Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// SPDX-License-Identifier: GPL-2.0

#include "misc.h"
#include "ctree.h"
#include "block-rsv.h"
#include "space-info.h"
#include "transaction.h"
#include "block-group.h"
#include "disk-io.h"
#include "fs.h"
#include "accessors.h"

/*
 * HOW DO BLOCK RESERVES WORK
 *
 *   Think of block_rsv's as buckets for logically grouped metadata
 *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
 *   how large we want our block rsv to be, ->reserved is how much space is
 *   currently reserved for this block reserve.
 *
 *   ->failfast exists for the truncate case, and is described below.
 *
 * NORMAL OPERATION
 *
 *   -> Reserve
 *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
 *
 *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
 *     accounted for in space_info->bytes_may_use, and then add the bytes to
 *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
 *
 *     ->size is an over-estimation of how much we may use for a particular
 *     operation.
 *
 *   -> Use
 *     Entrance: btrfs_use_block_rsv
 *
 *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
 *     to determine the appropriate block_rsv to use, and then verify that
 *     ->reserved has enough space for our tree block allocation.  Once
 *     successful we subtract fs_info->nodesize from ->reserved.
 *
 *   -> Finish
 *     Entrance: btrfs_block_rsv_release
 *
 *     We are finished with our operation, subtract our individual reservation
 *     from ->size, and then subtract ->size from ->reserved and free up the
 *     excess if there is any.
 *
 *     There is some logic here to refill the delayed refs rsv or the global rsv
 *     as needed, otherwise the excess is subtracted from
 *     space_info->bytes_may_use.
 *
 * TYPES OF BLOCK RESERVES
 *
 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
 *   These behave normally, as described above, just within the confines of the
 *   lifetime of their particular operation (transaction for the whole trans
 *   handle lifetime, for example).
 *
 * BLOCK_RSV_GLOBAL
 *   It is impossible to properly account for all the space that may be required
 *   to make our extent tree updates.  This block reserve acts as an overflow
 *   buffer in case our delayed refs reserve does not reserve enough space to
 *   update the extent tree.
 *
 *   We can steal from this in some cases as well, notably on evict() or
 *   truncate() in order to help users recover from ENOSPC conditions.
 *
 * BLOCK_RSV_DELALLOC
 *   The individual item sizes are determined by the per-inode size
 *   calculations, which are described with the delalloc code.  This is pretty
 *   straightforward, it's just the calculation of ->size encodes a lot of
 *   different items, and thus it gets used when updating inodes, inserting file
 *   extents, and inserting checksums.
 *
 * BLOCK_RSV_DELREFS
 *   We keep a running tally of how many delayed refs we have on the system.
 *   We assume each one of these delayed refs are going to use a full
 *   reservation.  We use the transaction items and pre-reserve space for every
 *   operation, and use this reservation to refill any gap between ->size and
 *   ->reserved that may exist.
 *
 *   From there it's straightforward, removing a delayed ref means we remove its
 *   count from ->size and free up reservations as necessary.  Since this is
 *   the most dynamic block reserve in the system, we will try to refill this
 *   block reserve first with any excess returned by any other block reserve.
 *
 * BLOCK_RSV_EMPTY
 *   This is the fallback block reserve to make us try to reserve space if we
 *   don't have a specific bucket for this allocation.  It is mostly used for
 *   updating the device tree and such, since that is a separate pool we're
 *   content to just reserve space from the space_info on demand.
 *
 * BLOCK_RSV_TEMP
 *   This is used by things like truncate and iput.  We will temporarily
 *   allocate a block reserve, set it to some size, and then truncate bytes
 *   until we have no space left.  With ->failfast set we'll simply return
 *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
 *   to make a new reservation.  This is because these operations are
 *   unbounded, so we want to do as much work as we can, and then back off and
 *   re-reserve.
 */

static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
				    struct btrfs_block_rsv *block_rsv,
				    struct btrfs_block_rsv *dest, u64 num_bytes,
				    u64 *qgroup_to_release_ret)
{
	struct btrfs_space_info *space_info = block_rsv->space_info;
	u64 qgroup_to_release = 0;
	u64 ret;

	spin_lock(&block_rsv->lock);
	if (num_bytes == (u64)-1) {
		num_bytes = block_rsv->size;
		qgroup_to_release = block_rsv->qgroup_rsv_size;
	}
	block_rsv->size -= num_bytes;
	if (block_rsv->reserved >= block_rsv->size) {
		num_bytes = block_rsv->reserved - block_rsv->size;
		block_rsv->reserved = block_rsv->size;
		block_rsv->full = true;
	} else {
		num_bytes = 0;
	}
	if (qgroup_to_release_ret &&
	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
				    block_rsv->qgroup_rsv_size;
		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
	} else {
		qgroup_to_release = 0;
	}
	spin_unlock(&block_rsv->lock);

	ret = num_bytes;
	if (num_bytes > 0) {
		if (dest) {
			spin_lock(&dest->lock);
			if (!dest->full) {
				u64 bytes_to_add;

				bytes_to_add = dest->size - dest->reserved;
				bytes_to_add = min(num_bytes, bytes_to_add);
				dest->reserved += bytes_to_add;
				if (dest->reserved >= dest->size)
					dest->full = true;
				num_bytes -= bytes_to_add;
			}
			spin_unlock(&dest->lock);
		}
		if (num_bytes)
			btrfs_space_info_free_bytes_may_use(fs_info,
							    space_info,
							    num_bytes);
	}
	if (qgroup_to_release_ret)
		*qgroup_to_release_ret = qgroup_to_release;
	return ret;
}

int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
			    struct btrfs_block_rsv *dst, u64 num_bytes,
			    bool update_size)
{
	int ret;

	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
	if (ret)
		return ret;

	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
	return 0;
}

void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
{
	memset(rsv, 0, sizeof(*rsv));
	spin_lock_init(&rsv->lock);
	rsv->type = type;
}

void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
				   struct btrfs_block_rsv *rsv,
				   enum btrfs_rsv_type type)
{
	btrfs_init_block_rsv(rsv, type);
	rsv->space_info = btrfs_find_space_info(fs_info,
					    BTRFS_BLOCK_GROUP_METADATA);
}

struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
					      enum btrfs_rsv_type type)
{
	struct btrfs_block_rsv *block_rsv;

	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
	if (!block_rsv)
		return NULL;

	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
	return block_rsv;
}

void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_rsv *rsv)
{
	if (!rsv)
		return;
	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
	kfree(rsv);
}

int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
			enum btrfs_reserve_flush_enum flush)
{
	int ret;

	if (num_bytes == 0)
		return 0;

	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
	if (!ret)
		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);

	return ret;
}

int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
{
	u64 num_bytes = 0;
	int ret = -ENOSPC;

	spin_lock(&block_rsv->lock);
	num_bytes = mult_perc(block_rsv->size, min_percent);
	if (block_rsv->reserved >= num_bytes)
		ret = 0;
	spin_unlock(&block_rsv->lock);

	return ret;
}

int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
			   enum btrfs_reserve_flush_enum flush)
{
	int ret = -ENOSPC;

	if (!block_rsv)
		return 0;

	spin_lock(&block_rsv->lock);
	if (block_rsv->reserved >= num_bytes)
		ret = 0;
	else
		num_bytes -= block_rsv->reserved;
	spin_unlock(&block_rsv->lock);

	if (!ret)
		return 0;

	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
	if (!ret) {
		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
		return 0;
	}

	return ret;
}

u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
			    u64 *qgroup_to_release)
{
	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
	struct btrfs_block_rsv *target = NULL;

	/*
	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
	 * into the delayed rsv if it is not full.
	 */
	if (block_rsv == delayed_rsv)
		target = global_rsv;
	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
		target = delayed_rsv;

	if (target && block_rsv->space_info != target->space_info)
		target = NULL;

	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
				       qgroup_to_release);
}

int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
{
	int ret = -ENOSPC;

	spin_lock(&block_rsv->lock);
	if (block_rsv->reserved >= num_bytes) {
		block_rsv->reserved -= num_bytes;
		if (block_rsv->reserved < block_rsv->size)
			block_rsv->full = false;
		ret = 0;
	}
	spin_unlock(&block_rsv->lock);
	return ret;
}

void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
			       u64 num_bytes, bool update_size)
{
	spin_lock(&block_rsv->lock);
	block_rsv->reserved += num_bytes;
	if (update_size)
		block_rsv->size += num_bytes;
	else if (block_rsv->reserved >= block_rsv->size)
		block_rsv->full = true;
	spin_unlock(&block_rsv->lock);
}

void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
{
	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
	struct btrfs_space_info *sinfo = block_rsv->space_info;
	struct btrfs_root *root, *tmp;
	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
	unsigned int min_items = 1;

	/*
	 * The global block rsv is based on the size of the extent tree, the
	 * checksum tree and the root tree.  If the fs is empty we want to set
	 * it to a minimal amount for safety.
	 *
	 * We also are going to need to modify the minimum of the tree root and
	 * any global roots we could touch.
	 */
	read_lock(&fs_info->global_root_lock);
	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
					     rb_node) {
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
			num_bytes += btrfs_root_used(&root->root_item);
			min_items++;
		}
	}
	read_unlock(&fs_info->global_root_lock);

	/*
	 * But we also want to reserve enough space so we can do the fallback
	 * global reserve for an unlink, which is an additional
	 * BTRFS_UNLINK_METADATA_UNITS items.
	 *
	 * But we also need space for the delayed ref updates from the unlink,
	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
	 * each unlink metadata item.
	 */
	min_items += BTRFS_UNLINK_METADATA_UNITS;

	num_bytes = max_t(u64, num_bytes,
			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
			  btrfs_calc_delayed_ref_bytes(fs_info,
					       BTRFS_UNLINK_METADATA_UNITS));

	spin_lock(&sinfo->lock);
	spin_lock(&block_rsv->lock);

	block_rsv->size = min_t(u64, num_bytes, SZ_512M);

	if (block_rsv->reserved < block_rsv->size) {
		num_bytes = block_rsv->size - block_rsv->reserved;
		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
						      num_bytes);
		block_rsv->reserved = block_rsv->size;
	} else if (block_rsv->reserved > block_rsv->size) {
		num_bytes = block_rsv->reserved - block_rsv->size;
		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
						      -num_bytes);
		block_rsv->reserved = block_rsv->size;
		btrfs_try_granting_tickets(fs_info, sinfo);
	}

	block_rsv->full = (block_rsv->reserved == block_rsv->size);

	if (block_rsv->size >= sinfo->total_bytes)
		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
	spin_unlock(&block_rsv->lock);
	spin_unlock(&sinfo->lock);
}

void btrfs_init_root_block_rsv(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	switch (root->root_key.objectid) {
	case BTRFS_CSUM_TREE_OBJECTID:
	case BTRFS_EXTENT_TREE_OBJECTID:
	case BTRFS_FREE_SPACE_TREE_OBJECTID:
	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
		root->block_rsv = &fs_info->delayed_refs_rsv;
		break;
	case BTRFS_ROOT_TREE_OBJECTID:
	case BTRFS_DEV_TREE_OBJECTID:
	case BTRFS_QUOTA_TREE_OBJECTID:
		root->block_rsv = &fs_info->global_block_rsv;
		break;
	case BTRFS_CHUNK_TREE_OBJECTID:
		root->block_rsv = &fs_info->chunk_block_rsv;
		break;
	default:
		root->block_rsv = NULL;
		break;
	}
}

void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
{
	struct btrfs_space_info *space_info;

	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
	fs_info->chunk_block_rsv.space_info = space_info;

	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
	fs_info->global_block_rsv.space_info = space_info;
	fs_info->trans_block_rsv.space_info = space_info;
	fs_info->empty_block_rsv.space_info = space_info;
	fs_info->delayed_block_rsv.space_info = space_info;
	fs_info->delayed_refs_rsv.space_info = space_info;

	btrfs_update_global_block_rsv(fs_info);
}

void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
{
	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
				NULL);
	WARN_ON(fs_info->trans_block_rsv.size > 0);
	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
	WARN_ON(fs_info->chunk_block_rsv.size > 0);
	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
	WARN_ON(fs_info->delayed_block_rsv.size > 0);
	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
}

static struct btrfs_block_rsv *get_block_rsv(
					const struct btrfs_trans_handle *trans,
					const struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_block_rsv *block_rsv = NULL;

	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
	    (root == fs_info->uuid_root) ||
	    (trans->adding_csums &&
	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
		block_rsv = trans->block_rsv;

	if (!block_rsv)
		block_rsv = root->block_rsv;

	if (!block_rsv)
		block_rsv = &fs_info->empty_block_rsv;

	return block_rsv;
}

struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
					    struct btrfs_root *root,
					    u32 blocksize)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_block_rsv *block_rsv;
	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
	int ret;
	bool global_updated = false;

	block_rsv = get_block_rsv(trans, root);

	if (unlikely(block_rsv->size == 0))
		goto try_reserve;
again:
	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
	if (!ret)
		return block_rsv;

	if (block_rsv->failfast)
		return ERR_PTR(ret);

	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
		global_updated = true;
		btrfs_update_global_block_rsv(fs_info);
		goto again;
	}

	/*
	 * The global reserve still exists to save us from ourselves, so don't
	 * warn_on if we are short on our delayed refs reserve.
	 */
	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
		static DEFINE_RATELIMIT_STATE(_rs,
				DEFAULT_RATELIMIT_INTERVAL * 10,
				/*DEFAULT_RATELIMIT_BURST*/ 1);
		if (__ratelimit(&_rs))
			WARN(1, KERN_DEBUG
				"BTRFS: block rsv %d returned %d\n",
				block_rsv->type, ret);
	}
try_reserve:
	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
					   BTRFS_RESERVE_NO_FLUSH);
	if (!ret)
		return block_rsv;
	/*
	 * If we couldn't reserve metadata bytes try and use some from
	 * the global reserve if its space type is the same as the global
	 * reservation.
	 */
	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
	    block_rsv->space_info == global_rsv->space_info) {
		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
		if (!ret)
			return global_rsv;
	}

	/*
	 * All hope is lost, but of course our reservations are overly
	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
	 * one last time to force a reservation if there's enough actual space
	 * on disk to make the reservation.
	 */
	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
					   BTRFS_RESERVE_FLUSH_EMERGENCY);
	if (!ret)
		return block_rsv;

	return ERR_PTR(ret);
}