread to resume. * * @return N/A */ __syscall void k_thread_resume(k_tid_t thread); /** * @brief Set time-slicing period and scope. * * This routine specifies how the scheduler will perform time slicing of * preemptible threads. * * To enable time slicing, @a slice must be non-zero. The scheduler * ensures that no thread runs for more than the specified time limit * before other threads of that priority are given a chance to execute. * Any thread whose priority is higher than @a prio is exempted, and may * execute as long as desired without being preempted due to time slicing. * * Time slicing only limits the maximum amount of time a thread may continuously * execute. Once the scheduler selects a thread for execution, there is no * minimum guaranteed time the thread will execute before threads of greater or * equal priority are scheduled. * * When the current thread is the only one of that priority eligible * for execution, this routine has no effect; the thread is immediately * rescheduled after the slice period expires. * * To disable timeslicing, set both @a slice and @a prio to zero. * * @param slice Maximum time slice length (in milliseconds). * @param prio Highest thread priority level eligible for time slicing. * * @return N/A */ extern void k_sched_time_slice_set(s32_t slice, int prio); /** @} */ /** * @addtogroup isr_apis * @{ */ /** * @brief Determine if code is running at interrupt level. * * This routine allows the caller to customize its actions, depending on * whether it is a thread or an ISR. * * @note Can be called by ISRs. * * @return 0 if invoked by a thread. * @return Non-zero if invoked by an ISR. */ extern int k_is_in_isr(void); /** * @brief Determine if code is running in a preemptible thread. * * This routine allows the caller to customize its actions, depending on * whether it can be preempted by another thread. The routine returns a 'true' * value if all of the following conditions are met: * * - The code is running in a thread, not at ISR. * - The thread's priority is in the preemptible range. * - The thread has not locked the scheduler. * * @note Can be called by ISRs. * * @return 0 if invoked by an ISR or by a cooperative thread. * @return Non-zero if invoked by a preemptible thread. */ __syscall int k_is_preempt_thread(void); /** * @} */ /** * @addtogroup thread_apis * @{ */ /** * @brief Lock the scheduler. * * This routine prevents the current thread from being preempted by another * thread by instructing the scheduler to treat it as a cooperative thread. * If the thread subsequently performs an operation that makes it unready, * it will be context switched out in the normal manner. When the thread * again becomes the current thread, its non-preemptible status is maintained. * * This routine can be called recursively. * * @note k_sched_lock() and k_sched_unlock() should normally be used * when the operation being performed can be safely interrupted by ISRs. * However, if the amount of processing involved is very small, better * performance may be obtained by using irq_lock() and irq_unlock(). * * @return N/A */ extern void k_sched_lock(void); /** * @brief Unlock the scheduler. * * This routine reverses the effect of a previous call to k_sched_lock(). * A thread must call the routine once for each time it called k_sched_lock() * before the thread becomes preemptible. * * @return N/A */ extern void k_sched_unlock(void); /** * @brief Set current thread's custom data. * * This routine sets the custom data for the current thread to @ value. * * Custom data is not used by the kernel itself, and is freely available * for a thread to use as it sees fit. It can be used as a framework * upon which to build thread-local storage. * * @param value New custom data value. * * @return N/A */ __syscall void k_thread_custom_data_set(void *value); /** * @brief Get current thread's custom data. * * This routine returns the custom data for the current thread. * * @return Current custom data value. */ __syscall void *k_thread_custom_data_get(void); /** * @} */ #include <sys_clock.h> /** * @addtogroup clock_apis * @{ */ /** * @brief Generate null timeout delay. * * This macro generates a timeout delay that that instructs a kernel API * not to wait if the requested operation cannot be performed immediately. * * @return Timeout delay value. */ #define K_NO_WAIT 0 /** * @brief Generate timeout delay from milliseconds. * * This macro generates a timeout delay that that instructs a kernel API * to wait up to @a ms milliseconds to perform the requested operation. * * @param ms Duration in milliseconds. * * @return Timeout delay value. */ #define K_MSEC(ms) (ms) /** * @brief Generate timeout delay from seconds. * * This macro generates a timeout delay that that instructs a kernel API * to wait up to @a s seconds to perform the requested operation. * * @param s Duration in seconds. * * @return Timeout delay value. */ #define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC) /** * @brief Generate timeout delay from minutes. * * This macro generates a timeout delay that that instructs a kernel API * to wait up to @a m minutes to perform the requested operation. * * @param m Duration in minutes. * * @return Timeout delay value. */ #define K_MINUTES(m) K_SECONDS((m) * 60) /** * @brief Generate timeout delay from hours. * * This macro generates a timeout delay that that instructs a kernel API * to wait up to @a h hours to perform the requested operation. * * @param h Duration in hours. * * @return Timeout delay value. */ #define K_HOURS(h) K_MINUTES((h) * 60) /** * @brief Generate infinite timeout delay. * * This macro generates a timeout delay that that instructs a kernel API * to wait as long as necessary to perform the requested operation. * * @return Timeout delay value. */ #define K_FOREVER (-1) /** * @} */ /** * @cond INTERNAL_HIDDEN */ /* kernel clocks */ #if (sys_clock_ticks_per_sec == 1000) || \ (sys_clock_ticks_per_sec == 500) || \ (sys_clock_ticks_per_sec == 250) || \ (sys_clock_ticks_per_sec == 125) || \ (sys_clock_ticks_per_sec == 100) || \ (sys_clock_ticks_per_sec == 50) || \ (sys_clock_ticks_per_sec == 25) || \ (sys_clock_ticks_per_sec == 20) || \ (sys_clock_ticks_per_sec == 10) || \ (sys_clock_ticks_per_sec == 1) #define _ms_per_tick (MSEC_PER_SEC / sys_clock_ticks_per_sec) #else /* yields horrible 64-bit math on many architectures: try to avoid */ #define _NON_OPTIMIZED_TICKS_PER_SEC #endif #ifdef _NON_OPTIMIZED_TICKS_PER_SEC extern s32_t _ms_to_ticks(s32_t ms); #else static ALWAYS_INLINE s32_t _ms_to_ticks(s32_t ms) { return (s32_t)ceiling_fraction((u32_t)ms, _ms_per_tick); } #endif /* added tick needed to account for tick in progress */ #ifdef CONFIG_TICKLESS_KERNEL #define _TICK_ALIGN 0 #else #define _TICK_ALIGN 1 #endif static inline s64_t __ticks_to_ms(s64_t ticks) { #ifdef CONFIG_SYS_CLOCK_EXISTS #ifdef _NON_OPTIMIZED_TICKS_PER_SEC return (MSEC_PER_SEC * (u64_t)ticks) / sys_clock_ticks_per_sec; #else return (u64_t)ticks * _ms_per_tick; #endif #else __ASSERT(ticks == 0, "ticks not zero"); return 0; #endif } struct k_timer { /* * _timeout structure must be first here if we want to use * dynamic timer allocation. timeout.node is used in the double-linked * list of free timers */ struct _timeout timeout; /* wait queue for the (single) thread waiting on this timer */ _wait_q_t wait_q; /* runs in ISR context */ void (*expiry_fn)(struct k_timer *); /* runs in the context of the thread that calls k_timer_stop() */ void (*stop_fn)(struct k_timer *); /* timer period */ s32_t period; /* timer status */ u32_t status; /* user-specific data, also used to support legacy features */ void *user_data; _OBJECT_TRACING_NEXT_PTR(k_timer); }; #define _K_TIMER_INITIALIZER(obj, expiry, stop) \ { \ .timeout.delta_ticks_from_prev = _INACTIVE, \ .timeout.wait_q = NULL, \ .timeout.thread = NULL, \ .timeout.func = _timer_expiration_handler, \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ .expiry_fn = expiry, \ .stop_fn = stop, \ .status = 0, \ .user_data = 0, \ _OBJECT_TRACING_INIT \ } #define K_TIMER_INITIALIZER DEPRECATED_MACRO _K_TIMER_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup timer_apis Timer APIs * @ingroup kernel_apis * @{ */ /** * @typedef k_timer_expiry_t * @brief Timer expiry function type. * * A timer's expiry function is executed by the system clock interrupt handler * each time the timer expires. The expiry function is optional, and is only * invoked if the timer has been initialized with one. * * @param timer Address of timer. * * @return N/A */ typedef void (*k_timer_expiry_t)(struct k_timer *timer); /** * @typedef k_timer_stop_t * @brief Timer stop function type. * * A timer's stop function is executed if the timer is stopped prematurely. * The function runs in the context of the thread that stops the timer. * The stop function is optional, and is only invoked if the timer has been * initialized with one. * * @param timer Address of timer. * * @return N/A */ typedef void (*k_timer_stop_t)(struct k_timer *timer); /** * @brief Statically define and initialize a timer. * * The timer can be accessed outside the module where it is defined using: * * @code extern struct k_timer <name>; @endcode * * @param name Name of the timer variable. * @param expiry_fn Function to invoke each time the timer expires. * @param stop_fn Function to invoke if the timer is stopped while running. */ #define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \ struct k_timer name \ __in_section(_k_timer, static, name) = \ _K_TIMER_INITIALIZER(name, expiry_fn, stop_fn) /** * @brief Initialize a timer. * * This routine initializes a timer, prior to its first use. * * @param timer Address of timer. * @param expiry_fn Function to invoke each time the timer expires. * @param stop_fn Function to invoke if the timer is stopped while running. * * @return N/A */ extern void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn); /** * @brief Start a timer. * * This routine starts a timer, and resets its status to zero. The timer * begins counting down using the specified duration and period values. * * Attempting to start a timer that is already running is permitted. * The timer's status is reset to zero and the timer begins counting down * using the new duration and period values. * * @param timer Address of timer. * @param duration Initial timer duration (in milliseconds). * @param period Timer period (in milliseconds). * * @return N/A */ __syscall void k_timer_start(struct k_timer *timer, s32_t duration, s32_t period); /** * @brief Stop a timer. * * This routine stops a running timer prematurely. The timer's stop function, * if one exists, is invoked by the caller. * * Attempting to stop a timer that is not running is permitted, but has no * effect on the timer. * * @note Can be called by ISRs. The stop handler has to be callable from ISRs * if @a k_timer_stop is to be called from ISRs. * * @param timer Address of timer. * * @return N/A */ __syscall void k_timer_stop(struct k_timer *timer); /** * @brief Read timer status. * * This routine reads the timer's status, which indicates the number of times * it has expired since its status was last read. * * Calling this routine resets the timer's status to zero. * * @param timer Address of timer. * * @return Timer status. */ __syscall u32_t k_timer_status_get(struct k_timer *timer); /** * @brief Synchronize thread to timer expiration. * * This routine blocks the calling thread until the timer's status is non-zero * (indicating that it has expired at least once since it was last examined) * or the timer is stopped. If the timer status is already non-zero, * or the timer is already stopped, the caller continues without waiting. * * Calling this routine resets the timer's status to zero. * * This routine must not be used by interrupt handlers, since they are not * allowed to block. * * @param timer Address of timer. * * @return Timer status. */ __syscall u32_t k_timer_status_sync(struct k_timer *timer); /** * @brief Get time remaining before a timer next expires. * * This routine computes the (approximate) time remaining before a running * timer next expires. If the timer is not running, it returns zero. * * @param timer Address of timer. * * @return Remaining time (in milliseconds). */ __syscall s32_t k_timer_remaining_get(struct k_timer *timer); static inline s32_t _impl_k_timer_remaining_get(struct k_timer *timer) { return _timeout_remaining_get(&timer->timeout); } /** * @brief Associate user-specific data with a timer. * * This routine records the @a user_data with the @a timer, to be retrieved * later. * * It can be used e.g. in a timer handler shared across multiple subsystems to * retrieve data specific to the subsystem this timer is associated with. * * @param timer Address of timer. * @param user_data User data to associate with the timer. * * @return N/A */ __syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data); /** * @internal */ static inline void _impl_k_timer_user_data_set(struct k_timer *timer, void *user_data) { timer->user_data = user_data; } /** * @brief Retrieve the user-specific data from a timer. * * @param timer Address of timer. * * @return The user data. */ __syscall void *k_timer_user_data_get(struct k_timer *timer); static inline void *_impl_k_timer_user_data_get(struct k_timer *timer) { return timer->user_data; } /** @} */ /** * @addtogroup clock_apis * @{ */ /** * @brief Get system uptime. * * This routine returns the elapsed time since the system booted, * in milliseconds. * * @return Current uptime. */ __syscall s64_t k_uptime_get(void); /** * @brief Enable clock always on in tickless kernel * * This routine enables keeping the clock running when * there are no timer events programmed in tickless kernel * scheduling. This is necessary if the clock is used to track * passage of time. * * @retval prev_status Previous status of always on flag */ #ifdef CONFIG_TICKLESS_KERNEL static inline int k_enable_sys_clock_always_on(void) { int prev_status = _sys_clock_always_on; _sys_clock_always_on = 1; _enable_sys_clock(); return prev_status; } #else #define k_enable_sys_clock_always_on() do { } while ((0)) #endif /** * @brief Disable clock always on in tickless kernel * * This routine disables keeping the clock running when * there are no timer events programmed in tickless kernel * scheduling. To save power, this routine should be called * immediately when clock is not used to track time. */ #ifdef CONFIG_TICKLESS_KERNEL static inline void k_disable_sys_clock_always_on(void) { _sys_clock_always_on = 0; } #else #define k_disable_sys_clock_always_on() do { } while ((0)) #endif /** * @brief Get system uptime (32-bit version). * * This routine returns the lower 32-bits of the elapsed time since the system * booted, in milliseconds. * * This routine can be more efficient than k_uptime_get(), as it reduces the * need for interrupt locking and 64-bit math. However, the 32-bit result * cannot hold a system uptime time larger than approximately 50 days, so the * caller must handle possible rollovers. * * @return Current uptime. */ __syscall u32_t k_uptime_get_32(void); /** * @brief Get elapsed time. * * This routine computes the elapsed time between the current system uptime * and an earlier reference time, in milliseconds. * * @param reftime Pointer to a reference time, which is updated to the current * uptime upon return. * * @return Elapsed time. */ extern s64_t k_uptime_delta(s64_t *reftime); /** * @brief Get elapsed time (32-bit version). * * This routine computes the elapsed time between the current system uptime * and an earlier reference time, in milliseconds. * * This routine can be more efficient than k_uptime_delta(), as it reduces the * need for interrupt locking and 64-bit math. However, the 32-bit result * cannot hold an elapsed time larger than approximately 50 days, so the * caller must handle possible rollovers. * * @param reftime Pointer to a reference time, which is updated to the current * uptime upon return. * * @return Elapsed time. */ extern u32_t k_uptime_delta_32(s64_t *reftime); /** * @brief Read the hardware clock. * * This routine returns the current time, as measured by the system's hardware * clock. * * @return Current hardware clock up-counter (in cycles). */ #define k_cycle_get_32() _arch_k_cycle_get_32() /** * @} */ /** * @cond INTERNAL_HIDDEN */ struct k_queue { sys_sflist_t data_q; union { _wait_q_t wait_q; _POLL_EVENT; }; _OBJECT_TRACING_NEXT_PTR(k_queue); }; #define _K_QUEUE_INITIALIZER(obj) \ { \ .data_q = SYS_SLIST_STATIC_INIT(&obj.data_q), \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ _POLL_EVENT_OBJ_INIT(obj) \ _OBJECT_TRACING_INIT \ } #define K_QUEUE_INITIALIZER DEPRECATED_MACRO _K_QUEUE_INITIALIZER extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free); /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup queue_apis Queue APIs * @ingroup kernel_apis * @{ */ /** * @brief Initialize a queue. * * This routine initializes a queue object, prior to its first use. * * @param queue Address of the queue. * * @return N/A */ __syscall void k_queue_init(struct k_queue *queue); /** * @brief Cancel waiting on a queue. * * This routine causes first thread pending on @a queue, if any, to * return from k_queue_get() call with NULL value (as if timeout expired). * * @note Can be called by ISRs. * * @param queue Address of the queue. * * @return N/A */ __syscall void k_queue_cancel_wait(struct k_queue *queue); /** * @brief Append an element to the end of a queue. * * This routine appends a data item to @a queue. A queue data item must be * aligned on a 4-byte boundary, and the first 32 bits of the item are * reserved for the kernel's use. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param data Address of the data item. * * @return N/A */ extern void k_queue_append(struct k_queue *queue, void *data); /** * @brief Append an element to a queue. * * This routine appends a data item to @a queue. There is an implicit * memory allocation from the calling thread's resource pool, which is * automatically freed when the item is removed from the queue. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param data Address of the data item. * * @retval 0 on success * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool */ __syscall int k_queue_alloc_append(struct k_queue *queue, void *data); /** * @brief Prepend an element to a queue. * * This routine prepends a data item to @a queue. A queue data item must be * aligned on a 4-byte boundary, and the first 32 bits of the item are * reserved for the kernel's use. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param data Address of the data item. * * @return N/A */ extern void k_queue_prepend(struct k_queue *queue, void *data); /** * @brief Prepend an element to a queue. * * This routine prepends a data item to @a queue. There is an implicit * memory allocation from the calling thread's resource pool, which is * automatically freed when the item is removed from the queue. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param data Address of the data item. * * @retval 0 on success * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool */ __syscall int k_queue_alloc_prepend(struct k_queue *queue, void *data); /** * @brief Inserts an element to a queue. * * This routine inserts a data item to @a queue after previous item. A queue * data item must be aligned on a 4-byte boundary, and the first 32 bits of the * item are reserved for the kernel's use. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param prev Address of the previous data item. * @param data Address of the data item. * * @return N/A */ extern void k_queue_insert(struct k_queue *queue, void *prev, void *data); /** * @brief Atomically append a list of elements to a queue. * * This routine adds a list of data items to @a queue in one operation. * The data items must be in a singly-linked list, with the first 32 bits * in each data item pointing to the next data item; the list must be * NULL-terminated. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param head Pointer to first node in singly-linked list. * @param tail Pointer to last node in singly-linked list. * * @return N/A */ extern void k_queue_append_list(struct k_queue *queue, void *head, void *tail); /** * @brief Atomically add a list of elements to a queue. * * This routine adds a list of data items to @a queue in one operation. * The data items must be in a singly-linked list implemented using a * sys_slist_t object. Upon completion, the original list is empty. * * @note Can be called by ISRs. * * @param queue Address of the queue. * @param list Pointer to sys_slist_t object. * * @return N/A */ extern void k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list); /** * @brief Get an element from a queue. * * This routine removes first data item from @a queue. The first 32 bits of the * data item are reserved for the kernel's use. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param queue Address of the queue. * @param timeout Waiting period to obtain a data item (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @return Address of the data item if successful; NULL if returned * without waiting, or waiting period timed out. */ __syscall void *k_queue_get(struct k_queue *queue, s32_t timeout); /** * @brief Remove an element from a queue. * * This routine removes data item from @a queue. The first 32 bits of the * data item are reserved for the kernel's use. Removing elements from k_queue * rely on sys_slist_find_and_remove which is not a constant time operation. * * @note Can be called by ISRs * * @param queue Address of the queue. * @param data Address of the data item. * * @return true if data item was removed */ static inline bool k_queue_remove(struct k_queue *queue, void *data) { return sys_sflist_find_and_remove(&queue->data_q, (sys_sfnode_t *)data); } /** * @brief Query a queue to see if it has data available. * * Note that the data might be already gone by the time this function returns * if other threads are also trying to read from the queue. * * @note Can be called by ISRs. * * @param queue Address of the queue. * * @return Non-zero if the queue is empty. * @return 0 if data is available. */ __syscall int k_queue_is_empty(struct k_queue *queue); static inline int _impl_k_queue_is_empty(struct k_queue *queue) { return (int)sys_sflist_is_empty(&queue->data_q); } /** * @brief Peek element at the head of queue. * * Return element from the head of queue without removing it. * * @param queue Address of the queue. * * @return Head element, or NULL if queue is empty. */ __syscall void *k_queue_peek_head(struct k_queue *queue); static inline void *_impl_k_queue_peek_head(struct k_queue *queue) { return z_queue_node_peek(sys_sflist_peek_head(&queue->data_q), false); } /** * @brief Peek element at the tail of queue. * * Return element from the tail of queue without removing it. * * @param queue Address of the queue. * * @return Tail element, or NULL if queue is empty. */ __syscall void *k_queue_peek_tail(struct k_queue *queue); static inline void *_impl_k_queue_peek_tail(struct k_queue *queue) { return z_queue_node_peek(sys_sflist_peek_tail(&queue->data_q), false); } /** * @brief Statically define and initialize a queue. * * The queue can be accessed outside the module where it is defined using: * * @code extern struct k_queue <name>; @endcode * * @param name Name of the queue. */ #define K_QUEUE_DEFINE(name) \ struct k_queue name \ __in_section(_k_queue, static, name) = \ _K_QUEUE_INITIALIZER(name) /** @} */ /** * @cond INTERNAL_HIDDEN */ struct k_fifo { struct k_queue _queue; }; #define _K_FIFO_INITIALIZER(obj) \ { \ ._queue = _K_QUEUE_INITIALIZER(obj._queue) \ } #define K_FIFO_INITIALIZER DEPRECATED_MACRO _K_FIFO_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup fifo_apis FIFO APIs * @ingroup kernel_apis * @{ */ /** * @brief Initialize a FIFO queue. * * This routine initializes a FIFO queue, prior to its first use. * * @param fifo Address of the FIFO queue. * * @return N/A */ #define k_fifo_init(fifo) \ k_queue_init((struct k_queue *) fifo) /** * @brief Cancel waiting on a FIFO queue. * * This routine causes first thread pending on @a fifo, if any, to * return from k_fifo_get() call with NULL value (as if timeout * expired). * * @note Can be called by ISRs. * * @param fifo Address of the FIFO queue. * * @return N/A */ #define k_fifo_cancel_wait(fifo) \ k_queue_cancel_wait((struct k_queue *) fifo) /** * @brief Add an element to a FIFO queue. * * This routine adds a data item to @a fifo. A FIFO data item must be * aligned on a 4-byte boundary, and the first 32 bits of the item are * reserved for the kernel's use. * * @note Can be called by ISRs. * * @param fifo Address of the FIFO. * @param data Address of the data item. * * @return N/A */ #define k_fifo_put(fifo, data) \ k_queue_append((struct k_queue *) fifo, data) /** * @brief Add an element to a FIFO queue. * * This routine adds a data item to @a fifo. There is an implicit * memory allocation from the calling thread's resource pool, which is * automatically freed when the item is removed. * * @note Can be called by ISRs. * * @param fifo Address of the FIFO. * @param data Address of the data item. * * @retval 0 on success * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool */ #define k_fifo_alloc_put(fifo, data) \ k_queue_alloc_append((struct k_queue *) fifo, data) /** * @brief Atomically add a list of elements to a FIFO. * * This routine adds a list of data items to @a fifo in one operation. * The data items must be in a singly-linked list, with the first 32 bits * each data item pointing to the next data item; the list must be * NULL-terminated. * * @note Can be called by ISRs. * * @param fifo Address of the FIFO queue. * @param head Pointer to first node in singly-linked list. * @param tail Pointer to last node in singly-linked list. * * @return N/A */ #define k_fifo_put_list(fifo, head, tail) \ k_queue_append_list((struct k_queue *) fifo, head, tail) /** * @brief Atomically add a list of elements to a FIFO queue. * * This routine adds a list of data items to @a fifo in one operation. * The data items must be in a singly-linked list implemented using a * sys_slist_t object. Upon completion, the sys_slist_t object is invalid * and must be re-initialized via sys_slist_init(). * * @note Can be called by ISRs. * * @param fifo Address of the FIFO queue. * @param list Pointer to sys_slist_t object. * * @return N/A */ #define k_fifo_put_slist(fifo, list) \ k_queue_merge_slist((struct k_queue *) fifo, list) /** * @brief Get an element from a FIFO queue. * * This routine removes a data item from @a fifo in a "first in, first out" * manner. The first 32 bits of the data item are reserved for the kernel's use. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param fifo Address of the FIFO queue. * @param timeout Waiting period to obtain a data item (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @return Address of the data item if successful; NULL if returned * without waiting, or waiting period timed out. */ #define k_fifo_get(fifo, timeout) \ k_queue_get((struct k_queue *) fifo, timeout) /** * @brief Query a FIFO queue to see if it has data available. * * Note that the data might be already gone by the time this function returns * if other threads is also trying to read from the FIFO. * * @note Can be called by ISRs. * * @param fifo Address of the FIFO queue. * * @return Non-zero if the FIFO queue is empty. * @return 0 if data is available. */ #define k_fifo_is_empty(fifo) \ k_queue_is_empty((struct k_queue *) fifo) /** * @brief Peek element at the head of a FIFO queue. * * Return element from the head of FIFO queue without removing it. A usecase * for this is if elements of the FIFO object are themselves containers. Then * on each iteration of processing, a head container will be peeked, * and some data processed out of it, and only if the container is empty, * it will be completely remove from the FIFO queue. * * @param fifo Address of the FIFO queue. * * @return Head element, or NULL if the FIFO queue is empty. */ #define k_fifo_peek_head(fifo) \ k_queue_peek_head((struct k_queue *) fifo) /** * @brief Peek element at the tail of FIFO queue. * * Return element from the tail of FIFO queue (without removing it). A usecase * for this is if elements of the FIFO queue are themselves containers. Then * it may be useful to add more data to the last container in a FIFO queue. * * @param fifo Address of the FIFO queue. * * @return Tail element, or NULL if a FIFO queue is empty. */ #define k_fifo_peek_tail(fifo) \ k_queue_peek_tail((struct k_queue *) fifo) /** * @brief Statically define and initialize a FIFO queue. * * The FIFO queue can be accessed outside the module where it is defined using: * * @code extern struct k_fifo <name>; @endcode * * @param name Name of the FIFO queue. */ #define K_FIFO_DEFINE(name) \ struct k_fifo name \ __in_section(_k_queue, static, name) = \ _K_FIFO_INITIALIZER(name) /** @} */ /** * @cond INTERNAL_HIDDEN */ struct k_lifo { struct k_queue _queue; }; #define _K_LIFO_INITIALIZER(obj) \ { \ ._queue = _K_QUEUE_INITIALIZER(obj._queue) \ } #define K_LIFO_INITIALIZER DEPRECATED_MACRO _K_LIFO_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup lifo_apis LIFO APIs * @ingroup kernel_apis * @{ */ /** * @brief Initialize a LIFO queue. * * This routine initializes a LIFO queue object, prior to its first use. * * @param lifo Address of the LIFO queue. * * @return N/A */ #define k_lifo_init(lifo) \ k_queue_init((struct k_queue *) lifo) /** * @brief Add an element to a LIFO queue. * * This routine adds a data item to @a lifo. A LIFO queue data item must be * aligned on a 4-byte boundary, and the first 32 bits of the item are * reserved for the kernel's use. * * @note Can be called by ISRs. * * @param lifo Address of the LIFO queue. * @param data Address of the data item. * * @return N/A */ #define k_lifo_put(lifo, data) \ k_queue_prepend((struct k_queue *) lifo, data) /** * @brief Add an element to a LIFO queue. * * This routine adds a data item to @a lifo. There is an implicit * memory allocation from the calling thread's resource pool, which is * automatically freed when the item is removed. * * @note Can be called by ISRs. * * @param lifo Address of the LIFO. * @param data Address of the data item. * * @retval 0 on success * @retval -ENOMEM if there isn't sufficient RAM in the caller's resource pool */ #define k_lifo_alloc_put(lifo, data) \ k_queue_alloc_prepend((struct k_queue *) lifo, data) /** * @brief Get an element from a LIFO queue. * * This routine removes a data item from @a lifo in a "last in, first out" * manner. The first 32 bits of the data item are reserved for the kernel's use. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param lifo Address of the LIFO queue. * @param timeout Waiting period to obtain a data item (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @return Address of the data item if successful; NULL if returned * without waiting, or waiting period timed out. */ #define k_lifo_get(lifo, timeout) \ k_queue_get((struct k_queue *) lifo, timeout) /** * @brief Statically define and initialize a LIFO queue. * * The LIFO queue can be accessed outside the module where it is defined using: * * @code extern struct k_lifo <name>; @endcode * * @param name Name of the fifo. */ #define K_LIFO_DEFINE(name) \ struct k_lifo name \ __in_section(_k_queue, static, name) = \ _K_LIFO_INITIALIZER(name) /** @} */ /** * @cond INTERNAL_HIDDEN */ #define K_STACK_FLAG_ALLOC BIT(0) /* Buffer was allocated */ struct k_stack { _wait_q_t wait_q; u32_t *base, *next, *top; _OBJECT_TRACING_NEXT_PTR(k_stack); u8_t flags; }; #define _K_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \ { \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ .base = stack_buffer, \ .next = stack_buffer, \ .top = stack_buffer + stack_num_entries, \ _OBJECT_TRACING_INIT \ } #define K_STACK_INITIALIZER DEPRECATED_MACRO _K_STACK_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup stack_apis Stack APIs * @ingroup kernel_apis * @{ */ /** * @brief Initialize a stack. * * This routine initializes a stack object, prior to its first use. * * @param stack Address of the stack. * @param buffer Address of array used to hold stacked values. * @param num_entries Maximum number of values that can be stacked. * * @return N/A */ void k_stack_init(struct k_stack *stack, u32_t *buffer, unsigned int num_entries); /** * @brief Initialize a stack. * * This routine initializes a stack object, prior to its first use. Internal * buffers will be allocated from the calling thread's resource pool. * This memory will be released if k_stack_cleanup() is called, or * userspace is enabled and the stack object loses all references to it. * * @param stack Address of the stack. * @param num_entries Maximum number of values that can be stacked. * * @return -ENOMEM if memory couldn't be allocated */ __syscall int k_stack_alloc_init(struct k_stack *stack, unsigned int num_entries); /** * @brief Release a stack's allocated buffer * * If a stack object was given a dynamically allocated buffer via * k_stack_alloc_init(), this will free it. This function does nothing * if the buffer wasn't dynamically allocated. * * @param stack Address of the stack. */ void k_stack_cleanup(struct k_stack *stack); /** * @brief Push an element onto a stack. * * This routine adds a 32-bit value @a data to @a stack. * * @note Can be called by ISRs. * * @param stack Address of the stack. * @param data Value to push onto the stack. * * @return N/A */ __syscall void k_stack_push(struct k_stack *stack, u32_t data); /** * @brief Pop an element from a stack. * * This routine removes a 32-bit value from @a stack in a "last in, first out" * manner and stores the value in @a data. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param stack Address of the stack. * @param data Address of area to hold the value popped from the stack. * @param timeout Waiting period to obtain a value (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 Element popped from stack. * @retval -EBUSY Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ __syscall int k_stack_pop(struct k_stack *stack, u32_t *data, s32_t timeout); /** * @brief Statically define and initialize a stack * * The stack can be accessed outside the module where it is defined using: * * @code extern struct k_stack <name>; @endcode * * @param name Name of the stack. * @param stack_num_entries Maximum number of values that can be stacked. */ #define K_STACK_DEFINE(name, stack_num_entries) \ u32_t __noinit \ _k_stack_buf_##name[stack_num_entries]; \ struct k_stack name \ __in_section(_k_stack, static, name) = \ _K_STACK_INITIALIZER(name, _k_stack_buf_##name, \ stack_num_entries) /** @} */ struct k_work; /** * @defgroup workqueue_apis Workqueue Thread APIs * @ingroup kernel_apis * @{ */ /** * @typedef k_work_handler_t * @brief Work item handler function type. * * A work item's handler function is executed by a workqueue's thread * when the work item is processed by the workqueue. * * @param work Address of the work item. * * @return N/A */ typedef void (*k_work_handler_t)(struct k_work *work); /** * @cond INTERNAL_HIDDEN */ struct k_work_q { struct k_queue queue; struct k_thread thread; }; enum { K_WORK_STATE_PENDING, /* Work item pending state */ }; struct k_work { void *_reserved; /* Used by k_queue implementation. */ k_work_handler_t handler; atomic_t flags[1]; }; struct k_delayed_work { struct k_work work; struct _timeout timeout; struct k_work_q *work_q; }; extern struct k_work_q k_sys_work_q; /** * INTERNAL_HIDDEN @endcond */ #define _K_WORK_INITIALIZER(work_handler) \ { \ ._reserved = NULL, \ .handler = work_handler, \ .flags = { 0 } \ } #define K_WORK_INITIALIZER DEPRECATED_MACRO _K_WORK_INITIALIZER /** * @brief Initialize a statically-defined work item. * * This macro can be used to initialize a statically-defined workqueue work * item, prior to its first use. For example, * * @code static K_WORK_DEFINE(<work>, <work_handler>); @endcode * * @param work Symbol name for work item object * @param work_handler Function to invoke each time work item is processed. */ #define K_WORK_DEFINE(work, work_handler) \ struct k_work work \ __in_section(_k_work, static, work) = \ _K_WORK_INITIALIZER(work_handler) /** * @brief Initialize a work item. * * This routine initializes a workqueue work item, prior to its first use. * * @param work Address of work item. * @param handler Function to invoke each time work item is processed. * * @return N/A */ static inline void k_work_init(struct k_work *work, k_work_handler_t handler) { atomic_clear_bit(work->flags, K_WORK_STATE_PENDING); work->handler = handler; _k_object_init(work); } /** * @brief Submit a work item. * * This routine submits work item @a work to be processed by workqueue * @a work_q. If the work item is already pending in the workqueue's queue * as a result of an earlier submission, this routine has no effect on the * work item. If the work item has already been processed, or is currently * being processed, its work is considered complete and the work item can be * resubmitted. * * @warning * A submitted work item must not be modified until it has been processed * by the workqueue. * * @note Can be called by ISRs. * * @param work_q Address of workqueue. * @param work Address of work item. * * @return N/A */ static inline void k_work_submit_to_queue(struct k_work_q *work_q, struct k_work *work) { if (!atomic_test_and_set_bit(work->flags, K_WORK_STATE_PENDING)) { k_queue_append(&work_q->queue, work); } } /** * @brief Check if a work item is pending. * * This routine indicates if work item @a work is pending in a workqueue's * queue. * * @note Can be called by ISRs. * * @param work Address of work item. * * @return 1 if work item is pending, or 0 if it is not pending. */ static inline int k_work_pending(struct k_work *work) { return atomic_test_bit(work->flags, K_WORK_STATE_PENDING); } /** * @brief Start a workqueue. * * This routine starts workqueue @a work_q. The workqueue spawns its work * processing thread, which runs forever. * * @param work_q Address of workqueue. * @param stack Pointer to work queue thread's stack space, as defined by * K_THREAD_STACK_DEFINE() * @param stack_size Size of the work queue thread's stack (in bytes), which * should either be the same constant passed to * K_THREAD_STACK_DEFINE() or the value of K_THREAD_STACK_SIZEOF(). * @param prio Priority of the work queue's thread. * * @return N/A */ extern void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio); /** * @brief Initialize a delayed work item. * * This routine initializes a workqueue delayed work item, prior to * its first use. * * @param work Address of delayed work item. * @param handler Function to invoke each time work item is processed. * * @return N/A */ extern void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler); /** * @brief Submit a delayed work item. * * This routine schedules work item @a work to be processed by workqueue * @a work_q after a delay of @a delay milliseconds. The routine initiates * an asynchronous countdown for the work item and then returns to the caller. * Only when the countdown completes is the work item actually submitted to * the workqueue and becomes pending. * * Submitting a previously submitted delayed work item that is still * counting down cancels the existing submission and restarts the * countdown using the new delay. Note that this behavior is * inherently subject to race conditions with the pre-existing * timeouts and work queue, so care must be taken to synchronize such * resubmissions externally. * * @warning * A delayed work item must not be modified until it has been processed * by the workqueue. * * @note Can be called by ISRs. * * @param work_q Address of workqueue. * @param work Address of delayed work item. * @param delay Delay before submitting the work item (in milliseconds). * * @retval 0 Work item countdown started. * @retval -EINPROGRESS Work item is already pending. * @retval -EINVAL Work item is being processed or has completed its work. * @retval -EADDRINUSE Work item is pending on a different workqueue. */ extern int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct k_delayed_work *work, s32_t delay); /** * @brief Cancel a delayed work item. * * This routine cancels the submission of delayed work item @a work. * A delayed work item can only be canceled while its countdown is still * underway. * * @note Can be called by ISRs. * * @param work Address of delayed work item. * * @retval 0 Work item countdown canceled. * @retval -EINPROGRESS Work item is already pending. * @retval -EINVAL Work item is being processed or has completed its work. */ extern int k_delayed_work_cancel(struct k_delayed_work *work); /** * @brief Submit a work item to the system workqueue. * * This routine submits work item @a work to be processed by the system * workqueue. If the work item is already pending in the workqueue's queue * as a result of an earlier submission, this routine has no effect on the * work item. If the work item has already been processed, or is currently * being processed, its work is considered complete and the work item can be * resubmitted. * * @warning * Work items submitted to the system workqueue should avoid using handlers * that block or yield since this may prevent the system workqueue from * processing other work items in a timely manner. * * @note Can be called by ISRs. * * @param work Address of work item. * * @return N/A */ static inline void k_work_submit(struct k_work *work) { k_work_submit_to_queue(&k_sys_work_q, work); } /** * @brief Submit a delayed work item to the system workqueue. * * This routine schedules work item @a work to be processed by the system * workqueue after a delay of @a delay milliseconds. The routine initiates * an asynchronous countdown for the work item and then returns to the caller. * Only when the countdown completes is the work item actually submitted to * the workqueue and becomes pending. * * Submitting a previously submitted delayed work item that is still * counting down cancels the existing submission and restarts the countdown * using the new delay. If the work item is currently pending on the * workqueue's queue because the countdown has completed it is too late to * resubmit the item, and resubmission fails without impacting the work item. * If the work item has already been processed, or is currently being processed, * its work is considered complete and the work item can be resubmitted. * * @warning * Work items submitted to the system workqueue should avoid using handlers * that block or yield since this may prevent the system workqueue from * processing other work items in a timely manner. * * @note Can be called by ISRs. * * @param work Address of delayed work item. * @param delay Delay before submitting the work item (in milliseconds). * * @retval 0 Work item countdown started. * @retval -EINPROGRESS Work item is already pending. * @retval -EINVAL Work item is being processed or has completed its work. * @retval -EADDRINUSE Work item is pending on a different workqueue. */ static inline int k_delayed_work_submit(struct k_delayed_work *work, s32_t delay) { return k_delayed_work_submit_to_queue(&k_sys_work_q, work, delay); } /** * @brief Get time remaining before a delayed work gets scheduled. * * This routine computes the (approximate) time remaining before a * delayed work gets executed. If the delayed work is not waiting to be * scheduled, it returns zero. * * @param work Delayed work item. * * @return Remaining time (in milliseconds). */ static inline s32_t k_delayed_work_remaining_get(struct k_delayed_work *work) { return _timeout_remaining_get(&work->timeout); } /** @} */ /** * @cond INTERNAL_HIDDEN */ struct k_mutex { _wait_q_t wait_q; struct k_thread *owner; u32_t lock_count; int owner_orig_prio; _OBJECT_TRACING_NEXT_PTR(k_mutex); }; #define _K_MUTEX_INITIALIZER(obj) \ { \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ .owner = NULL, \ .lock_count = 0, \ .owner_orig_prio = K_LOWEST_THREAD_PRIO, \ _OBJECT_TRACING_INIT \ } #define K_MUTEX_INITIALIZER DEPRECATED_MACRO _K_MUTEX_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup mutex_apis Mutex APIs * @ingroup kernel_apis * @{ */ /** * @brief Statically define and initialize a mutex. * * The mutex can be accessed outside the module where it is defined using: * * @code extern struct k_mutex <name>; @endcode * * @param name Name of the mutex. */ #define K_MUTEX_DEFINE(name) \ struct k_mutex name \ __in_section(_k_mutex, static, name) = \ _K_MUTEX_INITIALIZER(name) /** * @brief Initialize a mutex. * * This routine initializes a mutex object, prior to its first use. * * Upon completion, the mutex is available and does not have an owner. * * @param mutex Address of the mutex. * * @return N/A */ __syscall void k_mutex_init(struct k_mutex *mutex); /** * @brief Lock a mutex. * * This routine locks @a mutex. If the mutex is locked by another thread, * the calling thread waits until the mutex becomes available or until * a timeout occurs. * * A thread is permitted to lock a mutex it has already locked. The operation * completes immediately and the lock count is increased by 1. * * @param mutex Address of the mutex. * @param timeout Waiting period to lock the mutex (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 Mutex locked. * @retval -EBUSY Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ __syscall int k_mutex_lock(struct k_mutex *mutex, s32_t timeout); /** * @brief Unlock a mutex. * * This routine unlocks @a mutex. The mutex must already be locked by the * calling thread. * * The mutex cannot be claimed by another thread until it has been unlocked by * the calling thread as many times as it was previously locked by that * thread. * * @param mutex Address of the mutex. * * @return N/A */ __syscall void k_mutex_unlock(struct k_mutex *mutex); /** * @} */ /** * @cond INTERNAL_HIDDEN */ struct k_sem { _wait_q_t wait_q; unsigned int count; unsigned int limit; _POLL_EVENT; _OBJECT_TRACING_NEXT_PTR(k_sem); }; #define _K_SEM_INITIALIZER(obj, initial_count, count_limit) \ { \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ .count = initial_count, \ .limit = count_limit, \ _POLL_EVENT_OBJ_INIT(obj) \ _OBJECT_TRACING_INIT \ } #define K_SEM_INITIALIZER DEPRECATED_MACRO _K_SEM_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup semaphore_apis Semaphore APIs * @ingroup kernel_apis * @{ */ /** * @brief Initialize a semaphore. * * This routine initializes a semaphore object, prior to its first use. * * @param sem Address of the semaphore. * @param initial_count Initial semaphore count. * @param limit Maximum permitted semaphore count. * * @return N/A */ __syscall void k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit); /** * @brief Take a semaphore. * * This routine takes @a sem. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param sem Address of the semaphore. * @param timeout Waiting period to take the semaphore (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @note When porting code from the nanokernel legacy API to the new API, be * careful with the return value of this function. The return value is the * reverse of the one of nano_sem_take family of APIs: 0 means success, and * non-zero means failure, while the nano_sem_take family returns 1 for success * and 0 for failure. * * @retval 0 Semaphore taken. * @retval -EBUSY Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ __syscall int k_sem_take(struct k_sem *sem, s32_t timeout); /** * @brief Give a semaphore. * * This routine gives @a sem, unless the semaphore is already at its maximum * permitted count. * * @note Can be called by ISRs. * * @param sem Address of the semaphore. * * @return N/A */ __syscall void k_sem_give(struct k_sem *sem); /** * @brief Reset a semaphore's count to zero. * * This routine sets the count of @a sem to zero. * * @param sem Address of the semaphore. * * @return N/A */ __syscall void k_sem_reset(struct k_sem *sem); /** * @internal */ static inline void _impl_k_sem_reset(struct k_sem *sem) { sem->count = 0; } /** * @brief Get a semaphore's count. * * This routine returns the current count of @a sem. * * @param sem Address of the semaphore. * * @return Current semaphore count. */ __syscall unsigned int k_sem_count_get(struct k_sem *sem); /** * @internal */ static inline unsigned int _impl_k_sem_count_get(struct k_sem *sem) { return sem->count; } /** * @brief Statically define and initialize a semaphore. * * The semaphore can be accessed outside the module where it is defined using: * * @code extern struct k_sem <name>; @endcode * * @param name Name of the semaphore. * @param initial_count Initial semaphore count. * @param count_limit Maximum permitted semaphore count. */ #define K_SEM_DEFINE(name, initial_count, count_limit) \ struct k_sem name \ __in_section(_k_sem, static, name) = \ _K_SEM_INITIALIZER(name, initial_count, count_limit); \ BUILD_ASSERT(((count_limit) != 0) && \ ((initial_count) <= (count_limit))); /** @} */ /** * @defgroup alert_apis Alert APIs * @ingroup kernel_apis * @{ */ /** * @typedef k_alert_handler_t * @brief Alert handler function type. * * An alert's alert handler function is invoked by the system workqueue * when the alert is signaled. The alert handler function is optional, * and is only invoked if the alert has been initialized with one. * * @param alert Address of the alert. * * @return 0 if alert has been consumed; non-zero if alert should pend. */ typedef int (*k_alert_handler_t)(struct k_alert *alert); /** @} */ /** * @cond INTERNAL_HIDDEN */ #define K_ALERT_DEFAULT NULL #define K_ALERT_IGNORE ((void *)(-1)) struct k_alert { k_alert_handler_t handler; atomic_t send_count; struct k_work work_item; struct k_sem sem; _OBJECT_TRACING_NEXT_PTR(k_alert); }; /** * @internal */ extern void _alert_deliver(struct k_work *work); #define _K_ALERT_INITIALIZER(obj, alert_handler, max_num_pending_alerts) \ { \ .handler = (k_alert_handler_t)alert_handler, \ .send_count = ATOMIC_INIT(0), \ .work_item = _K_WORK_INITIALIZER(_alert_deliver), \ .sem = _K_SEM_INITIALIZER(obj.sem, 0, max_num_pending_alerts), \ _OBJECT_TRACING_INIT \ } #define K_ALERT_INITIALIZER DEPRECATED_MACRO _K_ALERT_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @addtogroup alert_apis * @{ */ /** * @brief Statically define and initialize an alert. * * The alert can be accessed outside the module where it is defined using: * * @code extern struct k_alert <name>; @endcode * * @param name Name of the alert. * @param alert_handler Action to take when alert is sent. Specify either * the address of a function to be invoked by the system workqueue * thread, K_ALERT_IGNORE (which causes the alert to be ignored), or * K_ALERT_DEFAULT (which causes the alert to pend). * @param max_num_pending_alerts Maximum number of pending alerts. */ #define K_ALERT_DEFINE(name, alert_handler, max_num_pending_alerts) \ struct k_alert name \ __in_section(_k_alert, static, name) = \ _K_ALERT_INITIALIZER(name, alert_handler, \ max_num_pending_alerts) /** * @brief Initialize an alert. * * This routine initializes an alert object, prior to its first use. * * @param alert Address of the alert. * @param handler Action to take when alert is sent. Specify either the address * of a function to be invoked by the system workqueue thread, * K_ALERT_IGNORE (which causes the alert to be ignored), or * K_ALERT_DEFAULT (which causes the alert to pend). * @param max_num_pending_alerts Maximum number of pending alerts. * * @return N/A */ extern void k_alert_init(struct k_alert *alert, k_alert_handler_t handler, unsigned int max_num_pending_alerts); /** * @brief Receive an alert. * * This routine receives a pending alert for @a alert. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param alert Address of the alert. * @param timeout Waiting period to receive the alert (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 Alert received. * @retval -EBUSY Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ __syscall int k_alert_recv(struct k_alert *alert, s32_t timeout); /** * @brief Signal an alert. * * This routine signals @a alert. The action specified for @a alert will * be taken, which may trigger the execution of an alert handler function * and/or cause the alert to pend (assuming the alert has not reached its * maximum number of pending alerts). * * @note Can be called by ISRs. * * @param alert Address of the alert. * * @return N/A */ __syscall void k_alert_send(struct k_alert *alert); /** * @} */ /** * @cond INTERNAL_HIDDEN */ struct k_msgq { _wait_q_t wait_q; size_t msg_size; u32_t max_msgs; char *buffer_start; char *buffer_end; char *read_ptr; char *write_ptr; u32_t used_msgs; _OBJECT_TRACING_NEXT_PTR(k_msgq); u8_t flags; }; #define _K_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \ { \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ .max_msgs = q_max_msgs, \ .msg_size = q_msg_size, \ .buffer_start = q_buffer, \ .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \ .read_ptr = q_buffer, \ .write_ptr = q_buffer, \ .used_msgs = 0, \ _OBJECT_TRACING_INIT \ } #define K_MSGQ_INITIALIZER DEPRECATED_MACRO _K_MSGQ_INITIALIZER #define K_MSGQ_FLAG_ALLOC BIT(0) struct k_msgq_attrs { size_t msg_size; u32_t max_msgs; u32_t used_msgs; }; /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup msgq_apis Message Queue APIs * @ingroup kernel_apis * @{ */ /** * @brief Statically define and initialize a message queue. * * The message queue's ring buffer contains space for @a q_max_msgs messages, * each of which is @a q_msg_size bytes long. The buffer is aligned to a * @a q_align -byte boundary, which must be a power of 2. To ensure that each * message is similarly aligned to this boundary, @a q_msg_size must also be * a multiple of @a q_align. * * The message queue can be accessed outside the module where it is defined * using: * * @code extern struct k_msgq <name>; @endcode * * @param q_name Name of the message queue. * @param q_msg_size Message size (in bytes). * @param q_max_msgs Maximum number of messages that can be queued. * @param q_align Alignment of the message queue's ring buffer. */ #define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \ static char __kernel_noinit __aligned(q_align) \ _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \ struct k_msgq q_name \ __in_section(_k_msgq, static, q_name) = \ _K_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \ q_msg_size, q_max_msgs) /** * @brief Initialize a message queue. * * This routine initializes a message queue object, prior to its first use. * * The message queue's ring buffer must contain space for @a max_msgs messages, * each of which is @a msg_size bytes long. The buffer must be aligned to an * N-byte boundary, where N is a power of 2 (i.e. 1, 2, 4, ...). To ensure * that each message is similarly aligned to this boundary, @a q_msg_size * must also be a multiple of N. * * @param q Address of the message queue. * @param buffer Pointer to ring buffer that holds queued messages. * @param msg_size Message size (in bytes). * @param max_msgs Maximum number of messages that can be queued. * * @return N/A */ void k_msgq_init(struct k_msgq *q, char *buffer, size_t msg_size, u32_t max_msgs); /** * @brief Initialize a message queue. * * This routine initializes a message queue object, prior to its first use, * allocating its internal ring buffer from the calling thread's resource * pool. * * Memory allocated for the ring buffer can be released by calling * k_msgq_cleanup(), or if userspace is enabled and the msgq object loses * all of its references. * * @param q Address of the message queue. * @param msg_size Message size (in bytes). * @param max_msgs Maximum number of messages that can be queued. * * @return 0 on success, -ENOMEM if there was insufficient memory in the * thread's resource pool, or -EINVAL if the size parameters cause * an integer overflow. */ __syscall int k_msgq_alloc_init(struct k_msgq *q, size_t msg_size, u32_t max_msgs); void k_msgq_cleanup(struct k_msgq *q); /** * @brief Send a message to a message queue. * * This routine sends a message to message queue @a q. * * @note Can be called by ISRs. * * @param q Address of the message queue. * @param data Pointer to the message. * @param timeout Waiting period to add the message (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 Message sent. * @retval -ENOMSG Returned without waiting or queue purged. * @retval -EAGAIN Waiting period timed out. */ __syscall int k_msgq_put(struct k_msgq *q, void *data, s32_t timeout); /** * @brief Receive a message from a message queue. * * This routine receives a message from message queue @a q in a "first in, * first out" manner. * * @note Can be called by ISRs, but @a timeout must be set to K_NO_WAIT. * * @param q Address of the message queue. * @param data Address of area to hold the received message. * @param timeout Waiting period to receive the message (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 Message received. * @retval -ENOMSG Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ __syscall int k_msgq_get(struct k_msgq *q, void *data, s32_t timeout); /** * @brief Purge a message queue. * * This routine discards all unreceived messages in a message queue's ring * buffer. Any threads that are blocked waiting to send a message to the * message queue are unblocked and see an -ENOMSG error code. * * @param q Address of the message queue. * * @return N/A */ __syscall void k_msgq_purge(struct k_msgq *q); /** * @brief Get the amount of free space in a message queue. * * This routine returns the number of unused entries in a message queue's * ring buffer. * * @param q Address of the message queue. * * @return Number of unused ring buffer entries. */ __syscall u32_t k_msgq_num_free_get(struct k_msgq *q); /** * @brief Get basic attributes of a message queue. * * This routine fetches basic attributes of message queue into attr argument. * * @param q Address of the message queue. * @param attrs pointer to message queue attribute structure. * * @return N/A */ __syscall void k_msgq_get_attrs(struct k_msgq *q, struct k_msgq_attrs *attrs); static inline u32_t _impl_k_msgq_num_free_get(struct k_msgq *q) { return q->max_msgs - q->used_msgs; } /** * @brief Get the number of messages in a message queue. * * This routine returns the number of messages in a message queue's ring buffer. * * @param q Address of the message queue. * * @return Number of messages. */ __syscall u32_t k_msgq_num_used_get(struct k_msgq *q); static inline u32_t _impl_k_msgq_num_used_get(struct k_msgq *q) { return q->used_msgs; } /** @} */ /** * @defgroup mem_pool_apis Memory Pool APIs * @ingroup kernel_apis * @{ */ /* Note on sizing: the use of a 20 bit field for block means that, * assuming a reasonable minimum block size of 16 bytes, we're limited * to 16M of memory managed by a single pool. Long term it would be * good to move to a variable bit size based on configuration. */ struct k_mem_block_id { u32_t pool : 8; u32_t level : 4; u32_t block : 20; }; struct k_mem_block { void *data; struct k_mem_block_id id; }; /** @} */ /** * @defgroup mailbox_apis Mailbox APIs * @ingroup kernel_apis * @{ */ struct k_mbox_msg { /** internal use only - needed for legacy API support */ u32_t _mailbox; /** size of message (in bytes) */ size_t size; /** application-defined information value */ u32_t info; /** sender's message data buffer */ void *tx_data; /** internal use only - needed for legacy API support */ void *_rx_data; /** message data block descriptor */ struct k_mem_block tx_block; /** source thread id */ k_tid_t rx_source_thread; /** target thread id */ k_tid_t tx_target_thread; /** internal use only - thread waiting on send (may be a dummy) */ k_tid_t _syncing_thread; #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0) /** internal use only - semaphore used during asynchronous send */ struct k_sem *_async_sem; #endif }; /** * @cond INTERNAL_HIDDEN */ struct k_mbox { _wait_q_t tx_msg_queue; _wait_q_t rx_msg_queue; _OBJECT_TRACING_NEXT_PTR(k_mbox); }; #define _K_MBOX_INITIALIZER(obj) \ { \ .tx_msg_queue = _WAIT_Q_INIT(&obj.tx_msg_queue), \ .rx_msg_queue = _WAIT_Q_INIT(&obj.rx_msg_queue), \ _OBJECT_TRACING_INIT \ } #define K_MBOX_INITIALIZER DEPRECATED_MACRO _K_MBOX_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @brief Statically define and initialize a mailbox. * * The mailbox is to be accessed outside the module where it is defined using: * * @code extern struct k_mbox <name>; @endcode * * @param name Name of the mailbox. */ #define K_MBOX_DEFINE(name) \ struct k_mbox name \ __in_section(_k_mbox, static, name) = \ _K_MBOX_INITIALIZER(name) \ /** * @brief Initialize a mailbox. * * This routine initializes a mailbox object, prior to its first use. * * @param mbox Address of the mailbox. * * @return N/A */ extern void k_mbox_init(struct k_mbox *mbox); /** * @brief Send a mailbox message in a synchronous manner. * * This routine sends a message to @a mbox and waits for a receiver to both * receive and process it. The message data may be in a buffer, in a memory * pool block, or non-existent (i.e. an empty message). * * @param mbox Address of the mailbox. * @param tx_msg Address of the transmit message descriptor. * @param timeout Waiting period for the message to be received (in * milliseconds), or one of the special values K_NO_WAIT * and K_FOREVER. Once the message has been received, * this routine waits as long as necessary for the message * to be completely processed. * * @retval 0 Message sent. * @retval -ENOMSG Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, s32_t timeout); /** * @brief Send a mailbox message in an asynchronous manner. * * This routine sends a message to @a mbox without waiting for a receiver * to process it. The message data may be in a buffer, in a memory pool block, * or non-existent (i.e. an empty message). Optionally, the semaphore @a sem * will be given when the message has been both received and completely * processed by the receiver. * * @param mbox Address of the mailbox. * @param tx_msg Address of the transmit message descriptor. * @param sem Address of a semaphore, or NULL if none is needed. * * @return N/A */ extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem); /** * @brief Receive a mailbox message. * * This routine receives a message from @a mbox, then optionally retrieves * its data and disposes of the message. * * @param mbox Address of the mailbox. * @param rx_msg Address of the receive message descriptor. * @param buffer Address of the buffer to receive data, or NULL to defer data * retrieval and message disposal until later. * @param timeout Waiting period for a message to be received (in * milliseconds), or one of the special values K_NO_WAIT * and K_FOREVER. * * @retval 0 Message received. * @retval -ENOMSG Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, s32_t timeout); /** * @brief Retrieve mailbox message data into a buffer. * * This routine completes the processing of a received message by retrieving * its data into a buffer, then disposing of the message. * * Alternatively, this routine can be used to dispose of a received message * without retrieving its data. * * @param rx_msg Address of the receive message descriptor. * @param buffer Address of the buffer to receive data, or NULL to discard * the data. * * @return N/A */ extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer); /** * @brief Retrieve mailbox message data into a memory pool block. * * This routine completes the processing of a received message by retrieving * its data into a memory pool block, then disposing of the message. * The memory pool block that results from successful retrieval must be * returned to the pool once the data has been processed, even in cases * where zero bytes of data are retrieved. * * Alternatively, this routine can be used to dispose of a received message * without retrieving its data. In this case there is no need to return a * memory pool block to the pool. * * This routine allocates a new memory pool block for the data only if the * data is not already in one. If a new block cannot be allocated, the routine * returns a failure code and the received message is left unchanged. This * permits the caller to reattempt data retrieval at a later time or to dispose * of the received message without retrieving its data. * * @param rx_msg Address of a receive message descriptor. * @param pool Address of memory pool, or NULL to discard data. * @param block Address of the area to hold memory pool block info. * @param timeout Waiting period to wait for a memory pool block (in * milliseconds), or one of the special values K_NO_WAIT * and K_FOREVER. * * @retval 0 Data retrieved. * @retval -ENOMEM Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ extern int k_mbox_data_block_get(struct k_mbox_msg *rx_msg, struct k_mem_pool *pool, struct k_mem_block *block, s32_t timeout); /** @} */ /** * @cond INTERNAL_HIDDEN */ #define K_PIPE_FLAG_ALLOC BIT(0) /* Buffer was allocated */ struct k_pipe { unsigned char *buffer; /* Pipe buffer: may be NULL */ size_t size; /* Buffer size */ size_t bytes_used; /* # bytes used in buffer */ size_t read_index; /* Where in buffer to read from */ size_t write_index; /* Where in buffer to write */ struct { _wait_q_t readers; /* Reader wait queue */ _wait_q_t writers; /* Writer wait queue */ } wait_q; _OBJECT_TRACING_NEXT_PTR(k_pipe); u8_t flags; /* Flags */ }; #define _K_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \ { \ .buffer = pipe_buffer, \ .size = pipe_buffer_size, \ .bytes_used = 0, \ .read_index = 0, \ .write_index = 0, \ .wait_q.writers = _WAIT_Q_INIT(&obj.wait_q.writers), \ .wait_q.readers = _WAIT_Q_INIT(&obj.wait_q.readers), \ _OBJECT_TRACING_INIT \ } #define K_PIPE_INITIALIZER DEPRECATED_MACRO _K_PIPE_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup pipe_apis Pipe APIs * @ingroup kernel_apis * @{ */ /** * @brief Statically define and initialize a pipe. * * The pipe can be accessed outside the module where it is defined using: * * @code extern struct k_pipe <name>; @endcode * * @param name Name of the pipe. * @param pipe_buffer_size Size of the pipe's ring buffer (in bytes), * or zero if no ring buffer is used. * @param pipe_align Alignment of the pipe's ring buffer (power of 2). */ #define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \ static unsigned char __kernel_noinit __aligned(pipe_align) \ _k_pipe_buf_##name[pipe_buffer_size]; \ struct k_pipe name \ __in_section(_k_pipe, static, name) = \ _K_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size) /** * @brief Initialize a pipe. * * This routine initializes a pipe object, prior to its first use. * * @param pipe Address of the pipe. * @param buffer Address of the pipe's ring buffer, or NULL if no ring buffer * is used. * @param size Size of the pipe's ring buffer (in bytes), or zero if no ring * buffer is used. * * @return N/A */ void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size); /** * @brief Release a pipe's allocated buffer * * If a pipe object was given a dynamically allocated buffer via * k_pipe_alloc_init(), this will free it. This function does nothing * if the buffer wasn't dynamically allocated. * * @param pipe Address of the pipe. */ void k_pipe_cleanup(struct k_pipe *pipe); /** * @brief Initialize a pipe and allocate a buffer for it * * Storage for the buffer region will be allocated from the calling thread's * resource pool. This memory will be released if k_pipe_cleanup() is called, * or userspace is enabled and the pipe object loses all references to it. * * This function should only be called on uninitialized pipe objects. * * @param pipe Address of the pipe. * @param size Size of the pipe's ring buffer (in bytes), or zero if no ring * buffer is used. * @retval 0 on success * @retval -ENOMEM if memory couln't be allocated */ __syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size); /** * @brief Write data to a pipe. * * This routine writes up to @a bytes_to_write bytes of data to @a pipe. * * @param pipe Address of the pipe. * @param data Address of data to write. * @param bytes_to_write Size of data (in bytes). * @param bytes_written Address of area to hold the number of bytes written. * @param min_xfer Minimum number of bytes to write. * @param timeout Waiting period to wait for the data to be written (in * milliseconds), or one of the special values K_NO_WAIT * and K_FOREVER. * * @retval 0 At least @a min_xfer bytes of data were written. * @retval -EIO Returned without waiting; zero data bytes were written. * @retval -EAGAIN Waiting period timed out; between zero and @a min_xfer * minus one data bytes were written. */ __syscall int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, s32_t timeout); /** * @brief Read data from a pipe. * * This routine reads up to @a bytes_to_read bytes of data from @a pipe. * * @param pipe Address of the pipe. * @param data Address to place the data read from pipe. * @param bytes_to_read Maximum number of data bytes to read. * @param bytes_read Address of area to hold the number of bytes read. * @param min_xfer Minimum number of data bytes to read. * @param timeout Waiting period to wait for the data to be read (in * milliseconds), or one of the special values K_NO_WAIT * and K_FOREVER. * * @retval 0 At least @a min_xfer bytes of data were read. * @retval -EIO Returned without waiting; zero data bytes were read. * @retval -EAGAIN Waiting period timed out; between zero and @a min_xfer * minus one data bytes were read. */ __syscall int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, s32_t timeout); /** * @brief Write memory block to a pipe. * * This routine writes the data contained in a memory block to @a pipe. * Once all of the data in the block has been written to the pipe, it will * free the memory block @a block and give the semaphore @a sem (if specified). * * @param pipe Address of the pipe. * @param block Memory block containing data to send * @param size Number of data bytes in memory block to send * @param sem Semaphore to signal upon completion (else NULL) * * @return N/A */ extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block, size_t size, struct k_sem *sem); /** @} */ /** * @cond INTERNAL_HIDDEN */ struct k_mem_slab { _wait_q_t wait_q; u32_t num_blocks; size_t block_size; char *buffer; char *free_list; u32_t num_used; _OBJECT_TRACING_NEXT_PTR(k_mem_slab); }; #define _K_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \ slab_num_blocks) \ { \ .wait_q = _WAIT_Q_INIT(&obj.wait_q), \ .num_blocks = slab_num_blocks, \ .block_size = slab_block_size, \ .buffer = slab_buffer, \ .free_list = NULL, \ .num_used = 0, \ _OBJECT_TRACING_INIT \ } #define K_MEM_SLAB_INITIALIZER DEPRECATED_MACRO _K_MEM_SLAB_INITIALIZER /** * INTERNAL_HIDDEN @endcond */ /** * @defgroup mem_slab_apis Memory Slab APIs * @ingroup kernel_apis * @{ */ /** * @brief Statically define and initialize a memory slab. * * The memory slab's buffer contains @a slab_num_blocks memory blocks * that are @a slab_block_size bytes long. The buffer is aligned to a * @a slab_align -byte boundary. To ensure that each memory block is similarly * aligned to this boundary, @a slab_block_size must also be a multiple of * @a slab_align. * * The memory slab can be accessed outside the module where it is defined * using: * * @code extern struct k_mem_slab <name>; @endcode * * @param name Name of the memory slab. * @param slab_block_size Size of each memory block (in bytes). * @param slab_num_blocks Number memory blocks. * @param slab_align Alignment of the memory slab's buffer (power of 2). */ #define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \ char __noinit __aligned(slab_align) \ _k_mem_slab_buf_##name[(slab_num_blocks) * (slab_block_size)]; \ struct k_mem_slab name \ __in_section(_k_mem_slab, static, name) = \ _K_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \ slab_block_size, slab_num_blocks) /** * @brief Initialize a memory slab. * * Initializes a memory slab, prior to its first use. * * The memory slab's buffer contains @a slab_num_blocks memory blocks * that are @a slab_block_size bytes long. The buffer must be aligned to an * N-byte boundary, where N is a power of 2 larger than 2 (i.e. 4, 8, 16, ...). * To ensure that each memory block is similarly aligned to this boundary, * @a slab_block_size must also be a multiple of N. * * @param slab Address of the memory slab. * @param buffer Pointer to buffer used for the memory blocks. * @param block_size Size of each memory block (in bytes). * @param num_blocks Number of memory blocks. * * @return N/A */ extern void k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, u32_t num_blocks); /** * @brief Allocate memory from a memory slab. * * This routine allocates a memory block from a memory slab. * * @param slab Address of the memory slab. * @param mem Pointer to block address area. * @param timeout Maximum time to wait for operation to complete * (in milliseconds). Use K_NO_WAIT to return without waiting, * or K_FOREVER to wait as long as necessary. * * @retval 0 Memory allocated. The block address area pointed at by @a mem * is set to the starting address of the memory block. * @retval -ENOMEM Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, s32_t timeout); /** * @brief Free memory allocated from a memory slab. * * This routine releases a previously allocated memory block back to its * associated memory slab. * * @param slab Address of the memory slab. * @param mem Pointer to block address area (as set by k_mem_slab_alloc()). * * @return N/A */ extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem); /** * @brief Get the number of used blocks in a memory slab. * * This routine gets the number of memory blocks that are currently * allocated in @a slab. * * @param slab Address of the memory slab. * * @return Number of allocated memory blocks. */ static inline u32_t k_mem_slab_num_used_get(struct k_mem_slab *slab) { return slab->num_used; } /** * @brief Get the number of unused blocks in a memory slab. * * This routine gets the number of memory blocks that are currently * unallocated in @a slab. * * @param slab Address of the memory slab. * * @return Number of unallocated memory blocks. */ static inline u32_t k_mem_slab_num_free_get(struct k_mem_slab *slab) { return slab->num_blocks - slab->num_used; } /** @} */ /** * @cond INTERNAL_HIDDEN */ struct k_mem_pool { struct sys_mem_pool_base base; _wait_q_t wait_q; }; /** * INTERNAL_HIDDEN @endcond */ /** * @addtogroup mem_pool_apis * @{ */ /** * @brief Statically define and initialize a memory pool. * * The memory pool's buffer contains @a n_max blocks that are @a max_size bytes * long. The memory pool allows blocks to be repeatedly partitioned into * quarters, down to blocks of @a min_size bytes long. The buffer is aligned * to a @a align -byte boundary. * * If the pool is to be accessed outside the module where it is defined, it * can be declared via * * @code extern struct k_mem_pool <name>; @endcode * * @param name Name of the memory pool. * @param minsz Size of the smallest blocks in the pool (in bytes). * @param maxsz Size of the largest blocks in the pool (in bytes). * @param nmax Number of maximum sized blocks in the pool. * @param align Alignment of the pool's buffer (power of 2). */ #define K_MEM_POOL_DEFINE(name, minsz, maxsz, nmax, align) \ char __aligned(align) _mpool_buf_##name[_ALIGN4(maxsz * nmax) \ + _MPOOL_BITS_SIZE(maxsz, minsz, nmax)]; \ struct sys_mem_pool_lvl _mpool_lvls_##name[_MPOOL_LVLS(maxsz, minsz)]; \ struct k_mem_pool name __in_section(_k_mem_pool, static, name) = { \ .base = { \ .buf = _mpool_buf_##name, \ .max_sz = maxsz, \ .n_max = nmax, \ .n_levels = _MPOOL_LVLS(maxsz, minsz), \ .levels = _mpool_lvls_##name, \ .flags = SYS_MEM_POOL_KERNEL \ } \ } /** * @brief Allocate memory from a memory pool. * * This routine allocates a memory block from a memory pool. * * @param pool Address of the memory pool. * @param block Pointer to block descriptor for the allocated memory. * @param size Amount of memory to allocate (in bytes). * @param timeout Maximum time to wait for operation to complete * (in milliseconds). Use K_NO_WAIT to return without waiting, * or K_FOREVER to wait as long as necessary. * * @retval 0 Memory allocated. The @a data field of the block descriptor * is set to the starting address of the memory block. * @retval -ENOMEM Returned without waiting. * @retval -EAGAIN Waiting period timed out. */ extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block, size_t size, s32_t timeout); /** * @brief Allocate memory from a memory pool with malloc() semantics * * Such memory must be released using k_free(). * * @param pool Address of the memory pool. * @param size Amount of memory to allocate (in bytes). * @return Address of the allocated memory if successful, otherwise NULL */ extern void *k_mem_pool_malloc(struct k_mem_pool *pool, size_t size); /** * @brief Free memory allocated from a memory pool. * * This routine releases a previously allocated memory block back to its * memory pool. * * @param block Pointer to block descriptor for the allocated memory. * * @return N/A */ extern void k_mem_pool_free(struct k_mem_block *block); /** * @brief Free memory allocated from a memory pool. * * This routine releases a previously allocated memory block back to its * memory pool * * @param id Memory block identifier. * * @return N/A */ extern void k_mem_pool_free_id(struct k_mem_block_id *id); /** * @} */ /** * @defgroup heap_apis Heap Memory Pool APIs * @ingroup kernel_apis * @{ */ /** * @brief Allocate memory from heap. * * This routine provides traditional malloc() semantics. Memory is * allocated from the heap memory pool. * * @param size Amount of memory requested (in bytes). * * @return Address of the allocated memory if successful; otherwise NULL. */ extern void *k_malloc(size_t size); /** * @brief Free memory allocated from heap. * * This routine provides traditional free() semantics. The memory being * returned must have been allocated from the heap memory pool or * k_mem_pool_malloc(). * * If @a ptr is NULL, no operation is performed. * * @param ptr Pointer to previously allocated memory. * * @return N/A */ extern void k_free(void *ptr); /** * @brief Allocate memory from heap, array style * * This routine provides traditional calloc() semantics. Memory is * allocated from the heap memory pool and zeroed. * * @param nmemb Number of elements in the requested array * @param size Size of each array element (in bytes). * * @return Address of the allocated memory if successful; otherwise NULL. */ extern void *k_calloc(size_t nmemb, size_t size); /** @} */ /* polling API - PRIVATE */ #ifdef CONFIG_POLL #define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while ((0)) #else #define _INIT_OBJ_POLL_EVENT(obj) do { } while ((0)) #endif /* private - implementation data created as needed, per-type */ struct _poller { struct k_thread *thread; }; /* private - types bit positions */ enum _poll_types_bits { /* can be used to ignore an event */ _POLL_TYPE_IGNORE, /* to be signaled by k_poll_signal() */ _POLL_TYPE_SIGNAL, /* semaphore availability */ _POLL_TYPE_SEM_AVAILABLE, /* queue/fifo/lifo data availability */ _POLL_TYPE_DATA_AVAILABLE, _POLL_NUM_TYPES }; #define _POLL_TYPE_BIT(type) (1 << ((type) - 1)) /* private - states bit positions */ enum _poll_states_bits { /* default state when creating event */ _POLL_STATE_NOT_READY, /* signaled by k_poll_signal() */ _POLL_STATE_SIGNALED, /* semaphore is available */ _POLL_STATE_SEM_AVAILABLE, /* data is available to read on queue/fifo/lifo */ _POLL_STATE_DATA_AVAILABLE, _POLL_NUM_STATES }; #define _POLL_STATE_BIT(state) (1 << ((state) - 1)) #define _POLL_EVENT_NUM_UNUSED_BITS \ (32 - (0 \ + 8 /* tag */ \ + _POLL_NUM_TYPES \ + _POLL_NUM_STATES \ + 1 /* modes */ \ )) /* end of polling API - PRIVATE */ /** * @defgroup poll_apis Async polling APIs * @ingroup kernel_apis * @{ */ /* Public polling API */ /* public - values for k_poll_event.type bitfield */ #define K_POLL_TYPE_IGNORE 0 #define K_POLL_TYPE_SIGNAL _POLL_TYPE_BIT(_POLL_TYPE_SIGNAL) #define K_POLL_TYPE_SEM_AVAILABLE _POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE) #define K_POLL_TYPE_DATA_AVAILABLE _POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE) #define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE /* public - polling modes */ enum k_poll_modes { /* polling thread does not take ownership of objects when available */ K_POLL_MODE_NOTIFY_ONLY = 0, K_POLL_NUM_MODES }; /* public - values for k_poll_event.state bitfield */ #define K_POLL_STATE_NOT_READY 0 #define K_POLL_STATE_SIGNALED _POLL_STATE_BIT(_POLL_STATE_SIGNALED) #define K_POLL_STATE_SEM_AVAILABLE _POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE) #define K_POLL_STATE_DATA_AVAILABLE _POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE) #define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE /* public - poll signal object */ struct k_poll_signal { /* PRIVATE - DO NOT TOUCH */ sys_dlist_t poll_events; /* * 1 if the event has been signaled, 0 otherwise. Stays set to 1 until * user resets it to 0. */ unsigned int signaled; /* custom result value passed to k_poll_signal() if needed */ int result; }; #define K_POLL_SIGNAL_INITIALIZER(obj) \ { \ .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \ .signaled = 0, \ .result = 0, \ } struct k_poll_event { /* PRIVATE - DO NOT TOUCH */ sys_dnode_t _node; /* PRIVATE - DO NOT TOUCH */ struct _poller *poller; /* optional user-specified tag, opaque, untouched by the API */ u32_t tag:8; /* bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values) */ u32_t type:_POLL_NUM_TYPES; /* bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values) */ u32_t state:_POLL_NUM_STATES; /* mode of operation, from enum k_poll_modes */ u32_t mode:1; /* unused bits in 32-bit word */ u32_t unused:_POLL_EVENT_NUM_UNUSED_BITS; /* per-type data */ union { void *obj; struct k_poll_signal *signal; struct k_sem *sem; struct k_fifo *fifo; struct k_queue *queue; }; }; #define K_POLL_EVENT_INITIALIZER(event_type, event_mode, event_obj) \ { \ .poller = NULL, \ .type = event_type, \ .state = K_POLL_STATE_NOT_READY, \ .mode = event_mode, \ .unused = 0, \ { .obj = event_obj }, \ } #define K_POLL_EVENT_STATIC_INITIALIZER(event_type, event_mode, event_obj, \ event_tag) \ { \ .type = event_type, \ .tag = event_tag, \ .state = K_POLL_STATE_NOT_READY, \ .mode = event_mode, \ .unused = 0, \ { .obj = event_obj }, \ } /** * @brief Initialize one struct k_poll_event instance * * After this routine is called on a poll event, the event it ready to be * placed in an event array to be passed to k_poll(). * * @param event The event to initialize. * @param type A bitfield of the types of event, from the K_POLL_TYPE_xxx * values. Only values that apply to the same object being polled * can be used together. Choosing K_POLL_TYPE_IGNORE disables the * event. * @param mode Future. Use K_POLL_MODE_NOTIFY_ONLY. * @param obj Kernel object or poll signal. * * @return N/A */ extern void k_poll_event_init(struct k_poll_event *event, u32_t type, int mode, void *obj); /** * @brief Wait for one or many of multiple poll events to occur * * This routine allows a thread to wait concurrently for one or many of * multiple poll events to have occurred. Such events can be a kernel object * being available, like a semaphore, or a poll signal event. * * When an event notifies that a kernel object is available, the kernel object * is not "given" to the thread calling k_poll(): it merely signals the fact * that the object was available when the k_poll() call was in effect. Also, * all threads trying to acquire an object the regular way, i.e. by pending on * the object, have precedence over the thread polling on the object. This * means that the polling thread will never get the poll event on an object * until the object becomes available and its pend queue is empty. For this * reason, the k_poll() call is more effective when the objects being polled * only have one thread, the polling thread, trying to acquire them. * * When k_poll() returns 0, the caller should loop on all the events that were * passed to k_poll() and check the state field for the values that were * expected and take the associated actions. * * Before being reused for another call to k_poll(), the user has to reset the * state field to K_POLL_STATE_NOT_READY. * * When called from user mode, a temporary memory allocation is required from * the caller's resource pool. * * @param events An array of pointers to events to be polled for. * @param num_events The number of events in the array. * @param timeout Waiting period for an event to be ready (in milliseconds), * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 One or more events are ready. * @retval -EAGAIN Waiting period timed out. * @retval -EINTR Poller thread has been interrupted. * @retval -ENOMEM Thread resource pool insufficient memory (user mode only) * @retval -EINVAL Bad parameters (user mode only) */ __syscall int k_poll(struct k_poll_event *events, int num_events, s32_t timeout); /** * @brief Initialize a poll signal object. * * Ready a poll signal object to be signaled via k_poll_signal(). * * @param signal A poll signal. * * @return N/A */ __syscall void k_poll_signal_init(struct k_poll_signal *signal); /* * @brief Reset a poll signal object's state to unsignaled. * * @param signal A poll signal object */ __syscall void k_poll_signal_reset(struct k_poll_signal *signal); static inline void _impl_k_poll_signal_reset(struct k_poll_signal *signal) { signal->signaled = 0; } /** * @brief Fetch the signaled state and resylt value of a poll signal * * @param signal A poll signal object * @param signaled An integer buffer which will be written nonzero if the * object was signaled * @param result An integer destination buffer which will be written with the * result value if the object was signaed, or an undefined * value if it was not. */ __syscall void k_poll_signal_check(struct k_poll_signal *signal, unsigned int *signaled, int *result); /** * @brief Signal a poll signal object. * * This routine makes ready a poll signal, which is basically a poll event of * type K_POLL_TYPE_SIGNAL. If a thread was polling on that event, it will be * made ready to run. A @a result value can be specified. * * The poll signal contains a 'signaled' field that, when set by * k_poll_signal(), stays set until the user sets it back to 0 with * k_poll_signal_reset(). It thus has to be reset by the user before being * passed again to k_poll() or k_poll() will consider it being signaled, and * will return immediately. * * @param signal A poll signal. * @param result The value to store in the result field of the signal. * * @retval 0 The signal was delivered successfully. * @retval -EAGAIN The polling thread's timeout is in the process of expiring. */ __syscall int k_poll_signal(struct k_poll_signal *signal, int result); /** * @internal */ extern void _handle_obj_poll_events(sys_dlist_t *events, u32_t state); /** @} */ /** * @brief Make the CPU idle. * * This function makes the CPU idle until an event wakes it up. * * In a regular system, the idle thread should be the only thread responsible * for making the CPU idle and triggering any type of power management. * However, in some more constrained systems, such as a single-threaded system, * the only thread would be responsible for this if needed. * * @return N/A */ extern void k_cpu_idle(void); /** * @brief Make the CPU idle in an atomic fashion. * * Similar to k_cpu_idle(), but called with interrupts locked if operations * must be done atomically before making the CPU idle. * * @param key Interrupt locking key obtained from irq_lock(). * * @return N/A */ extern void k_cpu_atomic_idle(unsigned int key); /** * @internal */ extern void _sys_power_save_idle_exit(s32_t ticks); #ifdef _ARCH_EXCEPT /* This archtecture has direct support for triggering a CPU exception */ #define _k_except_reason(reason) _ARCH_EXCEPT(reason) #else /* NOTE: This is the implementation for arches that do not implement * _ARCH_EXCEPT() to generate a real CPU exception. * * We won't have a real exception frame to determine the PC value when * the oops occurred, so print file and line number before we jump into * the fatal error handler. */ #define _k_except_reason(reason) do { \ printk("@ %s:%d:\n", __FILE__, __LINE__); \ _NanoFatalErrorHandler(reason, &_default_esf); \ CODE_UNREACHABLE; \ } while (0) #endif /* _ARCH__EXCEPT */ /** * @brief Fatally terminate a thread * * This should be called when a thread has encountered an unrecoverable * runtime condition and needs to terminate. What this ultimately * means is determined by the _fatal_error_handler() implementation, which * will be called will reason code _NANO_ERR_KERNEL_OOPS. * * If this is called from ISR context, the default system fatal error handler * will treat it as an unrecoverable system error, just like k_panic(). */ #define k_oops() _k_except_reason(_NANO_ERR_KERNEL_OOPS) /** * @brief Fatally terminate the system * * This should be called when the Zephyr kernel has encountered an * unrecoverable runtime condition and needs to terminate. What this ultimately * means is determined by the _fatal_error_handler() implementation, which * will be called will reason code _NANO_ERR_KERNEL_PANIC. */ #define k_panic() _k_except_reason(_NANO_ERR_KERNEL_PANIC) /* * private APIs that are utilized by one or more public APIs */ #ifdef CONFIG_MULTITHREADING /** * @internal */ extern void _init_static_threads(void); #else /** * @internal */ #define _init_static_threads() do { } while ((0)) #endif /** * @internal */ extern int _is_thread_essential(void); /** * @internal */ extern void _timer_expiration_handler(struct _timeout *t); /* arch/cpu.h may declare an architecture or platform-specific macro * for properly declaring stacks, compatible with MMU/MPU constraints if * enabled */ /** * @brief Obtain an extern reference to a stack * * This macro properly brings the symbol of a thread stack declared * elsewhere into scope. * * @param sym Thread stack symbol name */ #define K_THREAD_STACK_EXTERN(sym) extern k_thread_stack_t sym[] #ifdef _ARCH_THREAD_STACK_DEFINE #define K_THREAD_STACK_DEFINE(sym, size) _ARCH_THREAD_STACK_DEFINE(sym, size) #define K_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size) \ _ARCH_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size) #define K_THREAD_STACK_MEMBER(sym, size) _ARCH_THREAD_STACK_MEMBER(sym, size) #define K_THREAD_STACK_SIZEOF(sym) _ARCH_THREAD_STACK_SIZEOF(sym) static inline char *K_THREAD_STACK_BUFFER(k_thread_stack_t *sym) { return _ARCH_THREAD_STACK_BUFFER(sym); } #else /** * @brief Declare a toplevel thread stack memory region * * This declares a region of memory suitable for use as a thread's stack. * * This is the generic, historical definition. Align to STACK_ALIGN and put in * 'noinit' section so that it isn't zeroed at boot * * The declared symbol will always be a k_thread_stack_t which can be passed to * k_thread_create, but should otherwise not be manipulated. If the buffer * inside needs to be examined, use K_THREAD_STACK_BUFFER(). * * It is legal to precede this definition with the 'static' keyword. * * It is NOT legal to take the sizeof(sym) and pass that to the stackSize * parameter of k_thread_create(), it may not be the same as the * 'size' parameter. Use K_THREAD_STACK_SIZEOF() instead. * * @param sym Thread stack symbol name * @param size Size of the stack memory region */ #define K_THREAD_STACK_DEFINE(sym, size) \ struct _k_thread_stack_element __noinit __aligned(STACK_ALIGN) sym[size] /** * @brief Declare a toplevel array of thread stack memory regions * * Create an array of equally sized stacks. See K_THREAD_STACK_DEFINE * definition for additional details and constraints. * * This is the generic, historical definition. Align to STACK_ALIGN and put in * 'noinit' section so that it isn't zeroed at boot * * @param sym Thread stack symbol name * @param nmemb Number of stacks to declare * @param size Size of the stack memory region */ #define K_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size) \ struct _k_thread_stack_element __noinit \ __aligned(STACK_ALIGN) sym[nmemb][size] /** * @brief Declare an embedded stack memory region * * Used for stacks embedded within other data structures. Use is highly * discouraged but in some cases necessary. For memory protection scenarios, * it is very important that any RAM preceding this member not be writable * by threads else a stack overflow will lead to silent corruption. In other * words, the containing data structure should live in RAM owned by the kernel. * * @param sym Thread stack symbol name * @param size Size of the stack memory region */ #define K_THREAD_STACK_MEMBER(sym, size) \ struct _k_thread_stack_element __aligned(STACK_ALIGN) sym[size] /** * @brief Return the size in bytes of a stack memory region * * Convenience macro for passing the desired stack size to k_thread_create() * since the underlying implementation may actually create something larger * (for instance a guard area). * * The value returned here is guaranteed to match the 'size' parameter * passed to K_THREAD_STACK_DEFINE. * * Do not use this for stacks declared with K_THREAD_STACK_ARRAY_DEFINE(), * it is not guaranteed to return the original value since each array * element must be aligned. * * @param sym Stack memory symbol * @return Size of the stack */ #define K_THREAD_STACK_SIZEOF(sym) sizeof(sym) /** * @brief Get a pointer to the physical stack buffer * * Convenience macro to get at the real underlying stack buffer used by * the CPU. Guaranteed to be a character pointer of size K_THREAD_STACK_SIZEOF. * This is really only intended for diagnostic tools which want to examine * stack memory contents. * * @param sym Declared stack symbol name * @return The buffer itself, a char * */ static inline char *K_THREAD_STACK_BUFFER(k_thread_stack_t *sym) { return (char *)sym; } #endif /* _ARCH_DECLARE_STACK */ /** * @defgroup mem_domain_apis Memory domain APIs * @ingroup kernel_apis * @{ */ /** @def MEM_PARTITION_ENTRY * @brief Used to declare a memory partition entry */ #define MEM_PARTITION_ENTRY(_start, _size, _attr) \ {\ .start = _start, \ .size = _size, \ .attr = _attr, \ } /** @def K_MEM_PARTITION_DEFINE * @brief Used to declare a memory partition */ #ifdef _ARCH_MEM_PARTITION_ALIGN_CHECK #define K_MEM_PARTITION_DEFINE(name, start, size, attr) \ _ARCH_MEM_PARTITION_ALIGN_CHECK(start, size); \ __kernel struct k_mem_partition name =\ MEM_PARTITION_ENTRY((u32_t)start, size, attr) #else #define K_MEM_PARTITION_DEFINE(name, start, size, attr) \ __kernel struct k_mem_partition name =\ MEM_PARTITION_ENTRY((u32_t)start, size, attr) #endif /* _ARCH_MEM_PARTITION_ALIGN_CHECK */ /* memory partition */ struct k_mem_partition { /* start address of memory partition */ u32_t start; /* size of memory partition */ u32_t size; #ifdef CONFIG_USERSPACE /* attribute of memory partition */ k_mem_partition_attr_t attr; #endif /* CONFIG_USERSPACE */ }; /* memory domian * Note: Always declare this structure with __kernel prefix */ struct k_mem_domain { #ifdef CONFIG_USERSPACE /* partitions in the domain */ struct k_mem_partition partitions[CONFIG_MAX_DOMAIN_PARTITIONS]; #endif /* CONFIG_USERSPACE */ /* domain q */ sys_dlist_t mem_domain_q; /* number of partitions in the domain */ u8_t num_partitions; }; /** * @brief Initialize a memory domain. * * Initialize a memory domain with given name and memory partitions. * * @param domain The memory domain to be initialized. * @param num_parts The number of array items of "parts" parameter. * @param parts An array of pointers to the memory partitions. Can be NULL * if num_parts is zero. */ extern void k_mem_domain_init(struct k_mem_domain *domain, u8_t num_parts, struct k_mem_partition *parts[]); /** * @brief Destroy a memory domain. * * Destroy a memory domain. * * @param domain The memory domain to be destroyed. */ extern void k_mem_domain_destroy(struct k_mem_domain *domain); /** * @brief Add a memory partition into a memory domain. * * Add a memory partition into a memory domain. * * @param domain The memory domain to be added a memory partition. * @param part The memory partition to be added */ extern void k_mem_domain_add_partition(struct k_mem_domain *domain, struct k_mem_partition *part); /** * @brief Remove a memory partition from a memory domain. * * Remove a memory partition from a memory domain. * * @param domain The memory domain to be removed a memory partition. * @param part The memory partition to be removed */ extern void k_mem_domain_remove_partition(struct k_mem_domain *domain, struct k_mem_partition *part); /** * @brief Add a thread into a memory domain. * * Add a thread into a memory domain. * * @param domain The memory domain that the thread is going to be added into. * @param thread ID of thread going to be added into the memory domain. */ extern void k_mem_domain_add_thread(struct k_mem_domain * |