Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/* uart_h5.c - UART based Bluetooth driver */

/*
 * Copyright (c) 2015-2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <errno.h>
#include <stddef.h>

#include <zephyr.h>

#include <board.h>
#include <init.h>
#include <uart.h>
#include <misc/util.h>
#include <misc/byteorder.h>
#include <misc/stack.h>
#include <misc/printk.h>
#include <string.h>

#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_driver.h>

#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER)
#include "common/log.h"

#include "../util.h"

static BT_STACK_NOINIT(tx_stack, 256);
static BT_STACK_NOINIT(rx_stack, 256);

static struct k_thread tx_thread_data;
static struct k_thread rx_thread_data;

static struct k_delayed_work ack_work;
static struct k_delayed_work retx_work;

#define HCI_3WIRE_ACK_PKT	0x00
#define HCI_COMMAND_PKT		0x01
#define HCI_ACLDATA_PKT		0x02
#define HCI_SCODATA_PKT		0x03
#define HCI_EVENT_PKT		0x04
#define HCI_3WIRE_LINK_PKT	0x0f
#define HCI_VENDOR_PKT		0xff

static bool reliable_packet(u8_t type)
{
	switch (type) {
	case HCI_COMMAND_PKT:
	case HCI_ACLDATA_PKT:
	case HCI_EVENT_PKT:
		return true;
	default:
		return false;
	}
}

/* FIXME: Correct timeout */
#define H5_RX_ACK_TIMEOUT	K_MSEC(250)
#define H5_TX_ACK_TIMEOUT	K_MSEC(250)

#define SLIP_DELIMITER	0xc0
#define SLIP_ESC	0xdb
#define SLIP_ESC_DELIM	0xdc
#define SLIP_ESC_ESC	0xdd

#define H5_RX_ESC	1
#define H5_TX_ACK_PEND	2

#define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
#define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
#define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
#define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
#define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
#define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4))

#define H5_SET_SEQ(hdr, seq)	((hdr)[0] |= (seq))
#define H5_SET_ACK(hdr, ack)	((hdr)[0] |= (ack) << 3)
#define H5_SET_RELIABLE(hdr)	((hdr)[0] |= 1 << 7)
#define H5_SET_TYPE(hdr, type)	((hdr)[1] |= type)
#define H5_SET_LEN(hdr, len)	(((hdr)[1] |= ((len) & 0x0f) << 4), \
				 ((hdr)[2] |= (len) >> 4))

static struct h5 {
	struct net_buf		*rx_buf;

	struct k_fifo		tx_queue;
	struct k_fifo		rx_queue;
	struct k_fifo		unack_queue;

	u8_t			tx_win;
	u8_t			tx_ack;
	u8_t			tx_seq;

	u8_t			rx_ack;

	enum {
		UNINIT,
		INIT,
		ACTIVE,
	}			link_state;

	enum {
		START,
		HEADER,
		PAYLOAD,
		END,
	}			rx_state;
} h5;

static u8_t unack_queue_len;

static const u8_t sync_req[] = { 0x01, 0x7e };
static const u8_t sync_rsp[] = { 0x02, 0x7d };
/* Third byte may change */
static u8_t conf_req[3] = { 0x03, 0xfc };
static const u8_t conf_rsp[] = { 0x04, 0x7b };

/* H5 signal buffers pool */
#define MAX_SIG_LEN	3
#define SIGNAL_COUNT	2
#define SIG_BUF_SIZE (CONFIG_BT_HCI_RESERVE + MAX_SIG_LEN)
NET_BUF_POOL_DEFINE(h5_pool, SIGNAL_COUNT, SIG_BUF_SIZE, 0, NULL);

static struct device *h5_dev;

static void h5_reset_rx(void)
{
	if (h5.rx_buf) {
		net_buf_unref(h5.rx_buf);
		h5.rx_buf = NULL;
	}

	h5.rx_state = START;
}

static int h5_unslip_byte(u8_t *byte)
{
	int count;

	if (*byte != SLIP_ESC) {
		return 0;
	}

	do {
		count = uart_fifo_read(h5_dev, byte, sizeof(*byte));
	} while (!count);

	switch (*byte) {
	case SLIP_ESC_DELIM:
		*byte = SLIP_DELIMITER;
		break;
	case SLIP_ESC_ESC:
		*byte = SLIP_ESC;
		break;
	default:
		BT_ERR("Invalid escape byte %x\n", *byte);
		return -EIO;
	}

	return 0;
}

static void process_unack(void)
{
	u8_t next_seq = h5.tx_seq;
	u8_t number_removed = unack_queue_len;

	if (!unack_queue_len) {
		return;
	}

	BT_DBG("rx_ack %u tx_ack %u tx_seq %u unack_queue_len %u",
	       h5.rx_ack, h5.tx_ack, h5.tx_seq, unack_queue_len);

	while (unack_queue_len > 0) {
		if (next_seq == h5.rx_ack) {
			/* Next sequence number is the same as last received
			 * ack number
			 */
			break;
		}

		number_removed--;
		/* Similar to (n - 1) % 8 with unsigned conversion */
		next_seq = (next_seq - 1) & 0x07;
	}

	if (next_seq != h5.rx_ack) {
		BT_ERR("Wrong sequence: rx_ack %u tx_seq %u next_seq %u",
		       h5.rx_ack, h5.tx_seq, next_seq);
	}

	BT_DBG("Need to remove %u packet from the queue", number_removed);

	while (number_removed) {
		struct net_buf *buf = net_buf_get(&h5.unack_queue, K_NO_WAIT);

		if (!buf) {
			BT_ERR("Unack queue is empty");
			break;
		}

		/* TODO: print or do something with packet */
		BT_DBG("Remove buf from the unack_queue");

		net_buf_unref(buf);
		unack_queue_len--;
		number_removed--;
	}
}

static void h5_print_header(const u8_t *hdr, const char *str)
{
	if (H5_HDR_RELIABLE(hdr)) {
		BT_DBG("%s REL: seq %u ack %u crc %u type %u len %u",
		       str, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
		       H5_HDR_CRC(hdr), H5_HDR_PKT_TYPE(hdr),
		       H5_HDR_LEN(hdr));
	} else {
		BT_DBG("%s UNREL: ack %u crc %u type %u len %u",
		       str, H5_HDR_ACK(hdr), H5_HDR_CRC(hdr),
		       H5_HDR_PKT_TYPE(hdr), H5_HDR_LEN(hdr));
	}
}

#if defined(CONFIG_BT_DEBUG_HCI_DRIVER)
static void hexdump(const char *str, const u8_t *packet, size_t length)
{
	int n = 0;

	if (!length) {
		printk("%s zero-length signal packet\n", str);
		return;
	}

	while (length--) {
		if (n % 16 == 0) {
			printk("%s %08X ", str, n);
		}

		printk("%02X ", *packet++);

		n++;
		if (n % 8 == 0) {
			if (n % 16 == 0) {
				printk("\n");
			} else {
				printk(" ");
			}
		}
	}

	if (n % 16) {
		printk("\n");
	}
}
#else
#define hexdump(str, packet, length)
#endif

static u8_t h5_slip_byte(u8_t byte)
{
	switch (byte) {
	case SLIP_DELIMITER:
		uart_poll_out(h5_dev, SLIP_ESC);
		uart_poll_out(h5_dev, SLIP_ESC_DELIM);
		return 2;
	case SLIP_ESC:
		uart_poll_out(h5_dev, SLIP_ESC);
		uart_poll_out(h5_dev, SLIP_ESC_ESC);
		return 2;
	default:
		uart_poll_out(h5_dev, byte);
		return 1;
	}
}

static void h5_send(const u8_t *payload, u8_t type, int len)
{
	u8_t hdr[4];
	int i;

	hexdump("<= ", payload, len);

	memset(hdr, 0, sizeof(hdr));

	/* Set ACK for outgoing packet and stop delayed work */
	H5_SET_ACK(hdr, h5.tx_ack);
	k_delayed_work_cancel(&ack_work);

	if (reliable_packet(type)) {
		H5_SET_RELIABLE(hdr);
		H5_SET_SEQ(hdr, h5.tx_seq);
		h5.tx_seq = (h5.tx_seq + 1) % 8;
	}

	H5_SET_TYPE(hdr, type);
	H5_SET_LEN(hdr, len);

	/* Calculate CRC */
	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);

	h5_print_header(hdr, "TX: <");

	uart_poll_out(h5_dev, SLIP_DELIMITER);

	for (i = 0; i < 4; i++) {
		h5_slip_byte(hdr[i]);
	}

	for (i = 0; i < len; i++) {
		h5_slip_byte(payload[i]);
	}

	uart_poll_out(h5_dev, SLIP_DELIMITER);
}

/* Delayed work taking care about retransmitting packets */
static void retx_timeout(struct k_work *work)
{
	ARG_UNUSED(work);

	BT_DBG("unack_queue_len %u", unack_queue_len);

	if (unack_queue_len) {
		struct k_fifo tmp_queue;
		struct net_buf *buf;

		k_fifo_init(&tmp_queue);

		/* Queue to temperary queue */
		while ((buf = net_buf_get(&h5.tx_queue, K_NO_WAIT))) {
			net_buf_put(&tmp_queue, buf);
		}

		/* Queue unack packets to the beginning of the queue */
		while ((buf = net_buf_get(&h5.unack_queue, K_NO_WAIT))) {
			/* include also packet type */
			net_buf_push(buf, sizeof(u8_t));
			net_buf_put(&h5.tx_queue, buf);
			h5.tx_seq = (h5.tx_seq - 1) & 0x07;
			unack_queue_len--;
		}

		/* Queue saved packets from temp queue */
		while ((buf = net_buf_get(&tmp_queue, K_NO_WAIT))) {
			net_buf_put(&h5.tx_queue, buf);
		}
	}
}

static void ack_timeout(struct k_work *work)
{
	ARG_UNUSED(work);

	BT_DBG("");

	h5_send(NULL, HCI_3WIRE_ACK_PKT, 0);

	/* Analyze stacks */
	STACK_ANALYZE("tx_stack", tx_stack);
	STACK_ANALYZE("rx_stack", rx_stack);
}

static void h5_process_complete_packet(u8_t *hdr)
{
	struct net_buf *buf;

	BT_DBG("");

	/* rx_ack should be in every packet */
	h5.rx_ack = H5_HDR_ACK(hdr);

	if (reliable_packet(H5_HDR_PKT_TYPE(hdr))) {
		/* For reliable packet increment next transmit ack number */
		h5.tx_ack = (h5.tx_ack + 1) % 8;
		/* Submit delayed work to ack the packet */
		k_delayed_work_submit(&ack_work, H5_RX_ACK_TIMEOUT);
	}

	h5_print_header(hdr, "RX: >");

	process_unack();

	buf = h5.rx_buf;
	h5.rx_buf = NULL;

	switch (H5_HDR_PKT_TYPE(hdr)) {
	case HCI_3WIRE_ACK_PKT:
		net_buf_unref(buf);
		break;
	case HCI_3WIRE_LINK_PKT:
		net_buf_put(&h5.rx_queue, buf);
		break;
	case HCI_EVENT_PKT:
	case HCI_ACLDATA_PKT:
		hexdump("=> ", buf->data, buf->len);
		bt_recv(buf);
		break;
	}
}

static inline struct net_buf *get_evt_buf(u8_t evt)
{
	struct net_buf *buf;

	switch (evt) {
	case BT_HCI_EVT_CMD_COMPLETE:
	case BT_HCI_EVT_CMD_STATUS:
		buf = bt_buf_get_cmd_complete(K_NO_WAIT);
		break;
	default:
		buf = bt_buf_get_rx(BT_BUF_EVT, K_NO_WAIT);
		break;
	}

	if (buf) {
		net_buf_add_u8(h5.rx_buf, evt);
	}

	return buf;
}

static void bt_uart_isr(struct device *unused)
{
	static int remaining;
	u8_t byte;
	int ret;
	static u8_t hdr[4];

	ARG_UNUSED(unused);

	while (uart_irq_update(h5_dev) &&
	       uart_irq_is_pending(h5_dev)) {

		if (!uart_irq_rx_ready(h5_dev)) {
			if (uart_irq_tx_ready(h5_dev)) {
				BT_DBG("transmit ready");
			} else {
				BT_DBG("spurious interrupt");
			}
			/* Only the UART RX path is interrupt-enabled */
			break;
		}

		ret = uart_fifo_read(h5_dev, &byte, sizeof(byte));
		if (!ret) {
			continue;
		}

		switch (h5.rx_state) {
		case START:
			if (byte == SLIP_DELIMITER) {
				h5.rx_state = HEADER;
				remaining = sizeof(hdr);
			}
			break;
		case HEADER:
			/* In a case we confuse ending slip delimeter
			 * with starting one.
			 */
			if (byte == SLIP_DELIMITER) {
				remaining = sizeof(hdr);
				continue;
			}

			if (h5_unslip_byte(&byte) < 0) {
				h5_reset_rx();
				continue;
			}

			memcpy(&hdr[sizeof(hdr) - remaining], &byte, 1);
			remaining--;

			if (remaining) {
				break;
			}

			remaining = H5_HDR_LEN(hdr);

			switch (H5_HDR_PKT_TYPE(hdr)) {
			case HCI_EVENT_PKT:
				/* The buffer is allocated only once we know
				 * the exact event type.
				 */
				h5.rx_state = PAYLOAD;
				break;
			case HCI_ACLDATA_PKT:
				h5.rx_buf = bt_buf_get_rx(BT_BUF_ACL_IN,
							  K_NO_WAIT);
				if (!h5.rx_buf) {
					BT_WARN("No available data buffers");
					h5_reset_rx();
					continue;
				}

				h5.rx_state = PAYLOAD;
				break;
			case HCI_3WIRE_LINK_PKT:
			case HCI_3WIRE_ACK_PKT:
				h5.rx_buf = net_buf_alloc(&h5_pool, K_NO_WAIT);
				if (!h5.rx_buf) {
					BT_WARN("No available signal buffers");
					h5_reset_rx();
					continue;
				}

				h5.rx_state = PAYLOAD;
				break;
			default:
				BT_ERR("Wrong packet type %u",
				       H5_HDR_PKT_TYPE(hdr));
				h5.rx_state = END;
				break;
			}
			break;
		case PAYLOAD:
			if (h5_unslip_byte(&byte) < 0) {
				h5_reset_rx();
				continue;
			}

			/* Allocate HCI event buffer now that we know the
			 * exact event type.
			 */
			if (!h5.rx_buf) {
				h5.rx_buf = get_evt_buf(byte);
				if (!h5.rx_buf) {
					BT_WARN("No available event buffers");
					h5_reset_rx();
					continue;
				}
			}

			net_buf_add_mem(h5.rx_buf, &byte, sizeof(byte));
			remaining--;
			if (!remaining) {
				h5.rx_state = END;
			}
			break;
		case END:
			if (byte != SLIP_DELIMITER) {
				BT_ERR("Missing ending SLIP_DELIMITER");
				h5_reset_rx();
				break;
			}

			BT_DBG("Received full packet: type %u",
			       H5_HDR_PKT_TYPE(hdr));

			/* Check when full packet is received, it can be done
			 * when parsing packet header but we need to receive
			 * full packet anyway to clear UART.
			 */
			if (H5_HDR_RELIABLE(hdr) &&
			    H5_HDR_SEQ(hdr) != h5.tx_ack) {
				BT_ERR("Seq expected %u got %u. Drop packet",
				       h5.tx_ack, H5_HDR_SEQ(hdr));
				h5_reset_rx();
				break;
			}

			h5_process_complete_packet(hdr);
			h5.rx_state = START;
			break;
		}
	}
}

static u8_t h5_get_type(struct net_buf *buf)
{
	return net_buf_pull_u8(buf);
}

static int h5_queue(struct net_buf *buf)
{
	u8_t type;

	BT_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len);

	switch (bt_buf_get_type(buf)) {
	case BT_BUF_CMD:
		type = HCI_COMMAND_PKT;
		break;
	case BT_BUF_ACL_OUT:
		type = HCI_ACLDATA_PKT;
		break;
	default:
		BT_ERR("Unknown packet type %u", bt_buf_get_type(buf));
		return -1;
	}

	memcpy(net_buf_push(buf, sizeof(type)), &type, sizeof(type));

	net_buf_put(&h5.tx_queue, buf);

	return 0;
}

static void tx_thread(void)
{
	BT_DBG("");

	/* FIXME: make periodic sending */
	h5_send(sync_req, HCI_3WIRE_LINK_PKT, sizeof(sync_req));

	while (true) {
		struct net_buf *buf;
		u8_t type;

		BT_DBG("link_state %u", h5.link_state);

		switch (h5.link_state) {
		case UNINIT:
			/* FIXME: send sync */
			k_sleep(100);
			break;
		case INIT:
			/* FIXME: send conf */
			k_sleep(100);
			break;
		case ACTIVE:
			buf = net_buf_get(&h5.tx_queue, K_FOREVER);
			type = h5_get_type(buf);

			h5_send(buf->data, type, buf->len);

			/* buf is dequeued from tx_queue and queued to unack
			 * queue.
			 */
			net_buf_put(&h5.unack_queue, buf);
			unack_queue_len++;

			k_delayed_work_submit(&retx_work, H5_TX_ACK_TIMEOUT);

			break;
		}
	}
}

static void h5_set_txwin(u8_t *conf)
{
	conf[2] = h5.tx_win & 0x07;
}

static void rx_thread(void)
{
	BT_DBG("");

	while (true) {
		struct net_buf *buf;

		buf = net_buf_get(&h5.rx_queue, K_FOREVER);

		hexdump("=> ", buf->data, buf->len);

		if (!memcmp(buf->data, sync_req, sizeof(sync_req))) {
			if (h5.link_state == ACTIVE) {
				/* TODO Reset H5 */
			}

			h5_send(sync_rsp, HCI_3WIRE_LINK_PKT, sizeof(sync_rsp));
		} else if (!memcmp(buf->data, sync_rsp, sizeof(sync_rsp))) {
			if (h5.link_state == ACTIVE) {
				/* TODO Reset H5 */
			}

			h5.link_state = INIT;
			h5_set_txwin(conf_req);
			h5_send(conf_req, HCI_3WIRE_LINK_PKT, sizeof(conf_req));
		} else if (!memcmp(buf->data, conf_req, 2)) {
			/*
			 * The Host sends Config Response messages without a
			 * Configuration Field.
			 */
			h5_send(conf_rsp, HCI_3WIRE_LINK_PKT, sizeof(conf_rsp));

			/* Then send Config Request with Configuration Field */
			h5_set_txwin(conf_req);
			h5_send(conf_req, HCI_3WIRE_LINK_PKT, sizeof(conf_req));
		} else if (!memcmp(buf->data, conf_rsp, 2)) {
			h5.link_state = ACTIVE;
			if (buf->len > 2) {
				/* Configuration field present */
				h5.tx_win = (buf->data[2] & 0x07);
			}

			BT_DBG("Finished H5 configuration, tx_win %u",
			       h5.tx_win);
		} else {
			BT_ERR("Not handled yet %x %x",
			       buf->data[0], buf->data[1]);
		}

		net_buf_unref(buf);

		/* Make sure we don't hog the CPU if the rx_queue never
		 * gets empty.
		 */
		k_yield();
	}
}

static void h5_init(void)
{
	BT_DBG("");

	h5.link_state = UNINIT;
	h5.rx_state = START;
	h5.tx_win = 4;

	/* TX thread */
	k_fifo_init(&h5.tx_queue);
	k_thread_create(&tx_thread_data, tx_stack,
			K_THREAD_STACK_SIZEOF(tx_stack),
			(k_thread_entry_t)tx_thread, NULL, NULL, NULL,
			K_PRIO_COOP(CONFIG_BT_HCI_TX_PRIO),
			0, K_NO_WAIT);

	k_fifo_init(&h5.rx_queue);
	k_thread_create(&rx_thread_data, rx_stack,
			K_THREAD_STACK_SIZEOF(rx_stack),
			(k_thread_entry_t)rx_thread, NULL, NULL, NULL,
			K_PRIO_COOP(CONFIG_BT_RX_PRIO),
			0, K_NO_WAIT);

	/* Unack queue */
	k_fifo_init(&h5.unack_queue);

	/* Init delayed work */
	k_delayed_work_init(&ack_work, ack_timeout);
	k_delayed_work_init(&retx_work, retx_timeout);
}

static int h5_open(void)
{
	BT_DBG("");

	uart_irq_rx_disable(h5_dev);
	uart_irq_tx_disable(h5_dev);

	bt_uart_drain(h5_dev);

	uart_irq_callback_set(h5_dev, bt_uart_isr);

	h5_init();

	uart_irq_rx_enable(h5_dev);

	return 0;
}

static const struct bt_hci_driver drv = {
	.name		= "H:5",
	.bus		= BT_HCI_DRIVER_BUS_UART,
	.open		= h5_open,
	.send		= h5_queue,
};

static int _bt_uart_init(struct device *unused)
{
	ARG_UNUSED(unused);

	h5_dev = device_get_binding(CONFIG_BT_UART_ON_DEV_NAME);

	if (h5_dev == NULL) {
		return -EINVAL;
	}

	bt_hci_driver_register(&drv);

	return 0;
}

SYS_INIT(_bt_uart_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);