Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/*
 * Copyright (c) 2015 Intel Corporation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * @file I2C driver for Quark SE Sensor Subsystem.
 *
 * The I2C on Quark SE Sensor Subsystem is similar to DesignWare I2C IP block,
 * but with a different register set and different workflow.
 */

#include <stdint.h>
#include <stdbool.h>

#include <i2c.h>
#include <nanokernel.h>
#include <arch/cpu.h>

#include <sys_io.h>

#include <board.h>
#include <misc/util.h>

#include "i2c_quark_se_ss.h"
#include "i2c_quark_se_ss_registers.h"

#ifndef CONFIG_I2C_DEBUG
#define DBG(...) { ; }
#else
#include <misc/printk.h>
#define DBG printk
#endif /* CONFIG_I2C_DEBUG */

static inline uint32_t _i2c_qse_ss_memory_read(uint32_t base_addr,
					       uint32_t offset)
{
	return sys_read32(base_addr + offset);
}


static inline void _i2c_qse_ss_memory_write(uint32_t base_addr,
					    uint32_t offset, uint32_t val)
{
	sys_write32(val, base_addr + offset);
}

static inline uint32_t _i2c_qse_ss_reg_read(struct device *dev,
					    uint32_t reg)
{
	struct i2c_qse_ss_rom_config * const rom = dev->config->config_info;

	return _arc_v2_aux_reg_read(rom->base_address + reg);
}

static inline void _i2c_qse_ss_reg_write(struct device *dev,
					 uint32_t reg, uint32_t val)
{
	struct i2c_qse_ss_rom_config * const rom = dev->config->config_info;

	_arc_v2_aux_reg_write(rom->base_address + reg, val);
}

static inline void _i2c_qse_ss_reg_write_and(struct device *dev,
					     uint32_t reg, uint32_t mask)
{
	uint32_t r;

	r = _i2c_qse_ss_reg_read(dev, reg);
	r &= mask;
	_i2c_qse_ss_reg_write(dev, reg, r);
}

static inline void _i2c_qse_ss_reg_write_or(struct device *dev,
					    uint32_t reg, uint32_t mask)
{
	uint32_t r;

	r = _i2c_qse_ss_reg_read(dev, reg);
	r |= mask;
	_i2c_qse_ss_reg_write(dev, reg, r);
}

static inline int _i2c_qse_ss_reg_check_bit(struct device *dev,
					    uint32_t reg, uint32_t mask)
{
	return _i2c_qse_ss_reg_read(dev, reg) & mask;
}

/* Is the controller busy? */
static inline bool _i2c_qse_ss_is_busy(struct device *dev)
{
	return _i2c_qse_ss_reg_check_bit(dev, REG_STATUS, IC_STATUS_ACTIVITY);
}

/* Is RX FIFO not empty? */
static inline bool _i2c_qse_ss_is_rfne(struct device *dev)
{
	return _i2c_qse_ss_reg_check_bit(dev, REG_STATUS, IC_STATUS_RFNE);
}

/* Is TX FIFO not full? */
static inline bool _i2c_qse_ss_is_tfnf(struct device *dev)
{
	return _i2c_qse_ss_reg_check_bit(dev, REG_STATUS, IC_STATUS_TFNF);
}

/* Is TX FIFO empty? */
static inline bool _i2c_qse_ss_is_tfe(struct device *dev)
{
	return _i2c_qse_ss_reg_check_bit(dev, REG_STATUS, IC_STATUS_TFE);
}

/* Check a certain bit in the interrupt register */
static inline bool _i2c_qse_ss_check_irq(struct device *dev, uint32_t mask)
{
	return _i2c_qse_ss_reg_check_bit(dev, REG_INTR_STAT, mask);
}

static inline void _i2c_qse_ss_data_ask(struct device *dev)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;
	uint32_t data;
	uint8_t tx_empty;
	int8_t rx_empty;
	uint8_t cnt;

	/* No more bytes to request, so command queue is no longer needed */
	if (dw->request_bytes == 0) {
		_i2c_qse_ss_reg_write_and(dev, REG_INTR_MASK,
					  ~(IC_INTR_TX_EMPTY));

		return;
	}

	/* How many bytes we can actually ask */
	rx_empty = I2C_QSE_SS_FIFO_DEPTH
		   - _i2c_qse_ss_reg_read(dev, REG_RXFLR);
	rx_empty -= dw->rx_pending;

	if (rx_empty < 0) {
		/* RX FIFO expected to be full.
		 * So don't request any bytes, yet.
		 */
		return;
	}

	/* How many empty slots in TX FIFO (as command queue) */
	tx_empty = I2C_QSE_SS_FIFO_DEPTH
		   - _i2c_qse_ss_reg_read(dev, REG_TXFLR);

	/* Figure out how many bytes we can request */
	cnt = min(I2C_QSE_SS_FIFO_DEPTH, dw->request_bytes);
	cnt = min(min(tx_empty, rx_empty), cnt);

	while (cnt > 0) {
		/* Tell controller to get another byte */
		data = IC_DATA_CMD_CMD | IC_DATA_CMD_STROBE | IC_DATA_CMD_POP;

		/* Send RESTART if needed */
		if (dw->xfr_flags & I2C_MSG_RESTART) {
			data |= IC_DATA_CMD_RESTART;
			dw->xfr_flags &= ~(I2C_MSG_RESTART);
		}

		/* After receiving the last byte, send STOP if needed */
		if ((dw->xfr_flags & I2C_MSG_STOP)
		    && (dw->request_bytes == 1)) {
			data |= IC_DATA_CMD_STOP;
		}

		_i2c_qse_ss_reg_write(dev, REG_DATA_CMD, data);

		dw->rx_pending++;
		dw->request_bytes--;
		cnt--;
	}
}

static void _i2c_qse_ss_data_read(struct device *dev)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;

	while (_i2c_qse_ss_is_rfne(dev) && (dw->xfr_len > 0)) {
		/* Need to write 0 to POP bit to
		 * "pop" one byte from RX FIFO.
		 */
		_i2c_qse_ss_reg_write(dev, REG_DATA_CMD,
				      IC_DATA_CMD_STROBE);

		dw->xfr_buf[0] = _i2c_qse_ss_reg_read(dev, REG_DATA_CMD)
				 & IC_DATA_CMD_DATA_MASK;

		dw->xfr_buf++;
		dw->xfr_len--;
		dw->rx_pending--;

		if (dw->xfr_len == 0) {
			break;
		}
	}

	/* Nothing to receive anymore */
	if (dw->xfr_len == 0) {
		dw->state &= ~I2C_QSE_SS_CMD_RECV;
		return;
	}
}

static int _i2c_qse_ss_data_send(struct device *dev)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;
	uint32_t data;

	/* Nothing to send anymore, mask the interrupt */
	if (dw->xfr_len == 0) {
		_i2c_qse_ss_reg_write_and(dev, REG_INTR_MASK,
					  ~(IC_INTR_TX_EMPTY));

		dw->state &= ~I2C_QSE_SS_CMD_SEND;

		return DEV_OK;
	}

	while (_i2c_qse_ss_is_tfnf(dev) && (dw->xfr_len > 0)) {
		/* We have something to transmit to a specific host */
		data = dw->xfr_buf[0] | IC_DATA_CMD_STROBE | IC_DATA_CMD_POP;

		/* Send RESTART if needed */
		if (dw->xfr_flags & I2C_MSG_RESTART) {
			data |= IC_DATA_CMD_RESTART;
			dw->xfr_flags &= ~(I2C_MSG_RESTART);
		}

		/* Send STOP if needed */
		if ((dw->xfr_len == 1) && (dw->xfr_flags & I2C_MSG_STOP)) {
			data |= IC_DATA_CMD_STOP;
		}

		_i2c_qse_ss_reg_write(dev, REG_DATA_CMD, data);

		dw->xfr_len--;
		dw->xfr_buf++;

		if (_i2c_qse_ss_check_irq(dev, IC_INTR_TX_ABRT)) {
			return DEV_FAIL;
		}

	}

	return DEV_OK;
}

static inline void _i2c_qse_ss_transfer_complete(struct device *dev)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;

	/* Disable and clear all pending interrupts */
	_i2c_qse_ss_reg_write(dev, REG_INTR_MASK, IC_INTR_MASK_ALL);
	_i2c_qse_ss_reg_write(dev, REG_INTR_CLR, IC_INTR_CLR_ALL);

	device_sync_call_complete(&dw->sync);
}


void i2c_qse_ss_isr(void *arg)
{
	struct device *dev = (struct device *)arg;
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;
	uint32_t ic_intr_stat;
	int ret = DEV_OK;

	/*
	 * Causes of an intterrupts:
	 *   - STOP condition is detected
	 *   - Transfer is aborted
	 *   - Transmit FIFO is empy
	 *   - Transmit FIFO is overflowing
	 *   - Receive FIFO is full
	 *   - Receive FIFO overflow
	 *   - Received FIFO underrun
	 */

	DBG("I2C_SS: interrupt received\n");

	ic_intr_stat = _i2c_qse_ss_reg_read(dev, REG_INTR_STAT);

	/* Error conditions */
	if ((IC_INTR_TX_ABRT | IC_INTR_TX_OVER |
	     IC_INTR_RX_OVER | IC_INTR_RX_UNDER) &
	    ic_intr_stat) {
		dw->state = I2C_QSE_SS_CMD_ERROR;
		goto done;
	}

	/* Check if the RX FIFO reached threshold */
	if (ic_intr_stat & IC_INTR_RX_FULL) {
		_i2c_qse_ss_data_read(dev);
		_i2c_qse_ss_reg_write(dev, REG_INTR_CLR, IC_INTR_RX_FULL);
	}

	/* Check if the TX FIFO is ready for commands.
	 * TX FIFO also serves as command queue where read requests
	 * are written to TX FIFO.
	 */
	if (ic_intr_stat & IC_INTR_TX_EMPTY) {
		if ((dw->xfr_flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
			ret = _i2c_qse_ss_data_send(dev);
		} else {
			_i2c_qse_ss_data_ask(dev);
		}
		_i2c_qse_ss_reg_write(dev, REG_INTR_CLR, IC_INTR_TX_EMPTY);

		/* If STOP is not expected, finish processing this
		 * message if there is nothing left to do anymore.
		 * Or bail if there is any error.
		 */
		if (((dw->xfr_len == 0)
		     && !(dw->xfr_flags & I2C_MSG_STOP))
		    || (ret != DEV_OK)) {
			goto done;
		}
	}

	/* STOP detected */
	if (ic_intr_stat & IC_INTR_STOP_DET) {
		_i2c_qse_ss_reg_write(dev, REG_INTR_CLR, IC_INTR_STOP_DET);
		goto done;
	}

	return;

done:
	_i2c_qse_ss_transfer_complete(dev);
}

static int _i2c_qse_ss_setup(struct device *dev, uint16_t addr)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;
	uint32_t ic_con;
	int rc = DEV_OK;

	/* Disable the device controller but enable clock
	 * so we can setup the controller.
	 */
	_i2c_qse_ss_reg_write_and(dev, REG_CON, ~(IC_CON_ENABLE));

	/* Disable and clear all pending interrupts */
	_i2c_qse_ss_reg_write(dev, REG_INTR_MASK, IC_INTR_MASK_ALL);
	_i2c_qse_ss_reg_write(dev, REG_INTR_CLR, IC_INTR_CLR_ALL);

	ic_con = _i2c_qse_ss_reg_read(dev, REG_CON);
	ic_con &= IC_CON_SPKLEN_MASK;
	ic_con |= IC_CON_RESTART_EN | IC_CON_CLK_ENA;

	/* Set addressing mode - (initialization = 7 bit) */
	if (dw->app_config.bits.use_10_bit_addr) {
		DBG("I2C: using 10-bit address\n");
		ic_con |= IC_CON_10BIT_ADDR;
	}

	/* Setup the clock frequency and speed mode */
	switch (dw->app_config.bits.speed) {
	case I2C_SPEED_STANDARD:
		DBG("I2C: speed set to STANDARD\n");
		_i2c_qse_ss_reg_write(dev, REG_SS_SCL_CNT,
				      (dw->hcnt << 16) | (dw->lcnt & 0xFFFF));
		ic_con |= I2C_QSE_SS_SPEED_STANDARD << IC_CON_SPEED_POS;

		break;
	case I2C_SPEED_FAST:
		/* fall through */
	case I2C_SPEED_FAST_PLUS:
		DBG("I2C: speed set to FAST or FAST_PLUS\n");
		_i2c_qse_ss_reg_write(dev, REG_FS_SCL_CNT,
				      (dw->hcnt << 16) | (dw->lcnt & 0xFFFF));
		ic_con |= I2C_QSE_SS_SPEED_FAST << IC_CON_SPEED_POS;

		break;
	default:
		DBG("I2C: invalid speed requested\n");
		/* TODO change */
		rc = DEV_INVALID_CONF;
		goto done;
	}

	/* Set the target address */
	ic_con |= addr << IC_CON_TAR_SAR_POS;

	_i2c_qse_ss_reg_write(dev, REG_CON, ic_con);

	/* Set TX/RX fifo threshold level.
	 *
	 * RX:
	 * Setting it to 1 so RX_FULL is set whenever there is
	 * data in RX FIFO. (actual value is reg value +1)
	 *
	 * TX:
	 * Setting it to 0 so TX_EMPTY is set only when
	 * TX FIFO is truly empty. So that we can let
	 * the controller do the transfers for longer period
	 * before we need to fill the FIFO again. This may
	 * cause some pauses during transfers, but this keeps
	 * the device from interrupting often.
	 *
	 * TODO: extend the threshold for multi-byte RX FIFO.
	 */
	_i2c_qse_ss_reg_write(dev, REG_TL, 0x00000000);

	/* SDA Hold time has to setup to minimal 2 according to spec. */
	_i2c_qse_ss_reg_write(dev, REG_SDA_CONFIG, 0x00020000);

done:
	return rc;
}

static int i2c_qse_ss_intr_transfer(struct device *dev,
				    struct i2c_msg *msgs, uint8_t num_msgs,
				    uint16_t slave_address)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;
	struct i2c_msg *cur_msg = msgs;
	uint8_t msg_left = num_msgs;
	uint8_t pflags;
	int ret;

	/* Why bother processing no messages */
	if (!msgs || !num_msgs) {
		return DEV_INVALID_OP;
	}

	/* First step, check if device is idle */
	if (_i2c_qse_ss_is_busy(dev) || (dw->state & I2C_QSE_SS_BUSY)) {
		return DEV_USED;
	}

	dw->state |= I2C_QSE_SS_BUSY;

	ret = _i2c_qse_ss_setup(dev, slave_address);
	if (ret) {
		dw->state = I2C_QSE_SS_STATE_READY;
		return ret;
	}

	/* To prevent RESTART for first message */
	dw->xfr_flags = msgs[0].flags;

	/* Enable controller */
	_i2c_qse_ss_reg_write_or(dev, REG_CON, IC_CON_ENABLE);

	/* Process all the messages */
	while (msg_left > 0) {
		pflags = dw->xfr_flags;

		dw->xfr_buf = cur_msg->buf;
		dw->xfr_len = cur_msg->len;
		dw->xfr_flags = cur_msg->flags;
		dw->rx_pending = 0;

		/* Need to RESTART if changing transfer direction */
		if ((pflags & I2C_MSG_RW_MASK)
		    != (dw->xfr_flags & I2C_MSG_RW_MASK)) {
			dw->xfr_flags |= I2C_MSG_RESTART;
		}

		/* Send STOP if this is the last message */
		if (msg_left == 1) {
			dw->xfr_flags |= I2C_MSG_STOP;
		}

		dw->state &= ~(I2C_QSE_SS_CMD_SEND | I2C_QSE_SS_CMD_RECV);

		if ((dw->xfr_flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
			dw->state |= I2C_QSE_SS_CMD_SEND;
			dw->request_bytes = 0;
		} else {
			dw->state |= I2C_QSE_SS_CMD_RECV;
			dw->request_bytes = dw->xfr_len;
		}

		/* Enable interrupts to trigger ISR */
		_i2c_qse_ss_reg_write(dev, REG_INTR_MASK,
				      (IC_INTR_MASK_TX | IC_INTR_MASK_RX));

		/* Wait for transfer to be done */
		device_sync_call_wait(&dw->sync);
		if (dw->state & I2C_QSE_SS_CMD_ERROR) {
			ret = DEV_FAIL;
			break;
		}

		/* Something wrong if there is something left to do */
		if (dw->xfr_len > 0) {
			ret = DEV_FAIL;
			break;
		}

		cur_msg++;
		msg_left--;
	}

	dw->state = I2C_QSE_SS_STATE_READY;
	return ret;
}

static int i2c_qse_ss_runtime_configure(struct device *dev, uint32_t config)
{
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;
	uint32_t	value = 0;
	uint32_t	rc = DEV_OK;
	uint32_t	ic_con;
	uint32_t	spklen;

	dw->app_config.raw = config;

	ic_con = _i2c_qse_ss_reg_read(dev, REG_CON);

	spklen = (ic_con & IC_CON_SPKLEN_MASK) >> IC_CON_SPKLEN_POS;

	/* Make sure we have a supported speed for the DesignWare model */
	/* and have setup the clock frequency and speed mode */
	switch (dw->app_config.bits.speed) {
	case I2C_SPEED_STANDARD:
		/* Following the directions on DW spec page 59, IC_SS_SCL_LCNT
		 * must have register values larger than IC_FS_SPKLEN + 7
		 */
		if (I2C_STD_LCNT <= (spklen + 7)) {
			value = spklen + 8;
		} else {
			value = I2C_STD_LCNT;
		}

		dw->lcnt = value;

		/* Following the directions on DW spec page 59, IC_SS_SCL_HCNT
		 * must have register values larger than IC_FS_SPKLEN + 5
		 */
		if (I2C_STD_HCNT <= (spklen + 5)) {
			value = spklen + 6;
		} else {
			value = I2C_STD_HCNT;
		}

		dw->hcnt = value;
		break;
	case I2C_SPEED_FAST:
		/* fall through */
	case I2C_SPEED_FAST_PLUS:
		/*
		 * Following the directions on DW spec page 59, IC_FS_SCL_LCNT
		 * must have register values larger than IC_FS_SPKLEN + 7
		 */
		if (I2C_FS_LCNT <= (spklen + 7)) {
			value = spklen + 8;
		} else {
			value = I2C_FS_LCNT;
		}

		dw->lcnt = value;

		/*
		 * Following the directions on DW spec page 59, IC_FS_SCL_HCNT
		 * must have register values larger than IC_FS_SPKLEN + 5
		 */
		if (I2C_FS_HCNT <= (spklen + 5)) {
			value = spklen + 6;
		} else {
			value = I2C_FS_HCNT;
		}

		dw->hcnt = value;
		break;
	default:
		/* TODO change */
		rc = DEV_INVALID_CONF;
	}

	/*
	 * Clear any interrupts currently waiting in the controller
	 */
	_i2c_qse_ss_reg_write(dev, REG_INTR_CLR, IC_INTR_CLR_ALL);

	return rc;
}

static int i2c_qse_ss_suspend(struct device *dev)
{
	DBG("I2C_SS: suspend called - function not yet implemented\n");
	/* TODO - add this code */
	return DEV_OK;
}

static int i2c_qse_ss_resume(struct device *dev)
{
	DBG("I2C_SS: resume called - function not yet implemented\n");
	/* TODO - add this code */
	return DEV_OK;
}

static struct i2c_driver_api ss_funcs = {
	.configure = i2c_qse_ss_runtime_configure,
	.transfer = i2c_qse_ss_intr_transfer,
	.suspend = i2c_qse_ss_suspend,
	.resume = i2c_qse_ss_resume,
};

int i2c_qse_ss_initialize(struct device *dev)
{
	struct i2c_qse_ss_rom_config * const rom = dev->config->config_info;
	struct i2c_qse_ss_dev_config * const dw = dev->driver_data;

	dev->driver_api = &ss_funcs;

	if (rom->config_func) {
		rom->config_func(dev);
	}

	/* Enable clock for controller so we can talk to it */
	_i2c_qse_ss_reg_write_or(dev, REG_CON, IC_CON_CLK_ENA);

	device_sync_call_init(&dw->sync);

	if (i2c_qse_ss_runtime_configure(dev, dw->app_config.raw) != DEV_OK) {
		DBG("I2C_SS: Cannot set default configuration 0x%x\n",
		    dw->app_config.raw);
		return DEV_NOT_CONFIG;
	}

	dw->state = I2C_QSE_SS_STATE_READY;

	return DEV_OK;
}

#if CONFIG_I2C_QUARK_SE_SS_0
#include <init.h>

void _i2c_qse_ss_config_irq_0(struct device *port);

struct i2c_qse_ss_rom_config i2c_config_ss_0 = {
	.base_address =  CONFIG_I2C_QUARK_SE_SS_0_BASE,

	.config_func = _i2c_qse_ss_config_irq_0,
};

struct i2c_qse_ss_dev_config i2c_ss_0_runtime = {
	.app_config.raw = CONFIG_I2C_QUARK_SE_SS_0_DEFAULT_CFG,
};

DEVICE_INIT(i2c_ss_0, CONFIG_I2C_QUARK_SE_SS_0_NAME, &i2c_qse_ss_initialize,
			&i2c_ss_0_runtime, &i2c_config_ss_0,
			SECONDARY, CONFIG_I2C_INIT_PRIORITY);

void _i2c_qse_ss_config_irq_0(struct device *port)
{
	uint32_t mask = 0;

	/* Need to unmask the interrupts in System Control Subsystem (SCSS)
	 * so the interrupt controller can route these interrupts to
	 * the sensor subsystem.
	 */
	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_0_ERR_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_0_ERR_MASK, mask);

	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_0_TX_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_0_TX_MASK, mask);

	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_0_RX_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_0_RX_MASK, mask);

	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_0_STOP_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_0_STOP_MASK, mask);

	/* Connect the IRQs to ISR */
	IRQ_CONNECT(I2C_SS_0_ERR_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_0), 0);
	IRQ_CONNECT(I2C_SS_0_RX_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_0), 0);
	IRQ_CONNECT(I2C_SS_0_TX_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_0), 0);
	IRQ_CONNECT(I2C_SS_0_STOP_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_0), 0);

	irq_enable(I2C_SS_0_ERR_VECTOR);
	irq_enable(I2C_SS_0_RX_VECTOR);
	irq_enable(I2C_SS_0_TX_VECTOR);
	irq_enable(I2C_SS_0_STOP_VECTOR);
}

#endif /* CONFIG_I2C_QUARK_SE_SS_0 */

#if CONFIG_I2C_QUARK_SE_SS_1
#include <init.h>

void _i2c_qse_ss_config_irq_1(struct device *port);

struct i2c_qse_ss_rom_config i2c_config_ss_1 = {
	.base_address =  CONFIG_I2C_QUARK_SE_SS_1_BASE,

	.config_func = _i2c_qse_ss_config_irq_1,
};

struct i2c_qse_ss_dev_config i2c_qse_ss_1_runtime = {
	.app_config.raw = CONFIG_I2C_QUARK_SE_SS_1_DEFAULT_CFG,
};

DEVICE_INIT(i2c_ss_1, CONFIG_I2C_QUARK_SE_SS_1_NAME, &i2c_qse_ss_initialize,
			&i2c_qse_ss_1_runtime, &i2c_config_ss_1,
			SECONDARY, CONFIG_I2C_INIT_PRIORITY);


void _i2c_qse_ss_config_irq_1(struct device *port)
{
	uint32_t mask = 0;

	/* Need to unmask the interrupts in System Control Subsystem (SCSS)
	 * so the interrupt controller can route these interrupts to
	 * the sensor subsystem.
	 */
	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_1_ERR_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_1_ERR_MASK, mask);

	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_1_TX_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_1_TX_MASK, mask);

	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_1_RX_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_1_RX_MASK, mask);

	mask = _i2c_qse_ss_memory_read(SCSS_REGISTER_BASE, I2C_SS_1_STOP_MASK);
	mask &= INT_ENABLE_ARC;
	_i2c_qse_ss_memory_write(SCSS_REGISTER_BASE, I2C_SS_1_STOP_MASK, mask);

	/* Connect the IRQs to ISR */
	IRQ_CONNECT(I2C_SS_1_ERR_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_1), 0);
	IRQ_CONNECT(I2C_SS_1_RX_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_1), 0);
	IRQ_CONNECT(I2C_SS_1_TX_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_1), 0);
	IRQ_CONNECT(I2C_SS_1_STOP_VECTOR, 1, i2c_qse_ss_isr,
		    DEVICE_GET(i2c_ss_1), 0);

	irq_enable(I2C_SS_1_ERR_VECTOR);
	irq_enable(I2C_SS_1_RX_VECTOR);
	irq_enable(I2C_SS_1_TX_VECTOR);
	irq_enable(I2C_SS_1_STOP_VECTOR);
}

#endif /* CONFIG_I2C_QUARK_SE_SS_1 */