Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*
 * Copyright (c) 2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Common fault handler for ARM Cortex-M
 *
 * Common fault handler for ARM Cortex-M processors.
 */

#include <toolchain.h>
#include <linker/sections.h>

#include <kernel.h>
#include <kernel_structs.h>
#include <inttypes.h>

#ifdef CONFIG_PRINTK
#include <misc/printk.h>
#define PR_EXC(...) printk(__VA_ARGS__)
#define STORE_xFAR(reg_var, reg) u32_t reg_var = (u32_t)reg
#else
#define PR_EXC(...)
#define STORE_xFAR(reg_var, reg)
#endif /* CONFIG_PRINTK */

#if (CONFIG_FAULT_DUMP > 0)
#define FAULT_DUMP(esf, fault) _FaultDump(esf, fault)
#else
#define FAULT_DUMP(esf, fault) \
	do {                   \
		(void) esf;    \
		(void) fault;  \
	} while ((0))
#endif

#if (CONFIG_FAULT_DUMP == 1)
/**
 *
 * @brief Dump information regarding fault (FAULT_DUMP == 1)
 *
 * Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 1
 * (short form).
 *
 * eg. (precise bus error escalated to hard fault):
 *
 * Fault! EXC #3, Thread: 0x200000dc, instr: 0x000011d3
 * HARD FAULT: Escalation (see below)!
 * MMFSR: 0x00000000, BFSR: 0x00000082, UFSR: 0x00000000
 * BFAR: 0xff001234
 *
 * @return N/A
 */
void _FaultDump(const NANO_ESF *esf, int fault)
{
	PR_EXC("Fault! EXC #%d, Thread: %p, instr @ 0x%x\n",
	       fault,
	       k_current_get(),
	       esf->pc);

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	int escalation = 0;

	if (3 == fault) { /* hard fault */
		escalation = SCB->HFSR & SCB_HFSR_FORCED_Msk;
		PR_EXC("HARD FAULT: %s\n",
		       escalation ? "Escalation (see below)!"
				  : "Bus fault on vector table read\n");
	}

	PR_EXC("MMFSR: 0x%x, BFSR: 0x%x, UFSR: 0x%x\n",
	       SCB_MMFSR, SCB_BFSR, SCB_MMFSR);

	/* In a fault handler, to determine the true faulting address:
	 * 1. Read and save the MMFAR or BFAR value.
	 * 2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the
	 * BFSR. The MMFAR or BFAR address is valid only if this bit is 1.
	 *
	 * Software must follow this sequence because another higher priority
	 * exception might change the MMFAR or BFAR value.
	 */
	STORE_xFAR(mmfar, SCB->MMFAR);
	STORE_xFAR(bfar, SCB->BFAR);

	if (SCB->CFSR & CFSR_MMARVALID_Msk) {
		PR_EXC("MMFAR: 0x%x\n", mmfar);
		if (escalation) {
			/* clear MMAR[VALID] to reset */
			SCB->CFSR &= ~CFSR_MMARVALID_Msk;
		}
	}
	if (SCB->CFSR & CFSR_BFARVALID_Msk) {
		PR_EXC("BFAR: 0x%x\n", bfar);
		if (escalation) {
			/* clear CFSR_BFAR[VALID] to reset */
			SCB->CFSR &= ~CFSR_BFARVALID_Msk;
		}
	}

	/* clear USFR sticky bits */
	SCB->CFSR |= SCB_CFSR_USGFAULTSR_Msk;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
}
#endif

#if (CONFIG_FAULT_DUMP == 2)
/**
 *
 * @brief Dump thread information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _FaultThreadShow(const NANO_ESF *esf)
{
	PR_EXC("  Executing thread ID (thread): %p\n"
	       "  Faulting instruction address:  0x%x\n",
	       k_current_get(), esf->pc);
}

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)

/**
 *
 * @brief Dump MPU fault information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _MpuFault(const NANO_ESF *esf, int fromHardFault)
{
	PR_EXC("***** MPU FAULT *****\n");

	_FaultThreadShow(esf);

	if (SCB->CFSR & CFSR_MSTKERR_Msk) {
		PR_EXC("  Stacking error\n");
	} else if (SCB->CFSR & CFSR_MUNSTKERR_Msk) {
		PR_EXC("  Unstacking error\n");
	} else if (SCB->CFSR & CFSR_DACCVIOL_Msk) {
		PR_EXC("  Data Access Violation\n");
		/* In a fault handler, to determine the true faulting address:
		 * 1. Read and save the MMFAR value.
		 * 2. Read the MMARVALID bit in the MMFSR.
		 * The MMFAR address is valid only if this bit is 1.
		 *
		 * Software must follow this sequence because another higher
		 * priority exception might change the MMFAR value.
		 */
		STORE_xFAR(mmfar, SCB->MMFAR);

		if (SCB->CFSR & CFSR_MMARVALID_Msk) {
			PR_EXC("  Address: 0x%x\n", mmfar);
			if (fromHardFault) {
				/* clear MMAR[VALID] to reset */
				SCB->CFSR &= ~CFSR_MMARVALID_Msk;
			}
		}
	} else if (SCB->CFSR & CFSR_IACCVIOL_Msk) {
		PR_EXC("  Instruction Access Violation\n");
	}
}

/**
 *
 * @brief Dump bus fault information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _BusFault(const NANO_ESF *esf, int fromHardFault)
{
	PR_EXC("***** BUS FAULT *****\n");

	_FaultThreadShow(esf);

	if (SCB->CFSR & CFSR_STKERR_Msk) {
		PR_EXC("  Stacking error\n");
	} else if (SCB->CFSR & CFSR_UNSTKERR_Msk) {
		PR_EXC("  Unstacking error\n");
	} else if (SCB->CFSR & CFSR_PRECISERR_Msk) {
		PR_EXC("  Precise data bus error\n");
		/* In a fault handler, to determine the true faulting address:
		 * 1. Read and save the BFAR value.
		 * 2. Read the BFARVALID bit in the BFSR.
		 * The BFAR address is valid only if this bit is 1.
		 *
		 * Software must follow this sequence because another
		 * higher priority exception might change the BFAR value.
		 */
		STORE_xFAR(bfar, SCB->BFAR);

		if (SCB->CFSR & CFSR_BFARVALID_Msk) {
			PR_EXC("  Address: 0x%x\n", bfar);
			if (fromHardFault) {
				/* clear CFSR_BFAR[VALID] to reset */
				SCB->CFSR &= ~CFSR_BFARVALID_Msk;
			}
		}
		/* it's possible to have both a precise and imprecise fault */
		if (SCB->CFSR & CFSR_IMPRECISERR_Msk) {
			PR_EXC("  Imprecise data bus error\n");
		}
	} else if (SCB->CFSR & CFSR_IMPRECISERR_Msk) {
		PR_EXC("  Imprecise data bus error\n");
	} else if (SCB->CFSR & CFSR_IBUSERR_Msk) {
		PR_EXC("  Instruction bus error\n");
	}
}

/**
 *
 * @brief Dump usage fault information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _UsageFault(const NANO_ESF *esf)
{
	PR_EXC("***** USAGE FAULT *****\n");

	_FaultThreadShow(esf);

	/* bits are sticky: they stack and must be reset */
	if (SCB->CFSR & CFSR_DIVBYZERO_Msk) {
		PR_EXC("  Division by zero\n");
	}
	if (SCB->CFSR & CFSR_UNALIGNED_Msk) {
		PR_EXC("  Unaligned memory access\n");
	}
	if (SCB->CFSR & CFSR_NOCP_Msk) {
		PR_EXC("  No coprocessor instructions\n");
	}
	if (SCB->CFSR & CFSR_INVPC_Msk) {
		PR_EXC("  Illegal load of EXC_RETURN into PC\n");
	}
	if (SCB->CFSR & CFSR_INVSTATE_Msk) {
		PR_EXC("  Illegal use of the EPSR\n");
	}
	if (SCB->CFSR & CFSR_UNDEFINSTR_Msk) {
		PR_EXC("  Attempt to execute undefined instruction\n");
	}

	/* clear USFR sticky bits */
	SCB->CFSR |= SCB_CFSR_USGFAULTSR_Msk;
}

/**
 *
 * @brief Dump debug monitor exception information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _DebugMonitor(const NANO_ESF *esf)
{
	ARG_UNUSED(esf);

	PR_EXC("***** Debug monitor exception (not implemented) *****\n");
}

#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */

/**
 *
 * @brief Dump hard fault information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _HardFault(const NANO_ESF *esf)
{
	PR_EXC("***** HARD FAULT *****\n");

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	_FaultThreadShow(esf);
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	if (SCB->HFSR & SCB_HFSR_VECTTBL_Msk) {
		PR_EXC("  Bus fault on vector table read\n");
	} else if (SCB->HFSR & SCB_HFSR_FORCED_Msk) {
		PR_EXC("  Fault escalation (see below)\n");
		if (SCB_MMFSR) {
			_MpuFault(esf, 1);
		} else if (SCB_BFSR) {
			_BusFault(esf, 1);
		} else if (SCB_UFSR) {
			_UsageFault(esf);
		}
	}
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
}

/**
 *
 * @brief Dump reserved exception information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void _ReservedException(const NANO_ESF *esf, int fault)
{
	ARG_UNUSED(esf);

	PR_EXC("***** %s %d) *****\n",
	       fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ",
	       fault - 16);
}

/**
 *
 * @brief Dump information regarding fault (FAULT_DUMP == 2)
 *
 * Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 2
 * (long form).
 *
 * eg. (precise bus error escalated to hard fault):
 *
 * Executing thread ID (thread): 0x200000dc
 * Faulting instruction address:  0x000011d3
 * ***** HARD FAULT *****
 *    Fault escalation (see below)
 * ***** BUS FAULT *****
 *   Precise data bus error
 *   Address: 0xff001234
 *
 * @return N/A
 */
static void _FaultDump(const NANO_ESF *esf, int fault)
{
	switch (fault) {
	case 3:
		_HardFault(esf);
		break;
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	case 4:
		_MpuFault(esf, 0);
		break;
	case 5:
		_BusFault(esf, 0);
		break;
	case 6:
		_UsageFault(esf);
		break;
	case 12:
		_DebugMonitor(esf);
		break;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
	default:
		_ReservedException(esf, fault);
		break;
	}
}
#endif /* FAULT_DUMP == 2 */

/**
 *
 * @brief Fault handler
 *
 * This routine is called when fatal error conditions are detected by hardware
 * and is responsible only for reporting the error. Once reported, it then
 * invokes the user provided routine _SysFatalErrorHandler() which is
 * responsible for implementing the error handling policy.
 *
 * Since the ESF can be either on the MSP or PSP depending if an exception or
 * interrupt was already being handled, it is passed a pointer to both and has
 * to find out on which the ESP is present.
 *
 * @param esf ESF on the stack, either MSP or PSP depending at what processor
 *            state the exception was taken.
 */
void _Fault(const NANO_ESF *esf)
{
	int fault = SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk;

	FAULT_DUMP(esf, fault);

	_SysFatalErrorHandler(_NANO_ERR_HW_EXCEPTION, esf);
}

/**
 *
 * @brief Initialization of fault handling
 *
 * Turns on the desired hardware faults.
 *
 * @return N/A
 */
void _FaultInit(void)
{
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
}