Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */
#include "amdgpu.h"
#include "amdgpu_mode.h"
#include "amdgpu_dm.h"
#include "dc.h"
#include "modules/color/color_gamma.h"
#include "basics/conversion.h"

/*
 * The DC interface to HW gives us the following color management blocks
 * per pipe (surface):
 *
 * - Input gamma LUT (de-normalized)
 * - Input CSC (normalized)
 * - Surface degamma LUT (normalized)
 * - Surface CSC (normalized)
 * - Surface regamma LUT (normalized)
 * - Output CSC (normalized)
 *
 * But these aren't a direct mapping to DRM color properties. The current DRM
 * interface exposes CRTC degamma, CRTC CTM and CRTC regamma while our hardware
 * is essentially giving:
 *
 * Plane CTM -> Plane degamma -> Plane CTM -> Plane regamma -> Plane CTM
 *
 * The input gamma LUT block isn't really applicable here since it operates
 * on the actual input data itself rather than the HW fp representation. The
 * input and output CSC blocks are technically available to use as part of
 * the DC interface but are typically used internally by DC for conversions
 * between color spaces. These could be blended together with user
 * adjustments in the future but for now these should remain untouched.
 *
 * The pipe blending also happens after these blocks so we don't actually
 * support any CRTC props with correct blending with multiple planes - but we
 * can still support CRTC color management properties in DM in most single
 * plane cases correctly with clever management of the DC interface in DM.
 *
 * As per DRM documentation, blocks should be in hardware bypass when their
 * respective property is set to NULL. A linear DGM/RGM LUT should also
 * considered as putting the respective block into bypass mode.
 *
 * This means that the following
 * configuration is assumed to be the default:
 *
 * Plane DGM Bypass -> Plane CTM Bypass -> Plane RGM Bypass -> ...
 * CRTC DGM Bypass -> CRTC CTM Bypass -> CRTC RGM Bypass
 */

#define MAX_DRM_LUT_VALUE 0xFFFF

/*
 * Initialize the color module.
 *
 * We're not using the full color module, only certain components.
 * Only call setup functions for components that we need.
 */
void amdgpu_dm_init_color_mod(void)
{
	setup_x_points_distribution();
}

/* Extracts the DRM lut and lut size from a blob. */
static const struct drm_color_lut *
__extract_blob_lut(const struct drm_property_blob *blob, uint32_t *size)
{
	*size = blob ? drm_color_lut_size(blob) : 0;
	return blob ? (struct drm_color_lut *)blob->data : NULL;
}

/*
 * Return true if the given lut is a linear mapping of values, i.e. it acts
 * like a bypass LUT.
 *
 * It is considered linear if the lut represents:
 * f(a) = (0xFF00/MAX_COLOR_LUT_ENTRIES-1)a; for integer a in
 *                                           [0, MAX_COLOR_LUT_ENTRIES)
 */
static bool __is_lut_linear(const struct drm_color_lut *lut, uint32_t size)
{
	int i;
	uint32_t expected;
	int delta;

	for (i = 0; i < size; i++) {
		/* All color values should equal */
		if ((lut[i].red != lut[i].green) || (lut[i].green != lut[i].blue))
			return false;

		expected = i * MAX_DRM_LUT_VALUE / (size-1);

		/* Allow a +/-1 error. */
		delta = lut[i].red - expected;
		if (delta < -1 || 1 < delta)
			return false;
	}
	return true;
}

/**
 * Convert the drm_color_lut to dc_gamma. The conversion depends on the size
 * of the lut - whether or not it's legacy.
 */
static void __drm_lut_to_dc_gamma(const struct drm_color_lut *lut,
				  struct dc_gamma *gamma, bool is_legacy)
{
	uint32_t r, g, b;
	int i;

	if (is_legacy) {
		for (i = 0; i < MAX_COLOR_LEGACY_LUT_ENTRIES; i++) {
			r = drm_color_lut_extract(lut[i].red, 16);
			g = drm_color_lut_extract(lut[i].green, 16);
			b = drm_color_lut_extract(lut[i].blue, 16);

			gamma->entries.red[i] = dc_fixpt_from_int(r);
			gamma->entries.green[i] = dc_fixpt_from_int(g);
			gamma->entries.blue[i] = dc_fixpt_from_int(b);
		}
		return;
	}

	/* else */
	for (i = 0; i < MAX_COLOR_LUT_ENTRIES; i++) {
		r = drm_color_lut_extract(lut[i].red, 16);
		g = drm_color_lut_extract(lut[i].green, 16);
		b = drm_color_lut_extract(lut[i].blue, 16);

		gamma->entries.red[i] = dc_fixpt_from_fraction(r, MAX_DRM_LUT_VALUE);
		gamma->entries.green[i] = dc_fixpt_from_fraction(g, MAX_DRM_LUT_VALUE);
		gamma->entries.blue[i] = dc_fixpt_from_fraction(b, MAX_DRM_LUT_VALUE);
	}
}

/*
 * Converts a DRM CTM to a DC CSC float matrix.
 * The matrix needs to be a 3x4 (12 entry) matrix.
 */
static void __drm_ctm_to_dc_matrix(const struct drm_color_ctm *ctm,
				   struct fixed31_32 *matrix)
{
	int64_t val;
	int i;

	/*
	 * DRM gives a 3x3 matrix, but DC wants 3x4. Assuming we're operating
	 * with homogeneous coordinates, augment the matrix with 0's.
	 *
	 * The format provided is S31.32, using signed-magnitude representation.
	 * Our fixed31_32 is also S31.32, but is using 2's complement. We have
	 * to convert from signed-magnitude to 2's complement.
	 */
	for (i = 0; i < 12; i++) {
		/* Skip 4th element */
		if (i % 4 == 3) {
			matrix[i] = dc_fixpt_zero;
			continue;
		}

		/* gamut_remap_matrix[i] = ctm[i - floor(i/4)] */
		val = ctm->matrix[i - (i / 4)];
		/* If negative, convert to 2's complement. */
		if (val & (1ULL << 63))
			val = -(val & ~(1ULL << 63));

		matrix[i].value = val;
	}
}

/* Calculates the legacy transfer function - only for sRGB input space. */
static int __set_legacy_tf(struct dc_transfer_func *func,
			   const struct drm_color_lut *lut, uint32_t lut_size,
			   bool has_rom)
{
	struct dc_gamma *gamma = NULL;
	bool res;

	ASSERT(lut && lut_size == MAX_COLOR_LEGACY_LUT_ENTRIES);

	gamma = dc_create_gamma();
	if (!gamma)
		return -ENOMEM;

	gamma->type = GAMMA_RGB_256;
	gamma->num_entries = lut_size;
	__drm_lut_to_dc_gamma(lut, gamma, true);

	res = mod_color_calculate_regamma_params(func, gamma, true, has_rom,
						 NULL);

	return res ? 0 : -ENOMEM;
}

/* Calculates the output transfer function based on expected input space. */
static int __set_output_tf(struct dc_transfer_func *func,
			   const struct drm_color_lut *lut, uint32_t lut_size,
			   bool has_rom)
{
	struct dc_gamma *gamma = NULL;
	bool res;

	ASSERT(lut && lut_size == MAX_COLOR_LUT_ENTRIES);

	gamma = dc_create_gamma();
	if (!gamma)
		return -ENOMEM;

	gamma->num_entries = lut_size;
	__drm_lut_to_dc_gamma(lut, gamma, false);

	if (func->tf == TRANSFER_FUNCTION_LINEAR) {
		/*
		 * Color module doesn't like calculating regamma params
		 * on top of a linear input. But degamma params can be used
		 * instead to simulate this.
		 */
		gamma->type = GAMMA_CUSTOM;
		res = mod_color_calculate_degamma_params(func, gamma, true);
	} else {
		/*
		 * Assume sRGB. The actual mapping will depend on whether the
		 * input was legacy or not.
		 */
		gamma->type = GAMMA_CS_TFM_1D;
		res = mod_color_calculate_regamma_params(func, gamma, false,
							 has_rom, NULL);
	}

	dc_gamma_release(&gamma);

	return res ? 0 : -ENOMEM;
}

/* Caculates the input transfer function based on expected input space. */
static int __set_input_tf(struct dc_transfer_func *func,
			  const struct drm_color_lut *lut, uint32_t lut_size)
{
	struct dc_gamma *gamma = NULL;
	bool res;

	gamma = dc_create_gamma();
	if (!gamma)
		return -ENOMEM;

	gamma->type = GAMMA_CUSTOM;
	gamma->num_entries = lut_size;

	__drm_lut_to_dc_gamma(lut, gamma, false);

	res = mod_color_calculate_degamma_params(func, gamma, true);
	dc_gamma_release(&gamma);

	return res ? 0 : -ENOMEM;
}

/**
 * amdgpu_dm_update_crtc_color_mgmt: Maps DRM color management to DC stream.
 * @crtc: amdgpu_dm crtc state
 *
 * With no plane level color management properties we're free to use any
 * of the HW blocks as long as the CRTC CTM always comes before the
 * CRTC RGM and after the CRTC DGM.
 *
 * The CRTC RGM block will be placed in the RGM LUT block if it is non-linear.
 * The CRTC DGM block will be placed in the DGM LUT block if it is non-linear.
 * The CRTC CTM will be placed in the gamut remap block if it is non-linear.
 *
 * The RGM block is typically more fully featured and accurate across
 * all ASICs - DCE can't support a custom non-linear CRTC DGM.
 *
 * For supporting both plane level color management and CRTC level color
 * management at once we have to either restrict the usage of CRTC properties
 * or blend adjustments together.
 *
 * Returns 0 on success.
 */
int amdgpu_dm_update_crtc_color_mgmt(struct dm_crtc_state *crtc)
{
	struct dc_stream_state *stream = crtc->stream;
	struct amdgpu_device *adev =
		(struct amdgpu_device *)crtc->base.state->dev->dev_private;
	bool has_rom = adev->asic_type <= CHIP_RAVEN;
	struct drm_color_ctm *ctm = NULL;
	const struct drm_color_lut *degamma_lut, *regamma_lut;
	uint32_t degamma_size, regamma_size;
	bool has_regamma, has_degamma;
	bool is_legacy;
	int r;

	degamma_lut = __extract_blob_lut(crtc->base.degamma_lut, &degamma_size);
	if (degamma_lut && degamma_size != MAX_COLOR_LUT_ENTRIES)
		return -EINVAL;

	regamma_lut = __extract_blob_lut(crtc->base.gamma_lut, &regamma_size);
	if (regamma_lut && regamma_size != MAX_COLOR_LUT_ENTRIES &&
	    regamma_size != MAX_COLOR_LEGACY_LUT_ENTRIES)
		return -EINVAL;

	has_degamma =
		degamma_lut && !__is_lut_linear(degamma_lut, degamma_size);

	has_regamma =
		regamma_lut && !__is_lut_linear(regamma_lut, regamma_size);

	is_legacy = regamma_size == MAX_COLOR_LEGACY_LUT_ENTRIES;

	/* Reset all adjustments. */
	crtc->cm_has_degamma = false;
	crtc->cm_is_degamma_srgb = false;

	/* Setup regamma and degamma. */
	if (is_legacy) {
		/*
		 * Legacy regamma forces us to use the sRGB RGM as a base.
		 * This also means we can't use linear DGM since DGM needs
		 * to use sRGB as a base as well, resulting in incorrect CRTC
		 * DGM and CRTC CTM.
		 *
		 * TODO: Just map this to the standard regamma interface
		 * instead since this isn't really right. One of the cases
		 * where this setup currently fails is trying to do an
		 * inverse color ramp in legacy userspace.
		 */
		crtc->cm_is_degamma_srgb = true;
		stream->out_transfer_func->type = TF_TYPE_DISTRIBUTED_POINTS;
		stream->out_transfer_func->tf = TRANSFER_FUNCTION_SRGB;

		r = __set_legacy_tf(stream->out_transfer_func, regamma_lut,
				    regamma_size, has_rom);
		if (r)
			return r;
	} else if (has_regamma) {
		/* CRTC RGM goes into RGM LUT. */
		stream->out_transfer_func->type = TF_TYPE_DISTRIBUTED_POINTS;
		stream->out_transfer_func->tf = TRANSFER_FUNCTION_LINEAR;

		r = __set_output_tf(stream->out_transfer_func, regamma_lut,
				    regamma_size, has_rom);
		if (r)
			return r;
	} else {
		/*
		 * No CRTC RGM means we can just put the block into bypass
		 * since we don't have any plane level adjustments using it.
		 */
		stream->out_transfer_func->type = TF_TYPE_BYPASS;
		stream->out_transfer_func->tf = TRANSFER_FUNCTION_LINEAR;
	}

	/*
	 * CRTC DGM goes into DGM LUT. It would be nice to place it
	 * into the RGM since it's a more featured block but we'd
	 * have to place the CTM in the OCSC in that case.
	 */
	crtc->cm_has_degamma = has_degamma;

	/* Setup CRTC CTM. */
	if (crtc->base.ctm) {
		ctm = (struct drm_color_ctm *)crtc->base.ctm->data;

		/*
		 * Gamut remapping must be used for gamma correction
		 * since it comes before the regamma correction.
		 *
		 * OCSC could be used for gamma correction, but we'd need to
		 * blend the adjustments together with the required output
		 * conversion matrix - so just use the gamut remap block
		 * for now.
		 */
		__drm_ctm_to_dc_matrix(ctm, stream->gamut_remap_matrix.matrix);

		stream->gamut_remap_matrix.enable_remap = true;
		stream->csc_color_matrix.enable_adjustment = false;
	} else {
		/* Bypass CTM. */
		stream->gamut_remap_matrix.enable_remap = false;
		stream->csc_color_matrix.enable_adjustment = false;
	}

	return 0;
}

/**
 * amdgpu_dm_update_plane_color_mgmt: Maps DRM color management to DC plane.
 * @crtc: amdgpu_dm crtc state
 * @ dc_plane_state: target DC surface
 *
 * Update the underlying dc_stream_state's input transfer function (ITF) in
 * preparation for hardware commit. The transfer function used depends on
 * the prepartion done on the stream for color management.
 *
 * Returns 0 on success.
 */
int amdgpu_dm_update_plane_color_mgmt(struct dm_crtc_state *crtc,
				      struct dc_plane_state *dc_plane_state)
{
	const struct drm_color_lut *degamma_lut;
	uint32_t degamma_size;
	int r;

	if (crtc->cm_has_degamma) {
		degamma_lut = __extract_blob_lut(crtc->base.degamma_lut,
						 &degamma_size);
		ASSERT(degamma_size == MAX_COLOR_LUT_ENTRIES);

		dc_plane_state->in_transfer_func->type =
			TF_TYPE_DISTRIBUTED_POINTS;

		/*
		 * This case isn't fully correct, but also fairly
		 * uncommon. This is userspace trying to use a
		 * legacy gamma LUT + atomic degamma LUT
		 * at the same time.
		 *
		 * Legacy gamma requires the input to be in linear
		 * space, so that means we need to apply an sRGB
		 * degamma. But color module also doesn't support
		 * a user ramp in this case so the degamma will
		 * be lost.
		 *
		 * Even if we did support it, it's still not right:
		 *
		 * Input -> CRTC DGM -> sRGB DGM -> CRTC CTM ->
		 * sRGB RGM -> CRTC RGM -> Output
		 *
		 * The CSC will be done in the wrong space since
		 * we're applying an sRGB DGM on top of the CRTC
		 * DGM.
		 *
		 * TODO: Don't use the legacy gamma interface and just
		 * map these to the atomic one instead.
		 */
		if (crtc->cm_is_degamma_srgb)
			dc_plane_state->in_transfer_func->tf =
				TRANSFER_FUNCTION_SRGB;
		else
			dc_plane_state->in_transfer_func->tf =
				TRANSFER_FUNCTION_LINEAR;

		r = __set_input_tf(dc_plane_state->in_transfer_func,
				   degamma_lut, degamma_size);
		if (r)
			return r;
	} else if (crtc->cm_is_degamma_srgb) {
		/*
		 * For legacy gamma support we need the regamma input
		 * in linear space. Assume that the input is sRGB.
		 */
		dc_plane_state->in_transfer_func->type = TF_TYPE_PREDEFINED;
		dc_plane_state->in_transfer_func->tf = TRANSFER_FUNCTION_SRGB;
	} else {
		/* ...Otherwise we can just bypass the DGM block. */
		dc_plane_state->in_transfer_func->type = TF_TYPE_BYPASS;
		dc_plane_state->in_transfer_func->tf = TRANSFER_FUNCTION_LINEAR;
	}

	return 0;
}