Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*
 * Copyright 2017 NXP
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_common.h"
#include "fsl_clock.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/*******************************************************************************
 * Variables
 ******************************************************************************/

/* External XTAL (OSC) clock frequency. */
uint32_t g_xtalFreq;
/* External RTC XTAL clock frequency. */
uint32_t g_rtcXtalFreq;

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*******************************************************************************
 * Code
 ******************************************************************************/
static uint32_t CLOCK_GetPeriphClkFreq(void)
{
    uint32_t freq;

    /* Periph_clk2_clk ---> Periph_clk */
    if (CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK)
    {
        switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
        {
            /* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
            case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
                freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
                break;

            /* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
            case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
                freq = CLOCK_GetOscFreq();
                break;

            case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
            case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
            default:
                freq = 0U;
                break;
        }

        freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
    }
    /* Pre_Periph_clk ---> Periph_clk */
    else
    {
        switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
        {
            /* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
                freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
                break;

            /* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
                freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
                break;

            /* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
                freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
                break;

            /* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
            case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
                freq = CLOCK_GetPllFreq(kCLOCK_PllArm) / (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
                break;

            default:
                freq = 0U;
                break;
        }
    }

    return freq;
}

void CLOCK_InitExternalClk(bool bypassXtalOsc)
{
    /* This device does not support bypass XTAL OSC. */
    assert(!bypassXtalOsc);

    CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
    while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0)
    {
    }
    CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
    while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0)
    {
    }
    CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
}

void CLOCK_DeinitExternalClk(void)
{
    CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
}

void CLOCK_SwitchOsc(clock_osc_t osc)
{
    if (osc == kCLOCK_RcOsc)
        XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
    else
        XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
}

void CLOCK_InitRcOsc24M(void)
{
    XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}

void CLOCK_DeinitRcOsc24M(void)
{
    XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}

uint32_t CLOCK_GetFreq(clock_name_t name)
{
    uint32_t freq;

    switch (name)
    {
        case kCLOCK_CpuClk:
            /* Periph_clk ---> AHB Clock */
        case kCLOCK_AhbClk:
            /* Periph_clk ---> AHB Clock */
            freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
            break;

        case kCLOCK_SemcClk:
            /* SEMC alternative clock ---> SEMC Clock */
            if (CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK)
            {
                /* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
                if (CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK)
                {
                    freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
                }
                /* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
                else
                {
                    freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
                }
            }
            /* Periph_clk ---> SEMC Clock */
            else
            {
                freq = CLOCK_GetPeriphClkFreq();
            }

            freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
            break;

        case kCLOCK_IpgClk:
            /* Periph_clk ---> AHB Clock ---> IPG Clock */
            freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
            freq /= (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
            break;

        case kCLOCK_OscClk:
            freq = CLOCK_GetOscFreq();
            break;
        case kCLOCK_RtcClk:
            freq = CLOCK_GetRtcFreq();
            break;
        case kCLOCK_ArmPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
            break;
        case kCLOCK_Usb1PllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
            break;
        case kCLOCK_Usb1PllPfd0Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
            break;
        case kCLOCK_Usb1PllPfd1Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
            break;
        case kCLOCK_Usb1PllPfd2Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
            break;
        case kCLOCK_Usb1PllPfd3Clk:
            freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
            break;
        case kCLOCK_Usb2PllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2);
            break;
        case kCLOCK_SysPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
            break;
        case kCLOCK_SysPllPfd0Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
            break;
        case kCLOCK_SysPllPfd1Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
            break;
        case kCLOCK_SysPllPfd2Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
            break;
        case kCLOCK_SysPllPfd3Clk:
            freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
            break;
        case kCLOCK_EnetPll0Clk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllEnet0);
            break;
        case kCLOCK_EnetPll1Clk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllEnet1);
            break;
        case kCLOCK_EnetPll2Clk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllEnet2);
            break;
        case kCLOCK_AudioPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
            break;
        case kCLOCK_VideoPllClk:
            freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
            break;
        default:
            freq = 0U;
            break;
    }

    return freq;
}

void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
{
    CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_ENABLE_MASK |
                          CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitArmPll(void)
{
    CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
}

void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
{
    CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_ENABLE_MASK |
                          CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitSysPll(void)
{
    CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
}

void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
{
    CCM_ANALOG->PLL_USB1 = CCM_ANALOG_PLL_USB1_ENABLE_MASK      |
                           CCM_ANALOG_PLL_USB1_POWER_MASK       |
                           CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK |
                           CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitUsb1Pll(void)
{
    CCM_ANALOG->PLL_USB1 = 0U;
}

void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
{
    CCM_ANALOG->PLL_USB2 = CCM_ANALOG_PLL_USB2_ENABLE_MASK      |
                           CCM_ANALOG_PLL_USB2_POWER_MASK       |
                           CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK |
                           CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider);

    while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitUsb2Pll(void)
{
    CCM_ANALOG->PLL_USB2 = 0U;
}

void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
{
    uint32_t pllAudio;
    uint32_t misc2 = 0;

    CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
    CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);

    /*
     * Set post divider:
     *
     * ------------------------------------------------------------------------
     * | config->postDivider | PLL_AUDIO[POST_DIV_SELECT]  | MISC2[AUDIO_DIV] |
     * ------------------------------------------------------------------------
     * |         1           |            2                |        0         |
     * ------------------------------------------------------------------------
     * |         2           |            1                |        0         |
     * ------------------------------------------------------------------------
     * |         4           |            2                |        3         |
     * ------------------------------------------------------------------------
     * |         8           |            1                |        3         |
     * ------------------------------------------------------------------------
     * |         16          |            0                |        3         |
     * ------------------------------------------------------------------------
     */
    pllAudio = CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);

    switch (config->postDivider)
    {
        case 16:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
            misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
            break;

        case 8:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
            misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
            break;

        case 4:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
            misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
            break;

        case 2:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
            break;

        default:
            pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
            break;
    }

    CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK))
                      | misc2;

    CCM_ANALOG->PLL_AUDIO = pllAudio;

    while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitAudioPll(void)
{
    CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
}

void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
{
    uint32_t pllVideo;
    uint32_t misc2 = 0;

    CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator);
    CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator);

    /*
     * Set post divider:
     *
     * ------------------------------------------------------------------------
     * | config->postDivider | PLL_VIDEO[POST_DIV_SELECT]  | MISC2[VIDEO_DIV] |
     * ------------------------------------------------------------------------
     * |         1           |            2                |        0         |
     * ------------------------------------------------------------------------
     * |         2           |            1                |        0         |
     * ------------------------------------------------------------------------
     * |         4           |            2                |        3         |
     * ------------------------------------------------------------------------
     * |         8           |            1                |        3         |
     * ------------------------------------------------------------------------
     * |         16          |            0                |        3         |
     * ------------------------------------------------------------------------
     */
    pllVideo = CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider);

    switch (config->postDivider)
    {
        case 16:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0);
            misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
            break;

        case 8:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
            misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
            break;

        case 4:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
            misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
            break;

        case 2:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
            break;

        default:
            pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
            break;
    }

    CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2;

    CCM_ANALOG->PLL_VIDEO = pllVideo;

    while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitVideoPll(void)
{
    CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
}

void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
{
    uint32_t enet_pll = CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT(config->loopDivider1) |
                        CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT(config->loopDivider0);

    if (config->enableClkOutput0)
    {
        enet_pll |= CCM_ANALOG_PLL_ENET_ENET1_125M_EN_MASK;
    }

    if (config->enableClkOutput1)
    {
        enet_pll |= CCM_ANALOG_PLL_ENET_ENET2_125M_EN_MASK;
    }

    if (config->enableClkOutput2)
    {
        enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
    }

    CCM_ANALOG->PLL_ENET = enet_pll;

    /* Wait for stable */
    while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
    {
    }
}

void CLOCK_DeinitEnetPll(void)
{
    CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
}

uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
{
    uint32_t freq;
    uint32_t divSelect;
    uint64_t freqTmp;

    const uint32_t enetRefClkFreq[] = {
        25000000U, /* 25M */
        50000000U, /* 50M */
        100000000U, /* 100M */
        125000000U /* 125M */
    };

    switch (pll)
    {
        case kCLOCK_PllArm:
            freq = ((CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
                                         CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >> 1U);
            break;

        case kCLOCK_PllSys:
            freq = CLOCK_GetOscFreq();

            /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
            freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_SYS_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_SYS_DENOM));

            if (CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK)
            {
                freq *= 22U;
            }
            else
            {
                freq *= 20U;
            }

            freq += (uint32_t)freqTmp;
            break;

        case kCLOCK_PllUsb1:
            freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) ? 22U : 20U));
            break;

        case kCLOCK_PllAudio:
            freq = CLOCK_GetOscFreq();

            /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
            divSelect = (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;

            freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_AUDIO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_AUDIO_DENOM));

            freq = freq * divSelect + (uint32_t)freqTmp;

            /* AUDIO PLL output = PLL output frequency / POSTDIV. */

            /*
             * Post divider:
             *
             * PLL_AUDIO[POST_DIV_SELECT]:
             * 0x00: 4
             * 0x01: 2
             * 0x02: 1
             *
             * MISC2[AUDO_DIV]:
             * 0x00: 1
             * 0x01: 2
             * 0x02: 1
             * 0x03: 4
             */
            switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
            {
                case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
                    freq = freq >> 2U;
                    break;

                case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
                    freq = freq >> 1U;
                    break;

                default:
                    break;
            }

            switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
            {
                case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
                    freq >>= 2U;
                    break;

                case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
                    freq >>= 1U;
                    break;

                default:
                    break;
            }
            break;

        case kCLOCK_PllVideo:
            freq = CLOCK_GetOscFreq();

            /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
            divSelect = (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;

            freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_VIDEO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_VIDEO_DENOM));

            freq = freq * divSelect + (uint32_t)freqTmp;

            /* VIDEO PLL output = PLL output frequency / POSTDIV. */

            /*
             * Post divider:
             *
             * PLL_VIDEO[POST_DIV_SELECT]:
             * 0x00: 4
             * 0x01: 2
             * 0x02: 1
             *
             * MISC2[VIDEO_DIV]:
             * 0x00: 1
             * 0x01: 2
             * 0x02: 1
             * 0x03: 4
             */
            switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK)
            {
                case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U):
                    freq = freq >> 2U;
                    break;

                case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U):
                    freq = freq >> 1U;
                    break;

                default:
                    break;
            }

            switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK)
            {
                case CCM_ANALOG_MISC2_VIDEO_DIV(3):
                    freq >>= 2U;
                    break;

                case CCM_ANALOG_MISC2_VIDEO_DIV(1):
                    freq >>= 1U;
                    break;

                default:
                    break;
            }
            break;

        case kCLOCK_PllEnet0:
            divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_MASK)
                      >> CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_SHIFT;
            freq = enetRefClkFreq[divSelect];
            break;

        case kCLOCK_PllEnet1:
            divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_MASK)
                      >> CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_SHIFT;
            freq = enetRefClkFreq[divSelect];
            break;

        case kCLOCK_PllEnet2:
            /* ref_enetpll2 if fixed at 25MHz. */
            freq = 25000000UL;
            break;

        case kCLOCK_PllUsb2:
            freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) ? 22U : 20U));
            break;

        default:
            freq = 0U;
            break;
    }

    return freq;
}

void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
    uint32_t pfdIndex = (uint32_t)pfd;
    uint32_t pfd528;

    pfd528 = CCM_ANALOG->PFD_528 & ~((CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) << (8 * pfdIndex));

    /* Disable the clock output first. */
    CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfdIndex));

    /* Set the new value and enable output. */
    CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
}

void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
{
    CCM_ANALOG->PFD_528 |= CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfd);
}

void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
    uint32_t pfdIndex = (uint32_t)pfd;
    uint32_t pfd480;

    pfd480 = CCM_ANALOG->PFD_480 & ~((CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) << (8 * pfdIndex));

    /* Disable the clock output first. */
    CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfdIndex));

    /* Set the new value and enable output. */
    CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
}

void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
{
    CCM_ANALOG->PFD_480 |= CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfd);
}

uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
{
    uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);

    switch (pfd)
    {
        case kCLOCK_Pfd0:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd1:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd2:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd3:
            freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT);
            break;

        default:
            freq = 0U;
            break;
    }
    freq *= 18U;

    return freq;
}

uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
{
    uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);

    switch (pfd)
    {
        case kCLOCK_Pfd0:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd1:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd2:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT);
            break;

        case kCLOCK_Pfd3:
            freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT);
            break;

        default:
            freq = 0U;
		    break;
    }
    freq *= 18U;

    return freq;
}

bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
{
    CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
    USB1->USBCMD |= USBHS_USBCMD_RST_MASK;
    for (volatile uint32_t i = 0; i < 400000; i++)    /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
    {
        __ASM("nop");
    }
    PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
    return true;
}


bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
{
    CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
    USB2->USBCMD |= USBHS_USBCMD_RST_MASK;
    for (volatile uint32_t i = 0; i < 400000; i++)    /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
    {
        __ASM("nop");
    }
    PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
    return true;
}


bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
    const clock_usb_pll_config_t g_ccmConfigUsbPll  = {.loopDivider = 0U};
    CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
    USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK;         /* release PHY from reset */
    USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;

    USBPHY1->PWD  = 0;
    USBPHY1->CTRL |=
    USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
    USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
    USBPHY_CTRL_ENUTMILEVEL2_MASK |
    USBPHY_CTRL_ENUTMILEVEL3_MASK;
    return true;
}
bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
    const clock_usb_pll_config_t g_ccmConfigUsbPll  = {.loopDivider = 0U};
    CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll);
    USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK;         /* release PHY from reset */
    USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;

    USBPHY2->PWD  = 0;
    USBPHY2->CTRL |=
            USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
            USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
            USBPHY_CTRL_ENUTMILEVEL2_MASK |
            USBPHY_CTRL_ENUTMILEVEL3_MASK;

    return true;
}
void CLOCK_DisableUsbhs0PhyPllClock(void)
{
    CLOCK_DeinitUsb1Pll();
    USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK;          /* Set to 1U to gate clocks */

}
void CLOCK_DisableUsbhs1PhyPllClock(void)
{
    CLOCK_DeinitUsb2Pll();
    USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK;          /* Set to 1U to gate clocks */
}