Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | /* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @addtogroup t_mslab * @{ * @defgroup t_mslab_concept test_mslab_concept * @brief TestPurpose: verify memory slab concepts. * @details All TESTPOINTs extracted from kernel documentation. * TESTPOINTs cover testable kernel behaviors that preserve across internal * implementation change or kernel version change. * As a black-box test, TESTPOINTs do not cover internal operations. * * TESTPOINTs duplicated to <kernel.h> are covered in API test: * - TESTPOINT: ensure that all memory blocks in the buffer are similarly * aligned to this boundary * - TESTPOINT: A memory slab must be initialized before it can be used. This * marks all of its blocks as unused. * * TESTPOINTS related to multiple instances are covered in re-entrance test: * - TESTPOINT: Unlike a heap, more than one memory slab can be defined, if * needed. * @} */ #include <ztest.h> #include "test_mslab.h" #define THREAD_NUM 3 #define STACK_SIZE 512 K_MEM_SLAB_DEFINE(mslab1, BLK_SIZE, BLK_NUM, BLK_ALIGN); static K_THREAD_STACK_ARRAY_DEFINE(tstack, THREAD_NUM, STACK_SIZE); static struct k_thread tdata[THREAD_NUM]; static struct k_sem sync_sema; static void *block_ok; /*thread entry*/ void tmslab_alloc_wait_timeout(void *p1, void *p2, void *p3) { void *block; zassert_true(k_mem_slab_alloc(&mslab1, &block, TIMEOUT) == -EAGAIN, NULL); k_sem_give(&sync_sema); } void tmslab_alloc_wait_ok(void *p1, void *p2, void *p3) { zassert_true(k_mem_slab_alloc(&mslab1, &block_ok, TIMEOUT) == 0, NULL); k_sem_give(&sync_sema); } /*test cases*/ void test_mslab_alloc_wait_prio(void) { void *block[BLK_NUM]; k_tid_t tid[THREAD_NUM]; k_sem_init(&sync_sema, 0, THREAD_NUM); /*allocated up all blocks*/ for (int i = 0; i < BLK_NUM; i++) { zassert_equal(k_mem_slab_alloc(&mslab1, &block[i], K_NO_WAIT), 0, NULL); } /** * TESTPOINT: Any number of threads may wait on an empty memory slab * simultaneously; when a memory block becomes available, it is given to * the highest-priority thread that has waited the longest. */ /** * TESTPOINT: If all the blocks are currently in use, a thread can * optionally wait for one to become available. */ /*the low-priority thread*/ tid[0] = k_thread_create(&tdata[0], tstack[0], STACK_SIZE, tmslab_alloc_wait_timeout, NULL, NULL, NULL, K_PRIO_PREEMPT(1), 0, 0); /*the highest-priority thread that has waited the longest*/ tid[1] = k_thread_create(&tdata[1], tstack[1], STACK_SIZE, tmslab_alloc_wait_ok, NULL, NULL, NULL, K_PRIO_PREEMPT(0), 0, 10); /*the highest-priority thread that has waited shorter*/ tid[2] = k_thread_create(&tdata[2], tstack[2], STACK_SIZE, tmslab_alloc_wait_timeout, NULL, NULL, NULL, K_PRIO_PREEMPT(0), 0, 20); /*relinquish CPU for above threads to start */ k_sleep(30); /*free one block, expected to unblock thread "tid[1]"*/ k_mem_slab_free(&mslab1, &block[0]); /*wait for all threads exit*/ for (int i = 0; i < THREAD_NUM; i++) { k_sem_take(&sync_sema, K_FOREVER); } /*test case tear down*/ for (int i = 0; i < THREAD_NUM; i++) { k_thread_abort(tid[i]); } k_mem_slab_free(&mslab1, &block_ok); for (int i = 1; i < BLK_NUM; i++) { k_mem_slab_free(&mslab1, &block[i]); } } |