Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | /* * Copyright (c) 2013-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel fatal error handler * * This module provides the _NanoFatalErrorHandler() routine. */ #include <toolchain.h> #include <linker/sections.h> #include <kernel.h> #include <kernel_structs.h> #include <misc/printk.h> #include <arch/x86/irq_controller.h> #include <arch/x86/segmentation.h> #include <exception.h> #include <inttypes.h> __weak void _debug_fatal_hook(const NANO_ESF *esf) { ARG_UNUSED(esf); } /** * * @brief Kernel fatal error handler * * This routine is called when a fatal error condition is detected by either * hardware or software. * * The caller is expected to always provide a usable ESF. In the event that the * fatal error does not have a hardware generated ESF, the caller should either * create its own or use a pointer to the global default ESF <_default_esf>. * * @param reason the reason that the handler was called * @param pEsf pointer to the exception stack frame * * @return This function does not return. */ FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason, const NANO_ESF *pEsf) { _debug_fatal_hook(pEsf); #ifdef CONFIG_PRINTK /* Display diagnostic information about the error */ switch (reason) { case _NANO_ERR_CPU_EXCEPTION: break; case _NANO_ERR_SPURIOUS_INT: { int vector = _irq_controller_isr_vector_get(); printk("***** Unhandled interrupt vector "); if (vector >= 0) { printk("%d ", vector); } printk("*****\n"); break; } #if defined(CONFIG_STACK_CANARIES) || defined(CONFIG_STACK_SENTINEL) || \ defined(CONFIG_HW_STACK_PROTECTION) || \ defined(CONFIG_USERSPACE) case _NANO_ERR_STACK_CHK_FAIL: printk("***** Stack Check Fail! *****\n"); break; #endif /* CONFIG_STACK_CANARIES */ case _NANO_ERR_KERNEL_OOPS: printk("***** Kernel OOPS! *****\n"); break; case _NANO_ERR_KERNEL_PANIC: printk("***** Kernel Panic! *****\n"); break; case _NANO_ERR_ALLOCATION_FAIL: printk("**** Kernel Allocation Failure! ****\n"); break; default: printk("**** Unknown Fatal Error %d! ****\n", reason); break; } printk("Current thread ID = %p\n" "Faulting segment:address = 0x%04x:0x%08x\n" "eax: 0x%08x, ebx: 0x%08x, ecx: 0x%08x, edx: 0x%08x\n" "esi: 0x%08x, edi: 0x%08x, ebp: 0x%08x, esp: 0x%08x\n" "eflags: 0x%x\n", k_current_get(), pEsf->cs & 0xFFFF, pEsf->eip, pEsf->eax, pEsf->ebx, pEsf->ecx, pEsf->edx, pEsf->esi, pEsf->edi, pEsf->ebp, pEsf->esp, pEsf->eflags); #endif /* CONFIG_PRINTK */ /* * Error was fatal to a kernel task or a thread; invoke the system * fatal error handling policy defined for the platform. */ _SysFatalErrorHandler(reason, pEsf); } FUNC_NORETURN void _arch_syscall_oops(void *ssf_ptr) { struct _x86_syscall_stack_frame *ssf = (struct _x86_syscall_stack_frame *)ssf_ptr; NANO_ESF oops_esf = { .eip = ssf->eip, .cs = ssf->cs, .eflags = ssf->eflags }; if (oops_esf.cs == USER_CODE_SEG) { oops_esf.esp = ssf->esp; } _NanoFatalErrorHandler(_NANO_ERR_KERNEL_OOPS, &oops_esf); } #ifdef CONFIG_X86_KERNEL_OOPS /* The reason code gets pushed onto the stack right before the exception is * triggered, so it would be after the nano_esf data */ struct oops_esf { NANO_ESF nano_esf; unsigned int reason; }; FUNC_NORETURN void _do_kernel_oops(const struct oops_esf *esf) { _NanoFatalErrorHandler(esf->reason, &esf->nano_esf); } extern void (*_kernel_oops_handler)(void); NANO_CPU_INT_REGISTER(_kernel_oops_handler, NANO_SOFT_IRQ, CONFIG_X86_KERNEL_OOPS_VECTOR / 16, CONFIG_X86_KERNEL_OOPS_VECTOR, 0); #endif /* * Define a default ESF for use with _NanoFatalErrorHandler() in the event * the caller does not have a NANO_ESF to pass */ const NANO_ESF _default_esf = { 0xdeaddead, /* ESP */ 0xdeaddead, /* EBP */ 0xdeaddead, /* EBX */ 0xdeaddead, /* ESI */ 0xdeaddead, /* EDI */ 0xdeaddead, /* EDX */ 0xdeaddead, /* ECX */ 0xdeaddead, /* EAX */ 0xdeaddead, /* error code */ 0xdeaddead, /* EIP */ 0xdeaddead, /* CS */ 0xdeaddead, /* EFLAGS */ }; #if CONFIG_EXCEPTION_DEBUG static FUNC_NORETURN void generic_exc_handle(unsigned int vector, const NANO_ESF *pEsf) { printk("***** "); if (vector == 13) { printk("General Protection Fault\n"); } else { printk("CPU exception %d\n", vector); } if ((1 << vector) & _EXC_ERROR_CODE_FAULTS) { printk("***** Exception code: 0x%x\n", pEsf->errorCode); } _NanoFatalErrorHandler(_NANO_ERR_CPU_EXCEPTION, pEsf); } #define _EXC_FUNC(vector) \ FUNC_NORETURN void handle_exc_##vector(const NANO_ESF *pEsf) \ { \ generic_exc_handle(vector, pEsf); \ } #define _EXC_FUNC_CODE(vector) \ _EXC_FUNC(vector) \ _EXCEPTION_CONNECT_CODE(handle_exc_##vector, vector) #define _EXC_FUNC_NOCODE(vector) \ _EXC_FUNC(vector) \ _EXCEPTION_CONNECT_NOCODE(handle_exc_##vector, vector) /* Necessary indirection to ensure 'vector' is expanded before we expand * the handle_exc_##vector */ #define EXC_FUNC_NOCODE(vector) \ _EXC_FUNC_NOCODE(vector) #define EXC_FUNC_CODE(vector) \ _EXC_FUNC_CODE(vector) EXC_FUNC_NOCODE(IV_DIVIDE_ERROR); EXC_FUNC_NOCODE(IV_NON_MASKABLE_INTERRUPT); EXC_FUNC_NOCODE(IV_OVERFLOW); EXC_FUNC_NOCODE(IV_BOUND_RANGE); EXC_FUNC_NOCODE(IV_INVALID_OPCODE); EXC_FUNC_NOCODE(IV_DEVICE_NOT_AVAILABLE); #ifndef CONFIG_X86_ENABLE_TSS EXC_FUNC_NOCODE(IV_DOUBLE_FAULT); #endif EXC_FUNC_CODE(IV_INVALID_TSS); EXC_FUNC_CODE(IV_SEGMENT_NOT_PRESENT); EXC_FUNC_CODE(IV_STACK_FAULT); EXC_FUNC_CODE(IV_GENERAL_PROTECTION); EXC_FUNC_NOCODE(IV_X87_FPU_FP_ERROR); EXC_FUNC_CODE(IV_ALIGNMENT_CHECK); EXC_FUNC_NOCODE(IV_MACHINE_CHECK); /* Page fault error code flags */ #define PRESENT BIT(0) #define WR BIT(1) #define US BIT(2) #define RSVD BIT(3) #define ID BIT(4) #define PK BIT(5) #define SGX BIT(15) #ifdef CONFIG_X86_MMU static void dump_entry_flags(x86_page_entry_data_t flags) { #ifdef CONFIG_X86_PAE_MODE printk("0x%x%x %s, %s, %s, %s\n", (u32_t)(flags>>32), (u32_t)(flags), flags & (x86_page_entry_data_t)MMU_ENTRY_PRESENT ? "Present" : "Non-present", flags & (x86_page_entry_data_t)MMU_ENTRY_WRITE ? "Writable" : "Read-only", flags & (x86_page_entry_data_t)MMU_ENTRY_USER ? "User" : "Supervisor", flags & (x86_page_entry_data_t)MMU_ENTRY_EXECUTE_DISABLE ? "Execute Disable" : "Execute Enabled"); #else printk("0x%03x %s, %s, %s\n", flags, flags & (x86_page_entry_data_t)MMU_ENTRY_PRESENT ? "Present" : "Non-present", flags & (x86_page_entry_data_t)MMU_ENTRY_WRITE ? "Writable" : "Read-only", flags & (x86_page_entry_data_t)MMU_ENTRY_USER ? "User" : "Supervisor"); #endif } static void dump_mmu_flags(void *addr) { x86_page_entry_data_t pde_flags, pte_flags; _x86_mmu_get_flags(addr, &pde_flags, &pte_flags); printk("PDE: "); dump_entry_flags(pde_flags); printk("PTE: "); dump_entry_flags(pte_flags); } #endif FUNC_NORETURN void page_fault_handler(const NANO_ESF *pEsf) { u32_t err, cr2; /* See Section 6.15 of the IA32 Software Developer's Manual vol 3 */ __asm__ ("mov %%cr2, %0" : "=r" (cr2)); err = pEsf->errorCode; printk("***** CPU Page Fault (error code 0x%08x)\n", err); printk("%s thread %s address 0x%08x\n", err & US ? "User" : "Supervisor", err & ID ? "executed" : (err & WR ? "wrote" : "read"), cr2); #ifdef CONFIG_X86_MMU dump_mmu_flags((void *)cr2); #endif _NanoFatalErrorHandler(_NANO_ERR_CPU_EXCEPTION, pEsf); } _EXCEPTION_CONNECT_CODE(page_fault_handler, IV_PAGE_FAULT); #endif /* CONFIG_EXCEPTION_DEBUG */ #ifdef CONFIG_X86_ENABLE_TSS static __noinit volatile NANO_ESF _df_esf; /* Very tiny stack; just enough for the bogus error code pushed by the CPU * and a frame pointer push by the compiler. All _df_handler_top does is * shuffle some data around with 'mov' statements and then 'iret'. */ static __noinit char _df_stack[8]; static FUNC_NORETURN __used void _df_handler_top(void); _GENERIC_SECTION(.tss) struct task_state_segment _main_tss = { .ss0 = DATA_SEG }; /* Special TSS for handling double-faults with a known good stack */ _GENERIC_SECTION(.tss) struct task_state_segment _df_tss = { .esp = (u32_t)(_df_stack + sizeof(_df_stack)), .cs = CODE_SEG, .ds = DATA_SEG, .es = DATA_SEG, .ss = DATA_SEG, .eip = (u32_t)_df_handler_top, #ifdef CONFIG_X86_PAE_MODE .cr3 = (u32_t)X86_MMU_PDPT #else .cr3 = (u32_t)X86_MMU_PD #endif }; static FUNC_NORETURN __used void _df_handler_bottom(void) { /* We're back in the main hardware task on the interrupt stack */ x86_page_entry_data_t pte_flags, pde_flags; int reason; /* Restore the top half so it is runnable again */ _df_tss.esp = (u32_t)(_df_stack + sizeof(_df_stack)); _df_tss.eip = (u32_t)_df_handler_top; /* Now check if the stack pointer is inside a guard area. Subtract * one byte, since if a single push operation caused the fault ESP * wouldn't be decremented */ _x86_mmu_get_flags((void *)_df_esf.esp - 1, &pde_flags, &pte_flags); if (pte_flags & MMU_ENTRY_PRESENT) { printk("***** Double Fault *****\n"); reason = _NANO_ERR_CPU_EXCEPTION; } else { reason = _NANO_ERR_STACK_CHK_FAIL; } _NanoFatalErrorHandler(reason, (NANO_ESF *)&_df_esf); } static FUNC_NORETURN __used void _df_handler_top(void) { /* State of the system when the double-fault forced a task switch * will be in _main_tss. Set up a NANO_ESF and copy system state into * it */ _df_esf.esp = _main_tss.esp; _df_esf.ebp = _main_tss.ebp; _df_esf.ebx = _main_tss.ebx; _df_esf.esi = _main_tss.esi; _df_esf.edi = _main_tss.edi; _df_esf.edx = _main_tss.edx; _df_esf.eax = _main_tss.eax; _df_esf.ecx = _main_tss.ecx; _df_esf.errorCode = 0; _df_esf.eip = _main_tss.eip; _df_esf.cs = _main_tss.cs; _df_esf.eflags = _main_tss.eflags; /* Restore the main IA task to a runnable state */ _main_tss.esp = (u32_t)(_ARCH_THREAD_STACK_BUFFER(_interrupt_stack) + CONFIG_ISR_STACK_SIZE); _main_tss.cs = CODE_SEG; _main_tss.ds = DATA_SEG; _main_tss.es = DATA_SEG; _main_tss.ss = DATA_SEG; _main_tss.eip = (u32_t)_df_handler_bottom; #ifdef CONFIG_X86_PAE_MODE _main_tss.cr3 = (u32_t)X86_MMU_PDPT; #else _main_tss.cr3 = (u32_t)X86_MMU_PD; #endif /* NT bit is set in EFLAGS so we will task switch back to _main_tss * and run _df_handler_bottom */ __asm__ volatile ("iret"); CODE_UNREACHABLE; } /* Configure a task gate descriptor in the IDT for the double fault * exception */ _X86_IDT_TSS_REGISTER(DF_TSS, -1, -1, IV_DOUBLE_FAULT, 0); #endif /* CONFIG_X86_ENABLE_TSS */ |