Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/*
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file I2C/TWI Controller driver for Atmel SAM3 family processor
 *
 * @deprecated This driver is deprecated. Please use i2c_sam_twi.c SAM family
 *             driver instead.
 *
 * Notes on this driver:
 * 1. The controller does not have a documented way to
 *    issue RESTART when changing transfer direction as master.
 *
 *    Datasheet said about using the internal address register
 *    (IADR) to write 3 bytes before reading. This limits
 *    the number of bytes to write before a read. Also,
 *    this was documented under 7-bit addressing, and nothing
 *    about this with 10-bit addressing.
 *
 *    Experiments show that STOP has to be issued or the controller
 *    hangs forever. This was tested with reading and writing
 *    the Fujitsu I2C-based FRAM MB85RC256V.
 */

#include <errno.h>

#include <kernel.h>

#include <board.h>
#include <i2c.h>
#include <sys_clock.h>

#include <misc/util.h>

#define SYS_LOG_LEVEL CONFIG_SYS_LOG_I2C_LEVEL
#include <logging/sys_log.h>

#define TWI_IRQ_PDC \
	(TWI_SR_ENDRX | TWI_SR_ENDTX | TWI_SR_RXBUFF | TWI_SR_TXBUFE)

/* for use with dev_data->state */
#define STATE_READY		0
#define STATE_BUSY		(1 << 0)
#define STATE_TX		(1 << 1)
#define STATE_RX		(1 << 2)

/* return values for internal functions */
#define RET_OK			0
#define RET_ERR			1
#define RET_NACK		2


typedef void (*config_func_t)(struct device *dev);


struct i2c_sam3_dev_config {
	Twi *regs;
	config_func_t		config_func;
};

struct i2c_sam3_dev_data {
	struct k_sem		device_sync_sem;
	u32_t dev_config;

	volatile u32_t	state;

	u8_t			*xfr_buf;
	u32_t		xfr_len;
	u32_t		xfr_flags;
};


/**
 * Calculate clock dividers for TWI controllers.
 *
 * @param dev Device struct
 * @return Value used for TWI_CWGR register.
 */
static u32_t clk_div_calc(struct device *dev)
{
#if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 84000000)

	/* Use pre-calculated clock dividers when the SoC is running at
	 * 84 MHz. This saves execution time and ROM space.
	 */
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;

	switch (I2C_SPEED_GET(dev_data->dev_config)) {
	case I2C_SPEED_STANDARD:
		/* CKDIV = 1
		 * CHDIV = CLDIV = 208 = 0xD0
		 */
		return 0x0001D0D0;
	case I2C_SPEED_FAST:
		/* CKDIV = 0
		 * CHDIV = 101 = 0x65
		 * CLDIV = 106 = 0x6A
		 */
		return 0x0000656A;
	default:
		/* Return 0 as error */
		return 0;
	}

#else /* !(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 84000000) */

	/* Need to calcualte the clock dividers if the SoC is running at
	 * other frequencies.
	 */

	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
	u32_t i2c_clk;
	u32_t cldiv, chdiv, ckdiv;
	u32_t i2c_h_min_time, i2c_l_min_time;
	u32_t cldiv_min, chdiv_min;
	u32_t mck;

	/* The T(low) and T(high) are used to calculate CLDIV and CHDIV.
	 * Since we treat both clock low and clock high to have same period,
	 * the I2C clock frequency used for calculation has to be doubled.
	 *
	 * The I2C spec has the following minimum timing requirement:
	 * Standard Speed: High 4000ns, Low 4700ns
	 * Fast Speed: High 600ns, Low 1300ns
	 *
	 * So use these to calculate chdiv_min and cldiv_min.
	 */
	switch (I2C_SPEED_GET(dev_data->dev_config)) {
	case I2C_SPEED_STANDARD:
		i2c_clk = 100000 * 2;
		i2c_h_min_time = 4000;
		i2c_l_min_time = 4700;
		break;
	case I2C_SPEED_FAST:
		i2c_clk = 400000 * 2;
		i2c_h_min_time = 600;
		i2c_l_min_time = 1300;
		break;
	default:
		/* Return 0 as error */
		return 0;
	}

	/* Calculate CLDIV (which will be used for CHDIV also) */
	cldiv = (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) / i2c_clk - 4;

	/* Calculate minimum CHDIV and CLDIV */

	/* Make 1/mck be in micro second */
	mck = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
	      / MSEC_PER_SEC / USEC_PER_MSEC;

	/* The +1 is to make sure we don't go under the minimum
	 * after the division. In other words, force rounding up.
	 */
	cldiv_min = (i2c_l_min_time * mck / 1000) - 4 + 1;
	chdiv_min = (i2c_h_min_time * mck / 1000) - 4 + 1;

	ckdiv = 0;
	while (cldiv > 255) {
		ckdiv++;

		/* Math is there to round up.
		 * Rounding up makes the SCL periods longer,
		 * which makes clock slower.
		 * This is fine as faster clock may cause
		 * issues.
		 */
		cldiv = (cldiv >> 1) + (cldiv & 0x01);

		cldiv_min = (cldiv_min >> 1) + (cldiv_min & 0x01);
		chdiv_min = (chdiv_min >> 1) + (chdiv_min & 0x01);
	}

	chdiv = cldiv;

	/* Make sure we are above minimum requirements */
	cldiv = max(cldiv, cldiv_min);
	chdiv = max(chdiv, chdiv_min);

	return TWI_CWGR_CKDIV(ckdiv) + TWI_CWGR_CHDIV(chdiv)
	       + TWI_CWGR_CLDIV(cldiv);

#endif /* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 84000000 */
}

static int i2c_sam3_runtime_configure(struct device *dev, u32_t config)
{
	const struct i2c_sam3_dev_config * const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
	u32_t reg;
	u32_t clk;

	dev_data->dev_config = config;
	reg = 0;

	/* Calculate clock dividers */
	clk = clk_div_calc(dev);
	if (!clk) {
		return -EINVAL;
	}

	/* Disable controller first before changing anything */
	cfg->regs->TWI_CR = TWI_CR_MSDIS | TWI_CR_SVDIS;

	/* Setup clock wavefore generator */
	cfg->regs->TWI_CWGR = clk;

	return 0;
}

static void i2c_sam3_isr(void *arg)
{
	struct device * const dev = (struct device *)arg;
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;

	/* Disable all interrupts so they can be processed
	 * before ISR is called again.
	 */
	cfg->regs->TWI_IDR = cfg->regs->TWI_IMR;

	k_sem_give(&dev_data->device_sync_sem);
}

/* This should be used ONLY IF <bits> are the only bits of concern.
 * This is because reading from status register will clear certain
 * bits, and thus status might be ignored afterwards.
 */
static inline void sr_bits_set_wait(struct device *dev, u32_t bits)
{
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;

	while (!(cfg->regs->TWI_SR & bits)) {
		/* loop till <bits> are set */
	};
}

/* Clear the status registers from previous transfers */
static inline void status_reg_clear(struct device *dev)
{
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
	u32_t stat_reg;

	do {
		stat_reg = cfg->regs->TWI_SR;

		/* ignore these */
		stat_reg &= ~(TWI_IRQ_PDC | TWI_SR_TXRDY | TWI_SR_TXCOMP
				| TWI_SR_SVREAD);

		if (stat_reg & TWI_SR_OVRE) {
			continue;
		}

		if (stat_reg & TWI_SR_NACK) {
			continue;
		}

		if (stat_reg & TWI_SR_RXRDY) {
			stat_reg = cfg->regs->TWI_RHR;
		}
	} while (stat_reg);
}

static inline void transfer_setup(struct device *dev, u16_t slave_address)
{
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
	u32_t mmr;
	u32_t iadr;

	/* Set slave address */
	if (I2C_ADDR_10_BITS & dev_data->dev_config) {
		/* 10-bit slave addressing:
		 * first two bits goes to MMR/DADR, other 8 to IADR.
		 *
		 * 0x78 is the 0b11110xx bit prefix.
		 */
		mmr = TWI_MMR_DADR(0x78 | ((slave_address >> 8) & 0x03));
		mmr |= TWI_MMR_IADRSZ_1_BYTE;

		iadr = slave_address & 0xFF;
	} else {
		/* 7-bit slave addressing */
		mmr = TWI_MMR_DADR(slave_address);

		iadr = 0;
	}

	cfg->regs->TWI_MMR = mmr;
	cfg->regs->TWI_IADR = iadr;
}

static inline int msg_write(struct device *dev)
{
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;

	/* To write to slave */
	cfg->regs->TWI_MMR &= ~TWI_MMR_MREAD;

	/* Setup PDC to do DMA transfer */
	cfg->regs->TWI_PTCR = TWI_PTCR_TXTDIS | TWI_PTCR_RXTDIS;
	cfg->regs->TWI_TPR = (u32_t)dev_data->xfr_buf;
	cfg->regs->TWI_TCR = dev_data->xfr_len;

	/* Enable TX related interrupts.
	 * TXRDY is used by PDC so we don't want to interfere.
	 */
	cfg->regs->TWI_IER = TWI_SR_ENDTX | TWI_SR_NACK;

	/* Start DMA transfer for TX */
	cfg->regs->TWI_PTCR = TWI_PTCR_TXTEN;

	/* Wait till transfer is done or error occurs */
	k_sem_take(&dev_data->device_sync_sem, K_FOREVER);

	/* Check for error */
	if (cfg->regs->TWI_SR & TWI_SR_NACK) {
		return RET_NACK;
	}

	/* STOP if needed */
	if (dev_data->xfr_flags & I2C_MSG_STOP) {
		cfg->regs->TWI_CR = TWI_CR_STOP;

		/* Wait for TXCOMP if sending STOP.
		 * The transfer is done and the controller just needs to
		 * 'send' the STOP bit. So wait should be very short.
		 */
		sr_bits_set_wait(dev, TWI_SR_TXCOMP);
	} else {
		/* If no STOP, just wait for TX buffer to clear.
		 * At this point, this should take no time.
		 */
		sr_bits_set_wait(dev, TWI_SR_TXRDY);
	}

	/* Disable PDC */
	cfg->regs->TWI_PTCR = TWI_PTCR_TXTDIS;

	return RET_OK;
}

static inline int msg_read(struct device *dev)
{
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
	u32_t stat_reg;
	u32_t ctrl_reg;
	u32_t last_len;

	/* To read from slave */
	cfg->regs->TWI_MMR |= TWI_MMR_MREAD;

	/* START bit in control register needs to be set to start
	 * reading from slave. If the previous message is also read,
	 * there is no need to set the START bit again.
	 */
	ctrl_reg = 0;
	if (dev_data->xfr_flags & I2C_MSG_RESTART) {
		ctrl_reg = TWI_CR_START;
	}
	/* If there is only one byte to read, need to send STOP also. */
	if ((dev_data->xfr_len == 1)
	    && (dev_data->xfr_flags & I2C_MSG_STOP)) {
		ctrl_reg |= TWI_CR_STOP;
		dev_data->xfr_flags &= ~I2C_MSG_STOP;
	}
	cfg->regs->TWI_CR = ctrl_reg;

	/* Note that this is entirely possible to do the last byte without
	 * going through DMA. But that requires another block of code to
	 * setup the transfer and test for RXRDY bit (and other). So do it
	 * this way to save a few bytes of code space.
	 */
	while (dev_data->xfr_len > 0) {
		/* Setup PDC to do DMA transfer. */
		cfg->regs->TWI_PTCR = TWI_PTCR_TXTDIS | TWI_PTCR_RXTDIS;
		cfg->regs->TWI_RPR = (u32_t)dev_data->xfr_buf;

		/* Note that we need to set the STOP bit before reading
		 * last byte from RHR. So we need to process the last byte
		 * differently.
		 */
		if (dev_data->xfr_len > 1) {
			last_len = dev_data->xfr_len - 1;
		} else {
			last_len = 1;

			/* Set STOP bit for last byte.
			 * The extra check here is to prevent setting
			 * TWI_CR_STOP twice, when the message length
			 * is 1, as it is already set above.
			 */
			if (dev_data->xfr_flags & I2C_MSG_STOP) {
				cfg->regs->TWI_CR = TWI_CR_STOP;
			}
		}
		cfg->regs->TWI_RCR = last_len;

		/* Start DMA transfer for RX */
		cfg->regs->TWI_PTCR = TWI_PTCR_RXTEN;

		/* Enable RX related interrupts
		 * RXRDY is used by PDC so we don't want to interfere.
		 */
		cfg->regs->TWI_IER = TWI_SR_ENDRX | TWI_SR_NACK | TWI_SR_OVRE;

		/* Wait till transfer is done or error occurs */
		k_sem_take(&dev_data->device_sync_sem, K_FOREVER);

		/* Check for errors */
		stat_reg = cfg->regs->TWI_SR;
		if (stat_reg & TWI_SR_NACK) {
			return RET_NACK;
		}

		if (stat_reg & TWI_SR_OVRE) {
			return RET_ERR;
		}

		/* no more bytes to send */
		if (dev_data->xfr_len == 0) {
			break;
		}

		dev_data->xfr_buf += last_len;
		dev_data->xfr_len -= last_len;
	}

	/* Disable PDC */
	cfg->regs->TWI_PTCR = TWI_PTCR_RXTDIS;

	/* TXCOMP is kind of misleading here. This bit is set when THR/RHR
	 * and all shift registers are empty, and STOP (or NACK) is detected.
	 * So we wait here.
	 */
	sr_bits_set_wait(dev, TWI_SR_TXCOMP);

	return RET_OK;
}

static int i2c_sam3_transfer(struct device *dev,
			     struct i2c_msg *msgs, u8_t num_msgs,
			     u16_t slave_address)
{
	const struct i2c_sam3_dev_config *const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;
	struct i2c_msg *cur_msg = msgs;
	u8_t msg_left = num_msgs;
	u32_t pflags = 0;
	int ret = 0;
	int xfr_ret;

	__ASSERT_NO_MSG(msgs);
	if (!num_msgs) {
		return 0;
	}

	/* Device is busy servicing another transfer */
	if (dev_data->state & STATE_BUSY) {
		return -EIO;
	}

	dev_data->state = STATE_BUSY;

	/* Need to clear status from previous transfers */
	status_reg_clear(dev);

	/* Enable master */
	cfg->regs->TWI_CR = TWI_CR_MSEN | TWI_CR_SVDIS;

	transfer_setup(dev, slave_address);

	/* Process all messages one-by-one */
	while (msg_left > 0) {
		dev_data->xfr_buf = cur_msg->buf;
		dev_data->xfr_len = cur_msg->len;
		dev_data->xfr_flags = cur_msg->flags;

		/* Send STOP if this is the last message */
		if (msg_left == 1) {
			dev_data->xfr_flags |= I2C_MSG_STOP;
		}

		/* The controller does not have a documented way to
		 * issue RESTART when changing transfer direction as master.
		 *
		 * Datasheet said about using the internal address register
		 * (IADR) to write 3 bytes before reading. This limits
		 * the number of bytes to write before a read. Also,
		 * this was documented under 7-bit addressing, and nothing
		 * about this with 10-bit addressing.
		 *
		 * Experiments show that STOP has to be issued or
		 * the controller hangs forever.
		 */
		if (msg_left > 1) {
			if ((dev_data->xfr_flags & I2C_MSG_RW_MASK) !=
			    (cur_msg[1].flags & I2C_MSG_RW_MASK)) {
				dev_data->xfr_flags |= I2C_MSG_STOP;
			}
		}

		/* The RESTART flag is used to indicate whether to set
		 * the START bit in control register. This is used only
		 * when changing from write to read, as the START needs
		 * to be set to start receiving. This is also to avoid
		 * setting the START bit multiple time if we are doing
		 * multiple read messages in a roll.
		 */
		if ((dev_data->xfr_flags & I2C_MSG_RW_MASK) !=
		    (pflags & I2C_MSG_RW_MASK)) {
			dev_data->xfr_flags |= I2C_MSG_RESTART;
		}

		dev_data->state &= ~(STATE_TX | STATE_RX);

		if ((dev_data->xfr_flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
			dev_data->state |= STATE_TX;
			xfr_ret = msg_write(dev);
		} else {
			dev_data->state |= STATE_RX;
			xfr_ret = msg_read(dev);
		}

		if (xfr_ret == RET_NACK) {
			/* Disable PDC if NACK is received. */
			cfg->regs->TWI_PTCR = TWI_PTCR_TXTDIS
					      | TWI_PTCR_RXTDIS;

			ret = -EIO;
			goto done;
		}

		if (xfr_ret == RET_ERR) {
			/* Error encountered:
			 * Reset the controller and configure it again.
			 */
			cfg->regs->TWI_PTCR = TWI_PTCR_TXTDIS
					      | TWI_PTCR_RXTDIS;
			cfg->regs->TWI_CR = TWI_CR_SWRST | TWI_CR_MSDIS
					    | TWI_CR_SVDIS;

			i2c_sam3_runtime_configure(dev,
						   dev_data->dev_config);

			ret = -EIO;
			goto done;
		}

		cur_msg++;
		msg_left--;
		pflags = cur_msg->flags;
	}

done:
	dev_data->state = STATE_READY;

	/* Disable master and slave after transfer is done */
	cfg->regs->TWI_CR = TWI_CR_MSDIS | TWI_CR_SVDIS;

	return ret;
}

static const struct i2c_driver_api api_funcs = {
	.configure = i2c_sam3_runtime_configure,
	.transfer = i2c_sam3_transfer,
};

static int __deprecated i2c_sam3_init(struct device *dev)
{
	const struct i2c_sam3_dev_config * const cfg = dev->config->config_info;
	struct i2c_sam3_dev_data * const dev_data = dev->driver_data;

	k_sem_init(&dev_data->device_sync_sem, 0, UINT_MAX);

	/* Disable all interrupts */
	cfg->regs->TWI_IDR = cfg->regs->TWI_IMR;

	cfg->config_func(dev);

	if (i2c_sam3_runtime_configure(dev, dev_data->dev_config)
	    != 0) {
		SYS_LOG_DBG("I2C: Cannot set default configuration 0x%x",
		    dev_data->dev_config);
		return -EINVAL;
	}

	return 0;
}

#ifdef CONFIG_I2C_0

static void config_func_0(struct device *dev);

static const struct i2c_sam3_dev_config dev_config_0 = {
	.regs = TWI0,
	.config_func = config_func_0,
};

static struct i2c_sam3_dev_data dev_data_0 = {
	.dev_config = CONFIG_I2C_0_DEFAULT_CFG,
};

DEVICE_AND_API_INIT(i2c_sam3_0, CONFIG_I2C_0_NAME, &i2c_sam3_init,
		    &dev_data_0, &dev_config_0,
		    POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		    &api_funcs);

static void config_func_0(struct device *dev)
{
	/* Enable clock for TWI0 controller */
	PMC->PMC_PCER0 = (1 << ID_TWI0);

	IRQ_CONNECT(TWI0_IRQn, CONFIG_I2C_0_IRQ_PRI,
		    i2c_sam3_isr, DEVICE_GET(i2c_sam3_0), 0);
	irq_enable(TWI0_IRQn);
}

#endif /* CONFIG_I2C_0 */

#ifdef CONFIG_I2C_1

static void config_func_1(struct device *dev);

static const struct i2c_sam3_dev_config dev_config_1 = {
	.regs = TWI1,
	.config_func = config_func_1,
};

static struct i2c_sam3_dev_data dev_data_1 = {
	.dev_config = CONFIG_I2C_1_DEFAULT_CFG,
};

DEVICE_AND_API_INIT(i2c_sam3_1, CONFIG_I2C_1_NAME, &i2c_sam3_init,
		    &dev_data_1, &dev_config_1,
		    POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		    &api_funcs);

static void config_func_1(struct device *dev)
{
	/* Enable clock for TWI0 controller */
	PMC->PMC_PCER0 = (1 << ID_TWI1);

	IRQ_CONNECT(TWI1_IRQn, CONFIG_I2C_1_IRQ_PRI,
		    i2c_sam3_isr, DEVICE_GET(i2c_sam3_1), 0);
	irq_enable(TWI1_IRQn);
}

#endif /* CONFIG_I2C_1 */