Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/* --COPYRIGHT--,BSD
 * Copyright (c) 2017, Texas Instruments Incorporated
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * *  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * *  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * *  Neither the name of Texas Instruments Incorporated nor the names of
 *    its contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * --/COPYRIGHT--*/
/* Standard Includes */
#include <stdint.h>

/* DriverLib Includes */
#include <ti/devices/msp432p4xx/driverlib/debug.h>
#include <ti/devices/msp432p4xx/driverlib/cpu.h>
#include <ti/devices/msp432p4xx/driverlib/interrupt.h>


//*****************************************************************************
//
// This is a mapping between priority grouping encodings and the number of
// preemption priority bits.
//
//*****************************************************************************
static const uint32_t g_pulPriority[] =
{ NVIC_APINT_PRIGROUP_0_8, NVIC_APINT_PRIGROUP_1_7, NVIC_APINT_PRIGROUP_2_6,
NVIC_APINT_PRIGROUP_3_5, NVIC_APINT_PRIGROUP_4_4,
NVIC_APINT_PRIGROUP_5_3, NVIC_APINT_PRIGROUP_6_2,
NVIC_APINT_PRIGROUP_7_1 };

//*****************************************************************************
//
// This is a mapping between interrupt number and the register that contains
// the priority encoding for that interrupt.
//
//*****************************************************************************
static const uint32_t g_pulRegs[] =
{ 0, NVIC_SYS_PRI1_R, NVIC_SYS_PRI2_R, NVIC_SYS_PRI3_R, NVIC_PRI0_R,
NVIC_PRI1_R, NVIC_PRI2_R, NVIC_PRI3_R, NVIC_PRI4_R, NVIC_PRI5_R,
NVIC_PRI6_R, NVIC_PRI7_R, NVIC_PRI8_R, NVIC_PRI9_R, NVIC_PRI10_R,
NVIC_PRI11_R, NVIC_PRI12_R, NVIC_PRI13_R, NVIC_PRI14_R, NVIC_PRI15_R };

//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt enable for that
// interrupt.
//
//*****************************************************************************
static const uint32_t g_pulEnRegs[] =
{ NVIC_EN0_R, NVIC_EN1_R };

//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt disable for that
// interrupt.
//
//*****************************************************************************
static const uint32_t g_pulDisRegs[] =
{ NVIC_DIS0_R, NVIC_DIS1_R };

//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt pend for that interrupt.
//
//*****************************************************************************
static const uint32_t g_pulPendRegs[] =
{ NVIC_PEND0_R, NVIC_PEND1_R };

//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt unpend for that
// interrupt.
//
//*****************************************************************************
static const uint32_t g_pulUnpendRegs[] =
{ NVIC_UNPEND0_R, NVIC_UNPEND1_R };

//*****************************************************************************
//
//! \internal
//! The default interrupt handler.
//!
//! This is the default interrupt handler for all interrupts.  It simply loops
//! forever so that the system state is preserved for observation by a
//! debugger.  Since interrupts should be disabled before unregistering the
//! corresponding handler, this should never be called.
//!
//! \return None.
//
//*****************************************************************************
static void IntDefaultHandler(void)
{
    //
    // Go into an infinite loop.
    //
    while (1)
    {
    }
}

//*****************************************************************************
//
// The processor vector table.
//
// This contains a list of the handlers for the various interrupt sources in
// the system.  The layout of this list is defined by the hardware; assertion
// of an interrupt causes the processor to start executing directly at the
// address given in the corresponding location in this list.
//
//*****************************************************************************
#if defined(__IAR_SYSTEMS_ICC__)
#pragma data_alignment=1024
static __no_init void (*g_pfnRAMVectors[NUM_INTERRUPTS+1])(void) @ "VTABLE";
#elif defined(__TI_COMPILER_VERSION__)
#pragma DATA_ALIGN(g_pfnRAMVectors, 1024)
#pragma DATA_SECTION(g_pfnRAMVectors, ".vtable")
void (*g_pfnRAMVectors[NUM_INTERRUPTS + 1])(void);
#else
static __attribute__((section("vtable")))
void (*g_pfnRAMVectors[NUM_INTERRUPTS+1])(void) __attribute__((aligned(1024)));
#endif

bool Interrupt_enableMaster(void)
{
    //
    // Enable processor interrupts.
    //
    return (CPU_cpsie());
}

bool Interrupt_disableMaster(void)
{
    //
    // Disable processor interrupts.
    //
    return (CPU_cpsid());
}

void Interrupt_registerInterrupt(uint32_t interruptNumber,
        void (*intHandler)(void))
{
    uint32_t ulIdx, ulValue;

    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Make sure that the RAM vector table is correctly aligned.
    //
    ASSERT(((uint32_t) g_pfnRAMVectors & 0x000000ff) == 0);

    //
    // See if the RAM vector table has been initialized.
    //
    if (SCB->VTOR != (uint32_t) g_pfnRAMVectors)
    {
        //
        // Copy the vector table from the beginning of FLASH to the RAM vector
        // table.
        //
        ulValue = SCB->VTOR;
        for (ulIdx = 0; ulIdx < (NUM_INTERRUPTS + 1); ulIdx++)
        {
            g_pfnRAMVectors[ulIdx] = (void (*)(void)) HWREG32(
                    (ulIdx * 4) + ulValue);
        }

        //
        // Point the NVIC at the RAM vector table.
        //
        SCB->VTOR = (uint32_t) g_pfnRAMVectors;
    }

    //
    // Save the interrupt handler.
    //
    g_pfnRAMVectors[interruptNumber] = intHandler;
}

void Interrupt_unregisterInterrupt(uint32_t interruptNumber)
{
    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Reset the interrupt handler.
    //
    g_pfnRAMVectors[interruptNumber] = IntDefaultHandler;
}

void Interrupt_setPriorityGrouping(uint32_t bits)
{
    //
    // Check the arguments.
    //
    ASSERT(bits < NUM_PRIORITY);

    //
    // Set the priority grouping.
    //
    SCB->AIRCR = SCB_AIRCR_VECTKEY_Msk | g_pulPriority[bits];
}

uint32_t Interrupt_getPriorityGrouping(void)
{
    uint32_t ulLoop, ulValue;

    //
    // Read the priority grouping.
    //
    ulValue = SCB->AIRCR & NVIC_APINT_PRIGROUP_M;

    //
    // Loop through the priority grouping values.
    //
    for (ulLoop = 0; ulLoop < NUM_PRIORITY; ulLoop++)
    {
        //
        // Stop looping if this value matches.
        //
        if (ulValue == g_pulPriority[ulLoop])
        {
            break;
        }
    }

    //
    // Return the number of priority bits.
    //
    return (ulLoop);
}

void Interrupt_setPriority(uint32_t interruptNumber, uint8_t priority)
{
    uint32_t ulTemp;

    //
    // Check the arguments.
    //
    ASSERT((interruptNumber >= 4) && (interruptNumber < (NUM_INTERRUPTS+1)));

    //
    // Set the interrupt priority.
    //
    ulTemp = HWREG32(g_pulRegs[interruptNumber >> 2]);
    ulTemp &= ~(0xFF << (8 * (interruptNumber & 3)));
    ulTemp |= priority << (8 * (interruptNumber & 3));
    HWREG32 (g_pulRegs[interruptNumber >> 2]) = ulTemp;
}

uint8_t Interrupt_getPriority(uint32_t interruptNumber)
{
    //
    // Check the arguments.
    //
    ASSERT((interruptNumber >= 4) && (interruptNumber < (NUM_INTERRUPTS+1)));

    //
    // Return the interrupt priority.
    //
    return ((HWREG32(g_pulRegs[interruptNumber >> 2])
            >> (8 * (interruptNumber & 3))) & 0xFF);
}

void Interrupt_enableInterrupt(uint32_t interruptNumber)
{
    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Determine the interrupt to enable.
    //
    if (interruptNumber == FAULT_MPU)
    {
        //
        // Enable the MemManage interrupt.
        //
        SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
    } else if (interruptNumber == FAULT_BUS)
    {
        //
        // Enable the bus fault interrupt.
        //
        SCB->SHCSR |= SCB_SHCSR_BUSFAULTENA_Msk;
    } else if (interruptNumber == FAULT_USAGE)
    {
        //
        // Enable the usage fault interrupt.
        //
        SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;
    } else if (interruptNumber == FAULT_SYSTICK)
    {
        //
        // Enable the System Tick interrupt.
        //
        SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
    } else if (interruptNumber >= 16)
    {
        //
        // Enable the general interrupt.
        //
        HWREG32 (g_pulEnRegs[(interruptNumber - 16) / 32]) = 1
                << ((interruptNumber - 16) & 31);
    }
}

void Interrupt_disableInterrupt(uint32_t interruptNumber)
{
    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Determine the interrupt to disable.
    //
    if (interruptNumber == FAULT_MPU)
    {
        //
        // Disable the MemManage interrupt.
        //
        SCB->SHCSR &= ~(SCB_SHCSR_MEMFAULTENA_Msk);
    } else if (interruptNumber == FAULT_BUS)
    {
        //
        // Disable the bus fault interrupt.
        //
        SCB->SHCSR &= ~(SCB_SHCSR_BUSFAULTENA_Msk);
    } else if (interruptNumber == FAULT_USAGE)
    {
        //
        // Disable the usage fault interrupt.
        //
        SCB->SHCSR &= ~(SCB_SHCSR_USGFAULTENA_Msk);
    } else if (interruptNumber == FAULT_SYSTICK)
    {
        //
        // Disable the System Tick interrupt.
        //
        SysTick->CTRL &= ~(SysTick_CTRL_ENABLE_Msk);
    } else if (interruptNumber >= 16)
    {
        //
        // Disable the general interrupt.
        //
        HWREG32 (g_pulDisRegs[(interruptNumber - 16) / 32]) = 1
                << ((interruptNumber - 16) & 31);
    }
}

bool Interrupt_isEnabled(uint32_t interruptNumber)
{
    uint32_t ulRet;

    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Initialize the return value.
    //
    ulRet = 0;

    //
    // Determine the interrupt to disable.
    //
    if (interruptNumber == FAULT_MPU)
    {
        //
        // Check the MemManage interrupt.
        //
        ulRet = SCB->SHCSR & SCB_SHCSR_MEMFAULTENA_Msk;
    } else if (interruptNumber == FAULT_BUS)
    {
        //
        // Check the bus fault interrupt.
        //
        ulRet = SCB->SHCSR & SCB_SHCSR_BUSFAULTENA_Msk;
    } else if (interruptNumber == FAULT_USAGE)
    {
        //
        // Check the usage fault interrupt.
        //
        ulRet = SCB->SHCSR & SCB_SHCSR_USGFAULTENA_Msk;
    } else if (interruptNumber == FAULT_SYSTICK)
    {
        //
        // Check the System Tick interrupt.
        //
        ulRet = SysTick->CTRL & SysTick_CTRL_ENABLE_Msk;
    } else if (interruptNumber >= 16)
    {
        //
        // Check the general interrupt.
        //
        ulRet = HWREG32(g_pulEnRegs[(interruptNumber - 16) / 32])
                & (1 << ((interruptNumber - 16) & 31));
    }
    return (ulRet);
}

void Interrupt_pendInterrupt(uint32_t interruptNumber)
{
    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Determine the interrupt to pend.
    //
    if (interruptNumber == FAULT_NMI)
    {
        //
        // Pend the NMI interrupt.
        //
        SCB->ICSR |= SCB_ICSR_NMIPENDSET_Msk;
    } else if (interruptNumber == FAULT_PENDSV)
    {
        //
        // Pend the PendSV interrupt.
        //
        SCB->ICSR |= SCB_ICSR_PENDSVSET_Msk;
    } else if (interruptNumber == FAULT_SYSTICK)
    {
        //
        // Pend the SysTick interrupt.
        //
        SCB->ICSR |= SCB_ICSR_PENDSTSET_Msk;
    } else if (interruptNumber >= 16)
    {
        //
        // Pend the general interrupt.
        //
        HWREG32 (g_pulPendRegs[(interruptNumber - 16) / 32]) = 1
                << ((interruptNumber - 16) & 31);
    }
}

void Interrupt_unpendInterrupt(uint32_t interruptNumber)
{
    //
    // Check the arguments.
    //
    ASSERT(interruptNumber < (NUM_INTERRUPTS+1));

    //
    // Determine the interrupt to unpend.
    //
    if (interruptNumber == FAULT_PENDSV)
    {
        //
        // Unpend the PendSV interrupt.
        //
        SCB->ICSR |= SCB_ICSR_PENDSVCLR_Msk;
    } else if (interruptNumber == FAULT_SYSTICK)
    {
        //
        // Unpend the SysTick interrupt.
        //
        SCB->ICSR |= SCB_ICSR_PENDSTCLR_Msk;
    } else if (interruptNumber >= 16)
    {
        //
        // Unpend the general interrupt.
        //
        HWREG32 (g_pulUnpendRegs[(interruptNumber - 16) / 32]) = 1
                << ((interruptNumber - 16) & 31);
    }
}

void Interrupt_setPriorityMask(uint8_t priorityMask)
{
    CPU_basepriSet(priorityMask);
}

uint8_t Interrupt_getPriorityMask(void)
{
    return (CPU_basepriGet());
}

void Interrupt_setVectorTableAddress(uint32_t addr)
{
    SCB->VTOR = addr;
}

uint32_t Interrupt_getVectorTableAddress(void)
{
    return SCB->VTOR;
}

void Interrupt_enableSleepOnIsrExit(void)
{
    SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk;
}

void Interrupt_disableSleepOnIsrExit(void)
{
    SCB->SCR &= ~SCB_SCR_SLEEPONEXIT_Msk;
}