Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
U-Boot FIT Signature Verification
=================================

Introduction
------------
FIT supports hashing of images so that these hashes can be checked on
loading. This protects against corruption of the image. However it does not
prevent the substitution of one image for another.

The signature feature allows the hash to be signed with a private key such
that it can be verified using a public key later. Provided that the private
key is kept secret and the public key is stored in a non-volatile place,
any image can be verified in this way.

See verified-boot.txt for more general information on verified boot.


Concepts
--------
Some familiarity with public key cryptography is assumed in this section.

The procedure for signing is as follows:

   - hash an image in the FIT
   - sign the hash with a private key to produce a signature
   - store the resulting signature in the FIT

The procedure for verification is:

   - read the FIT
   - obtain the public key
   - extract the signature from the FIT
   - hash the image from the FIT
   - verify (with the public key) that the extracted signature matches the
       hash

The signing is generally performed by mkimage, as part of making a firmware
image for the device. The verification is normally done in U-Boot on the
device.


Algorithms
----------
In principle any suitable algorithm can be used to sign and verify a hash.
At present only one class of algorithms is supported: SHA1 hashing with RSA.
This works by hashing the image to produce a 20-byte hash.

While it is acceptable to bring in large cryptographic libraries such as
openssl on the host side (e.g. mkimage), it is not desirable for U-Boot.
For the run-time verification side, it is important to keep code and data
size as small as possible.

For this reason the RSA image verification uses pre-processed public keys
which can be used with a very small amount of code - just some extraction
of data from the FDT and exponentiation mod n. Code size impact is a little
under 5KB on Tegra Seaboard, for example.

It is relatively straightforward to add new algorithms if required. If
another RSA variant is needed, then it can be added to the table in
image-sig.c. If another algorithm is needed (such as DSA) then it can be
placed alongside rsa.c, and its functions added to the table in image-sig.c
also.


Creating an RSA key pair and certificate
----------------------------------------
To create a new public/private key pair, size 2048 bits:

$ openssl genpkey -algorithm RSA -out keys/dev.key \
    -pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537

To create a certificate for this containing the public key:

$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

If you like you can look at the public key also:

$ openssl rsa -in keys/dev.key -pubout


Device Tree Bindings
--------------------
The following properties are required in the FIT's signature node(s) to
allow the signer to operate. These should be added to the .its file.
Signature nodes sit at the same level as hash nodes and are called
signature-1, signature-2, etc.

- algo: Algorithm name (e.g. "sha1,rsa2048")

- key-name-hint: Name of key to use for signing. The keys will normally be in
a single directory (parameter -k to mkimage). For a given key <name>, its
private key is stored in <name>.key and the certificate is stored in
<name>.crt.

When the image is signed, the following properties are added (mandatory):

- value: The signature data (e.g. 256 bytes for 2048-bit RSA)

When the image is signed, the following properties are optional:

- timestamp: Time when image was signed (standard Unix time_t format)

- signer-name: Name of the signer (e.g. "mkimage")

- signer-version: Version string of the signer (e.g. "2013.01")

- comment: Additional information about the signer or image

- padding: The padding algorithm, it may be pkcs-1.5 or pss,
	if no value is provided we assume pkcs-1.5

For config bindings (see Signed Configurations below), the following
additional properties are optional:

- sign-images: A list of images to sign, each being a property of the conf
node that contains then. The default is "kernel,fdt" which means that these
two images will be looked up in the config and signed if present.

For config bindings, these properties are added by the signer:

- hashed-nodes: A list of nodes which were hashed by the signer. Each is
	a string - the full path to node. A typical value might be:

	hashed-nodes = "/", "/configurations/conf-1", "/images/kernel",
		"/images/kernel/hash-1", "/images/fdt-1",
		"/images/fdt-1/hash-1";

- hashed-strings: The start and size of the string region of the FIT that
	was hashed

Example: See sign-images.its for an example image tree source file and
sign-configs.its for config signing.


Public Key Storage
------------------
In order to verify an image that has been signed with a public key we need to
have a trusted public key. This cannot be stored in the signed image, since
it would be easy to alter. For this implementation we choose to store the
public key in U-Boot's control FDT (using CONFIG_OF_CONTROL).

Public keys should be stored as sub-nodes in a /signature node. Required
properties are:

- algo: Algorithm name (e.g. "sha1,rsa2048" or "sha256,ecdsa256")

Optional properties are:

- key-name-hint: Name of key used for signing. This is only a hint since it
is possible for the name to be changed. Verification can proceed by checking
all available signing keys until one matches.

- required: If present this indicates that the key must be verified for the
image / configuration to be considered valid. Only required keys are
normally verified by the FIT image booting algorithm. Valid values are
"image" to force verification of all images, and "conf" to force verification
of the selected configuration (which then relies on hashes in the images to
verify those).

Each signing algorithm has its own additional properties.

For RSA the following are mandatory:

- rsa,num-bits: Number of key bits (e.g. 2048)
- rsa,modulus: Modulus (N) as a big-endian multi-word integer
- rsa,exponent: Public exponent (E) as a 64 bit unsigned integer
- rsa,r-squared: (2^num-bits)^2 as a big-endian multi-word integer
- rsa,n0-inverse: -1 / modulus[0] mod 2^32

For ECDSA the following are mandatory:
- ecdsa,curve: Name of ECDSA curve (e.g. "prime256v1")
- ecdsa,x-point: Public key X coordinate as a big-endian multi-word integer
- ecdsa,y-point: Public key Y coordinate as a big-endian multi-word integer

These parameters can be added to a binary device tree using parameter -K of the
mkimage command::

    tools/mkimage -f fit.its -K control.dtb -k keys -r image.fit

Here is an example of a generated device tree node::

	signature {
		key-dev {
			required = "conf";
			algo = "sha256,rsa2048";
			rsa,r-squared = <0xb76d1acf 0xa1763ca5 0xeb2f126
					0x742edc80 0xd3f42177 0x9741d9d9
					0x35bb476e 0xff41c718 0xd3801430
					0xf22537cb 0xa7e79960 0xae32a043
					0x7da1427a 0x341d6492 0x3c2762f5
					0xaac04726 0x5b262d96 0xf984e86d
					0xb99443c7 0x17080c33 0x940f6892
					0xd57a95d1 0x6ea7b691 0xc5038fa8
					0x6bb48a6e 0x73f1b1ea 0x37160841
					0xe05715ce 0xa7c45bbd 0x690d82d5
					0x99c2454c 0x6ff117b3 0xd830683b
					0x3f81c9cf 0x1ca38a91 0x0c3392e4
					0xd817c625 0x7b8e9a24 0x175b89ea
					0xad79f3dc 0x4d50d7b4 0x9d4e90f8
					0xad9e2939 0xc165d6a4 0x0ada7e1b
					0xfb1bf495 0xfc3131c2 0xb8c6e604
					0xc2761124 0xf63de4a6 0x0e9565f9
					0xc8e53761 0x7e7a37a5 0xe99dcdae
					0x9aff7e1e 0xbd44b13d 0x6b0e6aa4
					0x038907e4 0x8e0d6850 0xef51bc20
					0xf73c94af 0x88bea7b1 0xcbbb1b30
					0xd024b7f3>;
			rsa,modulus = <0xc0711d6cb 0x9e86db7f 0x45986dbe
				       0x023f1e8c9 0xe1a4c4d0 0x8a0dfdc9
				       0x023ba0c48 0x06815f6a 0x5caa0654
				       0x07078c4b7 0x3d154853 0x40729023
				       0x0b007c8fe 0x5a3647e5 0x23b41e20
				       0x024720591 0x66915305 0x0e0b29b0
				       0x0de2ad30d 0x8589430f 0xb1590325
				       0x0fb9f5d5e 0x9eba752a 0xd88e6de9
				       0x056b3dcc6 0x9a6b8e61 0x6784f61f
				       0x000f39c21 0x5eec6b33 0xd78e4f78
				       0x0921a305f 0xaa2cc27e 0x1ca917af
				       0x06e1134f4 0xd48cac77 0x4e914d07
				       0x0f707aa5a 0x0d141f41 0x84677f1d
				       0x0ad47a049 0x028aedb6 0xd5536fcf
				       0x03fef1e4f 0x133a03d2 0xfd7a750a
				       0x0f9159732 0xd207812e 0x6a807375
				       0x06434230d 0xc8e22dad 0x9f29b3d6
				       0x07c44ac2b 0xfa2aad88 0xe2429504
				       0x041febd41 0x85d0d142 0x7b194d65
				       0x06e5d55ea 0x41116961 0xf3181dde
				       0x068bf5fbc 0x3dd82047 0x00ee647e
				       0x0d7a44ab3>;
			rsa,exponent = <0x00 0x10001>;
			rsa,n0-inverse = <0xb3928b85>;
			rsa,num-bits = <0x800>;
			key-name-hint = "dev";
		};
	};


Signed Configurations
---------------------
While signing images is useful, it does not provide complete protection
against several types of attack. For example, it it possible to create a
FIT with the same signed images, but with the configuration changed such
that a different one is selected (mix and match attack). It is also possible
to substitute a signed image from an older FIT version into a newer FIT
(roll-back attack).

As an example, consider this FIT:

/ {
	images {
		kernel-1 {
			data = <data for kernel1>
			signature-1 {
				algo = "sha1,rsa2048";
				value = <...kernel signature 1...>
			};
		};
		kernel-2 {
			data = <data for kernel2>
			signature-1 {
				algo = "sha1,rsa2048";
				value = <...kernel signature 2...>
			};
		};
		fdt-1 {
			data = <data for fdt1>;
			signature-1 {
				algo = "sha1,rsa2048";
				value = <...fdt signature 1...>
			};
		};
		fdt-2 {
			data = <data for fdt2>;
			signature-1 {
				algo = "sha1,rsa2048";
				value = <...fdt signature 2...>
			};
		};
	};
	configurations {
		default = "conf-1";
		conf-1 {
			kernel = "kernel-1";
			fdt = "fdt-1";
		};
		conf-2 {
			kernel = "kernel-2";
			fdt = "fdt-2";
		};
	};
};

Since both kernels are signed it is easy for an attacker to add a new
configuration 3 with kernel 1 and fdt 2:

	configurations {
		default = "conf-1";
		conf-1 {
			kernel = "kernel-1";
			fdt = "fdt-1";
		};
		conf-2 {
			kernel = "kernel-2";
			fdt = "fdt-2";
		};
		conf-3 {
			kernel = "kernel-1";
			fdt = "fdt-2";
		};
	};

With signed images, nothing protects against this. Whether it gains an
advantage for the attacker is debatable, but it is not secure.

To solve this problem, we support signed configurations. In this case it
is the configurations that are signed, not the image. Each image has its
own hash, and we include the hash in the configuration signature.

So the above example is adjusted to look like this:

/ {
	images {
		kernel-1 {
			data = <data for kernel1>
			hash-1 {
				algo = "sha1";
				value = <...kernel hash 1...>
			};
		};
		kernel-2 {
			data = <data for kernel2>
			hash-1 {
				algo = "sha1";
				value = <...kernel hash 2...>
			};
		};
		fdt-1 {
			data = <data for fdt1>;
			hash-1 {
				algo = "sha1";
				value = <...fdt hash 1...>
			};
		};
		fdt-2 {
			data = <data for fdt2>;
			hash-1 {
				algo = "sha1";
				value = <...fdt hash 2...>
			};
		};
	};
	configurations {
		default = "conf-1";
		conf-1 {
			kernel = "kernel-1";
			fdt = "fdt-1";
			signature-1 {
				algo = "sha1,rsa2048";
				value = <...conf 1 signature...>;
			};
		};
		conf-2 {
			kernel = "kernel-2";
			fdt = "fdt-2";
			signature-1 {
				algo = "sha1,rsa2048";
				value = <...conf 1 signature...>;
			};
		};
	};
};


You can see that we have added hashes for all images (since they are no
longer signed), and a signature to each configuration. In the above example,
mkimage will sign configurations/conf-1, the kernel and fdt that are
pointed to by the configuration (/images/kernel-1, /images/kernel-1/hash-1,
/images/fdt-1, /images/fdt-1/hash-1) and the root structure of the image
(so that it isn't possible to add or remove root nodes). The signature is
written into /configurations/conf-1/signature-1/value. It can easily be
verified later even if the FIT has been signed with other keys in the
meantime.


Verification
------------
FITs are verified when loaded. After the configuration is selected a list
of required images is produced. If there are 'required' public keys, then
each image must be verified against those keys. This means that every image
that might be used by the target needs to be signed with 'required' keys.

This happens automatically as part of a bootm command when FITs are used.

For Signed Configurations, the default verification behavior can be changed by
the following optional property in /signature node in U-Boot's control FDT.

- required-mode: Valid values are "any" to allow verified boot to succeed if
the selected configuration is signed by any of the 'required' keys, and "all"
to allow verified boot to succeed if the selected configuration is signed by
all of the 'required' keys.

This property can be added to a binary device tree using fdtput as shown in
below examples::

	fdtput -t s control.dtb /signature required-mode any
	fdtput -t s control.dtb /signature required-mode all


Enabling FIT Verification
-------------------------
In addition to the options to enable FIT itself, the following CONFIGs must
be enabled:

CONFIG_FIT_SIGNATURE - enable signing and verification in FITs
CONFIG_RSA - enable RSA algorithm for signing

WARNING: When relying on signed FIT images with required signature check
the legacy image format is default disabled by not defining
CONFIG_LEGACY_IMAGE_FORMAT


Testing
-------
An easy way to test signing and verification is to use the test script
provided in test/vboot/vboot_test.sh. This uses sandbox (a special version
of U-Boot which runs under Linux) to show the operation of a 'bootm'
command loading and verifying images.

A sample run is show below:

$ make O=sandbox sandbox_config
$ make O=sandbox
$ O=sandbox ./test/vboot/vboot_test.sh


Simple Verified Boot Test
=========================

Please see doc/uImage.FIT/verified-boot.txt for more information

/home/hs/ids/u-boot/sandbox/tools/mkimage -D -I dts -O dtb -p 2000
Build keys
do sha1 test
Build FIT with signed images
Test Verified Boot Run: unsigned signatures:: OK
Sign images
Test Verified Boot Run: signed images: OK
Build FIT with signed configuration
Test Verified Boot Run: unsigned config: OK
Sign images
Test Verified Boot Run: signed config: OK
check signed config on the host
Signature check OK
OK
Test Verified Boot Run: signed config: OK
Test Verified Boot Run: signed config with bad hash: OK
do sha256 test
Build FIT with signed images
Test Verified Boot Run: unsigned signatures:: OK
Sign images
Test Verified Boot Run: signed images: OK
Build FIT with signed configuration
Test Verified Boot Run: unsigned config: OK
Sign images
Test Verified Boot Run: signed config: OK
check signed config on the host
Signature check OK
OK
Test Verified Boot Run: signed config: OK
Test Verified Boot Run: signed config with bad hash: OK

Test passed


Software signing: keydir vs keyfile
-----------------------------------

In the simplest case, signing is done by giving mkimage the 'keyfile'. This is
the path to a file containing the signing key.

The alternative is to pass the 'keydir' argument. In this case the filename of
the key is derived from the 'keydir' and the "key-name-hint" property in the
FIT. In this case the "key-name-hint" property is mandatory, and the key must
exist in "<keydir>/<key-name-hint>.<ext>" Here the extension "ext" is
specific to the signing algorithm.


Hardware Signing with PKCS#11 or with HSM
-----------------------------------------

Securely managing private signing keys can challenging, especially when the
keys are stored on the file system of a computer that is connected to the
Internet. If an attacker is able to steal the key, they can sign malicious FIT
images which will appear genuine to your devices.

An alternative solution is to keep your signing key securely stored on hardware
device like a smartcard, USB token or Hardware Security Module (HSM) and have
them perform the signing. PKCS#11 is standard for interfacing with these crypto
device.

Requirements:
Smartcard/USB token/HSM which can work with some openssl engine
openssl

For pkcs11 engine usage:
libp11 (provides pkcs11 engine)
p11-kit (recommended to simplify setup)
opensc (for smartcards and smartcard like USB devices)
gnutls (recommended for key generation, p11tool)

For generic HSMs respective openssl engine must be installed and locateable by
openssl. This may require setting up LD_LIBRARY_PATH if engine is not installed
to openssl's default search paths.

PKCS11 engine support forms "key id" based on "keydir" and with
"key-name-hint". "key-name-hint" is used as "object" name (if not defined in
keydir). "keydir" (if defined) is used to define (prefix for) which PKCS11 source
is being used for lookup up for the key.

PKCS11 engine key ids:
   "pkcs11:<keydir>;object=<key-name-hint>;type=<public|private>"
or, if keydir contains "object="
   "pkcs11:<keydir>;type=<public|private>"
or
   "pkcs11:object=<key-name-hint>;type=<public|private>",

Generic HSM engine support forms "key id" based on "keydir" and with
"key-name-hint". If "keydir" is specified for mkimage it is used as a prefix in
"key id" and is appended with "key-name-hint".

Generic engine key ids:
  "<keydir><key-name-hint>"
or
  "<key-name-hint>"

In order to set the pin in the HSM, an environment variable "MKIMAGE_SIGN_PIN"
can be specified.

The following examples use the Nitrokey Pro using pkcs11 engine. Instructions
for other devices may vary.

Notes on pkcs11 engine setup:

Make sure p11-kit, opensc are installed and that p11-kit is setup to use opensc.
/usr/share/p11-kit/modules/opensc.module should be present on your system.


Generating Keys On the Nitrokey:

$ gpg --card-edit

Reader ...........: Nitrokey Nitrokey Pro (xxxxxxxx0000000000000000) 00 00
Application ID ...: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Version ..........: 2.1
Manufacturer .....: ZeitControl
Serial number ....: xxxxxxxx
Name of cardholder: [not set]
Language prefs ...: de
Sex ..............: unspecified
URL of public key : [not set]
Login data .......: [not set]
Signature PIN ....: forced
Key attributes ...: rsa2048 rsa2048 rsa2048
Max. PIN lengths .: 32 32 32
PIN retry counter : 3 0 3
Signature counter : 0
Signature key ....: [none]
Encryption key....: [none]
Authentication key: [none]
General key info..: [none]

gpg/card> generate
Make off-card backup of encryption key? (Y/n) n

Please note that the factory settings of the PINs are
  PIN = '123456' Admin PIN = '12345678'
You should change them using the command --change-pin

What keysize do you want for the Signature key? (2048) 4096
The card will now be re-configured to generate a key of 4096 bits
Note: There is no guarantee that the card supports the requested size.
  If the key generation does not succeed, please check the
  documentation of your card to see what sizes are allowed.
What keysize do you want for the Encryption key? (2048) 4096
The card will now be re-configured to generate a key of 4096 bits
What keysize do you want for the Authentication key? (2048) 4096
The card will now be re-configured to generate a key of 4096 bits
Please specify how long the key should be valid.
  0 = key does not expire
  <n> = key expires in n days
  <n>w = key expires in n weeks
  <n>m = key expires in n months
  <n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe
Email address: john.doe@email.com
Comment:
You selected this USER-ID:
  "John Doe <john.doe@email.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o


Using p11tool to get the token URL:

Depending on system configuration, gpg-agent may need to be killed first.

$ p11tool --provider /usr/lib/opensc-pkcs11.so --list-tokens
Token 0:
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29
Label: OpenPGP card (User PIN (sig))
Type: Hardware token
Manufacturer: ZeitControl
Model: PKCS#15 emulated
Serial: 000xxxxxxxxx
Module: (null)


Token 1:
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%29
Label: OpenPGP card (User PIN)
Type: Hardware token
Manufacturer: ZeitControl
Model: PKCS#15 emulated
Serial: 000xxxxxxxxx
Module: (null)

Use the portion of the signature token URL after "pkcs11:" as the keydir argument (-k) to mkimage below.


Use the URL of the token to list the private keys:

$ p11tool --login --provider /usr/lib/opensc-pkcs11.so --list-privkeys \
"pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29"
Token 'OpenPGP card (User PIN (sig))' with URL 'pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29' requires user PIN
Enter PIN:
Object 0:
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29;id=%01;object=Signature%20key;type=private
Type: Private key
Label: Signature key
Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
ID: 01

Use the label, in this case "Signature key" as the key-name-hint in your FIT.

Create the fitImage:
$ ./tools/mkimage -f fit-image.its fitImage


Sign the fitImage with the hardware key:

$ ./tools/mkimage -F -k \
"model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29" \
-K u-boot.dtb -N pkcs11 -r fitImage


Future Work
-----------
- Roll-back protection using a TPM is done using the tpm command. This can
be scripted, but we might consider a default way of doing this, built into
bootm.


Possible Future Work
--------------------
- Add support for other RSA/SHA variants, such as rsa4096,sha512.
- Other algorithms besides RSA
- More sandbox tests for failure modes
- Passwords for keys/certificates
- Perhaps implement OAEP
- Enhance bootm to permit scripted signature verification (so that a script
can verify an image but not actually boot it)


Simon Glass
sjg@chromium.org
1-1-13