Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MM_TYPES_H
#define _LINUX_MM_TYPES_H

#include <linux/mm_types_task.h>

#include <linux/auxvec.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
#include <linux/completion.h>
#include <linux/cpumask.h>
#include <linux/uprobes.h>
#include <linux/rcupdate.h>
#include <linux/page-flags-layout.h>
#include <linux/workqueue.h>
#include <linux/seqlock.h>

#include <asm/mmu.h>

#ifndef AT_VECTOR_SIZE_ARCH
#define AT_VECTOR_SIZE_ARCH 0
#endif
#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))

#define INIT_PASID	0

struct address_space;
struct mem_cgroup;

/*
 * Each physical page in the system has a struct page associated with
 * it to keep track of whatever it is we are using the page for at the
 * moment. Note that we have no way to track which tasks are using
 * a page, though if it is a pagecache page, rmap structures can tell us
 * who is mapping it.
 *
 * If you allocate the page using alloc_pages(), you can use some of the
 * space in struct page for your own purposes.  The five words in the main
 * union are available, except for bit 0 of the first word which must be
 * kept clear.  Many users use this word to store a pointer to an object
 * which is guaranteed to be aligned.  If you use the same storage as
 * page->mapping, you must restore it to NULL before freeing the page.
 *
 * If your page will not be mapped to userspace, you can also use the four
 * bytes in the mapcount union, but you must call page_mapcount_reset()
 * before freeing it.
 *
 * If you want to use the refcount field, it must be used in such a way
 * that other CPUs temporarily incrementing and then decrementing the
 * refcount does not cause problems.  On receiving the page from
 * alloc_pages(), the refcount will be positive.
 *
 * If you allocate pages of order > 0, you can use some of the fields
 * in each subpage, but you may need to restore some of their values
 * afterwards.
 *
 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
 * That requires that freelist & counters in struct slab be adjacent and
 * double-word aligned. Because struct slab currently just reinterprets the
 * bits of struct page, we align all struct pages to double-word boundaries,
 * and ensure that 'freelist' is aligned within struct slab.
 */
#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
#define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
#else
#define _struct_page_alignment
#endif

struct page {
	unsigned long flags;		/* Atomic flags, some possibly
					 * updated asynchronously */
	/*
	 * Five words (20/40 bytes) are available in this union.
	 * WARNING: bit 0 of the first word is used for PageTail(). That
	 * means the other users of this union MUST NOT use the bit to
	 * avoid collision and false-positive PageTail().
	 */
	union {
		struct {	/* Page cache and anonymous pages */
			/**
			 * @lru: Pageout list, eg. active_list protected by
			 * lruvec->lru_lock.  Sometimes used as a generic list
			 * by the page owner.
			 */
			union {
				struct list_head lru;
				/* Or, for the Unevictable "LRU list" slot */
				struct {
					/* Always even, to negate PageTail */
					void *__filler;
					/* Count page's or folio's mlocks */
					unsigned int mlock_count;
				};
			};
			/* See page-flags.h for PAGE_MAPPING_FLAGS */
			struct address_space *mapping;
			pgoff_t index;		/* Our offset within mapping. */
			/**
			 * @private: Mapping-private opaque data.
			 * Usually used for buffer_heads if PagePrivate.
			 * Used for swp_entry_t if PageSwapCache.
			 * Indicates order in the buddy system if PageBuddy.
			 */
			unsigned long private;
		};
		struct {	/* page_pool used by netstack */
			/**
			 * @pp_magic: magic value to avoid recycling non
			 * page_pool allocated pages.
			 */
			unsigned long pp_magic;
			struct page_pool *pp;
			unsigned long _pp_mapping_pad;
			unsigned long dma_addr;
			union {
				/**
				 * dma_addr_upper: might require a 64-bit
				 * value on 32-bit architectures.
				 */
				unsigned long dma_addr_upper;
				/**
				 * For frag page support, not supported in
				 * 32-bit architectures with 64-bit DMA.
				 */
				atomic_long_t pp_frag_count;
			};
		};
		struct {	/* Tail pages of compound page */
			unsigned long compound_head;	/* Bit zero is set */

			/* First tail page only */
			unsigned char compound_dtor;
			unsigned char compound_order;
			atomic_t compound_mapcount;
			atomic_t compound_pincount;
#ifdef CONFIG_64BIT
			unsigned int compound_nr; /* 1 << compound_order */
#endif
		};
		struct {	/* Second tail page of compound page */
			unsigned long _compound_pad_1;	/* compound_head */
			unsigned long _compound_pad_2;
			/* For both global and memcg */
			struct list_head deferred_list;
		};
		struct {	/* Page table pages */
			unsigned long _pt_pad_1;	/* compound_head */
			pgtable_t pmd_huge_pte; /* protected by page->ptl */
			unsigned long _pt_pad_2;	/* mapping */
			union {
				struct mm_struct *pt_mm; /* x86 pgds only */
				atomic_t pt_frag_refcount; /* powerpc */
			};
#if ALLOC_SPLIT_PTLOCKS
			spinlock_t *ptl;
#else
			spinlock_t ptl;
#endif
		};
		struct {	/* ZONE_DEVICE pages */
			/** @pgmap: Points to the hosting device page map. */
			struct dev_pagemap *pgmap;
			void *zone_device_data;
			/*
			 * ZONE_DEVICE private pages are counted as being
			 * mapped so the next 3 words hold the mapping, index,
			 * and private fields from the source anonymous or
			 * page cache page while the page is migrated to device
			 * private memory.
			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
			 * use the mapping, index, and private fields when
			 * pmem backed DAX files are mapped.
			 */
		};

		/** @rcu_head: You can use this to free a page by RCU. */
		struct rcu_head rcu_head;
	};

	union {		/* This union is 4 bytes in size. */
		/*
		 * If the page can be mapped to userspace, encodes the number
		 * of times this page is referenced by a page table.
		 */
		atomic_t _mapcount;

		/*
		 * If the page is neither PageSlab nor mappable to userspace,
		 * the value stored here may help determine what this page
		 * is used for.  See page-flags.h for a list of page types
		 * which are currently stored here.
		 */
		unsigned int page_type;
	};

	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
	atomic_t _refcount;

#ifdef CONFIG_MEMCG
	unsigned long memcg_data;
#endif

	/*
	 * On machines where all RAM is mapped into kernel address space,
	 * we can simply calculate the virtual address. On machines with
	 * highmem some memory is mapped into kernel virtual memory
	 * dynamically, so we need a place to store that address.
	 * Note that this field could be 16 bits on x86 ... ;)
	 *
	 * Architectures with slow multiplication can define
	 * WANT_PAGE_VIRTUAL in asm/page.h
	 */
#if defined(WANT_PAGE_VIRTUAL)
	void *virtual;			/* Kernel virtual address (NULL if
					   not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */

#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
	int _last_cpupid;
#endif
} _struct_page_alignment;

/**
 * struct folio - Represents a contiguous set of bytes.
 * @flags: Identical to the page flags.
 * @lru: Least Recently Used list; tracks how recently this folio was used.
 * @mapping: The file this page belongs to, or refers to the anon_vma for
 *    anonymous memory.
 * @index: Offset within the file, in units of pages.  For anonymous memory,
 *    this is the index from the beginning of the mmap.
 * @private: Filesystem per-folio data (see folio_attach_private()).
 *    Used for swp_entry_t if folio_test_swapcache().
 * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
 *    find out how many times this folio is mapped by userspace.
 * @_refcount: Do not access this member directly.  Use folio_ref_count()
 *    to find how many references there are to this folio.
 * @memcg_data: Memory Control Group data.
 *
 * A folio is a physically, virtually and logically contiguous set
 * of bytes.  It is a power-of-two in size, and it is aligned to that
 * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
 * in the page cache, it is at a file offset which is a multiple of that
 * power-of-two.  It may be mapped into userspace at an address which is
 * at an arbitrary page offset, but its kernel virtual address is aligned
 * to its size.
 */
struct folio {
	/* private: don't document the anon union */
	union {
		struct {
	/* public: */
			unsigned long flags;
			union {
				struct list_head lru;
				struct {
					void *__filler;
					unsigned int mlock_count;
				};
			};
			struct address_space *mapping;
			pgoff_t index;
			void *private;
			atomic_t _mapcount;
			atomic_t _refcount;
#ifdef CONFIG_MEMCG
			unsigned long memcg_data;
#endif
	/* private: the union with struct page is transitional */
		};
		struct page page;
	};
};

static_assert(sizeof(struct page) == sizeof(struct folio));
#define FOLIO_MATCH(pg, fl)						\
	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
FOLIO_MATCH(flags, flags);
FOLIO_MATCH(lru, lru);
FOLIO_MATCH(mapping, mapping);
FOLIO_MATCH(compound_head, lru);
FOLIO_MATCH(index, index);
FOLIO_MATCH(private, private);
FOLIO_MATCH(_mapcount, _mapcount);
FOLIO_MATCH(_refcount, _refcount);
#ifdef CONFIG_MEMCG
FOLIO_MATCH(memcg_data, memcg_data);
#endif
#undef FOLIO_MATCH

static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
{
	struct page *tail = &folio->page + 1;
	return &tail->compound_mapcount;
}

static inline atomic_t *compound_mapcount_ptr(struct page *page)
{
	return &page[1].compound_mapcount;
}

static inline atomic_t *compound_pincount_ptr(struct page *page)
{
	return &page[1].compound_pincount;
}

/*
 * Used for sizing the vmemmap region on some architectures
 */
#define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))

#define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
#define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)

/*
 * page_private can be used on tail pages.  However, PagePrivate is only
 * checked by the VM on the head page.  So page_private on the tail pages
 * should be used for data that's ancillary to the head page (eg attaching
 * buffer heads to tail pages after attaching buffer heads to the head page)
 */
#define page_private(page)		((page)->private)

static inline void set_page_private(struct page *page, unsigned long private)
{
	page->private = private;
}

static inline void *folio_get_private(struct folio *folio)
{
	return folio->private;
}

struct page_frag_cache {
	void * va;
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	__u16 offset;
	__u16 size;
#else
	__u32 offset;
#endif
	/* we maintain a pagecount bias, so that we dont dirty cache line
	 * containing page->_refcount every time we allocate a fragment.
	 */
	unsigned int		pagecnt_bias;
	bool pfmemalloc;
};

typedef unsigned long vm_flags_t;

/*
 * A region containing a mapping of a non-memory backed file under NOMMU
 * conditions.  These are held in a global tree and are pinned by the VMAs that
 * map parts of them.
 */
struct vm_region {
	struct rb_node	vm_rb;		/* link in global region tree */
	vm_flags_t	vm_flags;	/* VMA vm_flags */
	unsigned long	vm_start;	/* start address of region */
	unsigned long	vm_end;		/* region initialised to here */
	unsigned long	vm_top;		/* region allocated to here */
	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
	struct file	*vm_file;	/* the backing file or NULL */

	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
						* this region */
};

#ifdef CONFIG_USERFAULTFD
#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
struct vm_userfaultfd_ctx {
	struct userfaultfd_ctx *ctx;
};
#else /* CONFIG_USERFAULTFD */
#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
struct vm_userfaultfd_ctx {};
#endif /* CONFIG_USERFAULTFD */

struct anon_vma_name {
	struct kref kref;
	/* The name needs to be at the end because it is dynamically sized. */
	char name[];
};

/*
 * This struct describes a virtual memory area. There is one of these
 * per VM-area/task. A VM area is any part of the process virtual memory
 * space that has a special rule for the page-fault handlers (ie a shared
 * library, the executable area etc).
 */
struct vm_area_struct {
	/* The first cache line has the info for VMA tree walking. */

	unsigned long vm_start;		/* Our start address within vm_mm. */
	unsigned long vm_end;		/* The first byte after our end address
					   within vm_mm. */

	/* linked list of VM areas per task, sorted by address */
	struct vm_area_struct *vm_next, *vm_prev;

	struct rb_node vm_rb;

	/*
	 * Largest free memory gap in bytes to the left of this VMA.
	 * Either between this VMA and vma->vm_prev, or between one of the
	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
	 * get_unmapped_area find a free area of the right size.
	 */
	unsigned long rb_subtree_gap;

	/* Second cache line starts here. */

	struct mm_struct *vm_mm;	/* The address space we belong to. */

	/*
	 * Access permissions of this VMA.
	 * See vmf_insert_mixed_prot() for discussion.
	 */
	pgprot_t vm_page_prot;
	unsigned long vm_flags;		/* Flags, see mm.h. */

	/*
	 * For areas with an address space and backing store,
	 * linkage into the address_space->i_mmap interval tree.
	 *
	 * For private anonymous mappings, a pointer to a null terminated string
	 * containing the name given to the vma, or NULL if unnamed.
	 */

	union {
		struct {
			struct rb_node rb;
			unsigned long rb_subtree_last;
		} shared;
		/*
		 * Serialized by mmap_sem. Never use directly because it is
		 * valid only when vm_file is NULL. Use anon_vma_name instead.
		 */
		struct anon_vma_name *anon_name;
	};

	/*
	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
	 * or brk vma (with NULL file) can only be in an anon_vma list.
	 */
	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
					  * page_table_lock */
	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */

	/* Function pointers to deal with this struct. */
	const struct vm_operations_struct *vm_ops;

	/* Information about our backing store: */
	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
					   units */
	struct file * vm_file;		/* File we map to (can be NULL). */
	void * vm_private_data;		/* was vm_pte (shared mem) */

#ifdef CONFIG_SWAP
	atomic_long_t swap_readahead_info;
#endif
#ifndef CONFIG_MMU
	struct vm_region *vm_region;	/* NOMMU mapping region */
#endif
#ifdef CONFIG_NUMA
	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
#endif
	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
} __randomize_layout;

struct kioctx_table;
struct mm_struct {
	struct {
		struct vm_area_struct *mmap;		/* list of VMAs */
		struct rb_root mm_rb;
		u64 vmacache_seqnum;                   /* per-thread vmacache */
#ifdef CONFIG_MMU
		unsigned long (*get_unmapped_area) (struct file *filp,
				unsigned long addr, unsigned long len,
				unsigned long pgoff, unsigned long flags);
#endif
		unsigned long mmap_base;	/* base of mmap area */
		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
		/* Base addresses for compatible mmap() */
		unsigned long mmap_compat_base;
		unsigned long mmap_compat_legacy_base;
#endif
		unsigned long task_size;	/* size of task vm space */
		unsigned long highest_vm_end;	/* highest vma end address */
		pgd_t * pgd;

#ifdef CONFIG_MEMBARRIER
		/**
		 * @membarrier_state: Flags controlling membarrier behavior.
		 *
		 * This field is close to @pgd to hopefully fit in the same
		 * cache-line, which needs to be touched by switch_mm().
		 */
		atomic_t membarrier_state;
#endif

		/**
		 * @mm_users: The number of users including userspace.
		 *
		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
		 * drops to 0 (i.e. when the task exits and there are no other
		 * temporary reference holders), we also release a reference on
		 * @mm_count (which may then free the &struct mm_struct if
		 * @mm_count also drops to 0).
		 */
		atomic_t mm_users;

		/**
		 * @mm_count: The number of references to &struct mm_struct
		 * (@mm_users count as 1).
		 *
		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
		 * &struct mm_struct is freed.
		 */
		atomic_t mm_count;

#ifdef CONFIG_MMU
		atomic_long_t pgtables_bytes;	/* PTE page table pages */
#endif
		int map_count;			/* number of VMAs */

		spinlock_t page_table_lock; /* Protects page tables and some
					     * counters
					     */
		/*
		 * With some kernel config, the current mmap_lock's offset
		 * inside 'mm_struct' is at 0x120, which is very optimal, as
		 * its two hot fields 'count' and 'owner' sit in 2 different
		 * cachelines,  and when mmap_lock is highly contended, both
		 * of the 2 fields will be accessed frequently, current layout
		 * will help to reduce cache bouncing.
		 *
		 * So please be careful with adding new fields before
		 * mmap_lock, which can easily push the 2 fields into one
		 * cacheline.
		 */
		struct rw_semaphore mmap_lock;

		struct list_head mmlist; /* List of maybe swapped mm's.	These
					  * are globally strung together off
					  * init_mm.mmlist, and are protected
					  * by mmlist_lock
					  */


		unsigned long hiwater_rss; /* High-watermark of RSS usage */
		unsigned long hiwater_vm;  /* High-water virtual memory usage */

		unsigned long total_vm;	   /* Total pages mapped */
		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
		atomic64_t    pinned_vm;   /* Refcount permanently increased */
		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
		unsigned long stack_vm;	   /* VM_STACK */
		unsigned long def_flags;

		/**
		 * @write_protect_seq: Locked when any thread is write
		 * protecting pages mapped by this mm to enforce a later COW,
		 * for instance during page table copying for fork().
		 */
		seqcount_t write_protect_seq;

		spinlock_t arg_lock; /* protect the below fields */

		unsigned long start_code, end_code, start_data, end_data;
		unsigned long start_brk, brk, start_stack;
		unsigned long arg_start, arg_end, env_start, env_end;

		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */

		/*
		 * Special counters, in some configurations protected by the
		 * page_table_lock, in other configurations by being atomic.
		 */
		struct mm_rss_stat rss_stat;

		struct linux_binfmt *binfmt;

		/* Architecture-specific MM context */
		mm_context_t context;

		unsigned long flags; /* Must use atomic bitops to access */

#ifdef CONFIG_AIO
		spinlock_t			ioctx_lock;
		struct kioctx_table __rcu	*ioctx_table;
#endif
#ifdef CONFIG_MEMCG
		/*
		 * "owner" points to a task that is regarded as the canonical
		 * user/owner of this mm. All of the following must be true in
		 * order for it to be changed:
		 *
		 * current == mm->owner
		 * current->mm != mm
		 * new_owner->mm == mm
		 * new_owner->alloc_lock is held
		 */
		struct task_struct __rcu *owner;
#endif
		struct user_namespace *user_ns;

		/* store ref to file /proc/<pid>/exe symlink points to */
		struct file __rcu *exe_file;
#ifdef CONFIG_MMU_NOTIFIER
		struct mmu_notifier_subscriptions *notifier_subscriptions;
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
#endif
#ifdef CONFIG_NUMA_BALANCING
		/*
		 * numa_next_scan is the next time that the PTEs will be marked
		 * pte_numa. NUMA hinting faults will gather statistics and
		 * migrate pages to new nodes if necessary.
		 */
		unsigned long numa_next_scan;

		/* Restart point for scanning and setting pte_numa */
		unsigned long numa_scan_offset;

		/* numa_scan_seq prevents two threads setting pte_numa */
		int numa_scan_seq;
#endif
		/*
		 * An operation with batched TLB flushing is going on. Anything
		 * that can move process memory needs to flush the TLB when
		 * moving a PROT_NONE or PROT_NUMA mapped page.
		 */
		atomic_t tlb_flush_pending;
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
		/* See flush_tlb_batched_pending() */
		atomic_t tlb_flush_batched;
#endif
		struct uprobes_state uprobes_state;
#ifdef CONFIG_PREEMPT_RT
		struct rcu_head delayed_drop;
#endif
#ifdef CONFIG_HUGETLB_PAGE
		atomic_long_t hugetlb_usage;
#endif
		struct work_struct async_put_work;

#ifdef CONFIG_IOMMU_SVA
		u32 pasid;
#endif
	} __randomize_layout;

	/*
	 * The mm_cpumask needs to be at the end of mm_struct, because it
	 * is dynamically sized based on nr_cpu_ids.
	 */
	unsigned long cpu_bitmap[];
};

extern struct mm_struct init_mm;

/* Pointer magic because the dynamic array size confuses some compilers. */
static inline void mm_init_cpumask(struct mm_struct *mm)
{
	unsigned long cpu_bitmap = (unsigned long)mm;

	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
	cpumask_clear((struct cpumask *)cpu_bitmap);
}

/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
{
	return (struct cpumask *)&mm->cpu_bitmap;
}

struct mmu_gather;
extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_finish_mmu(struct mmu_gather *tlb);

struct vm_fault;

/**
 * typedef vm_fault_t - Return type for page fault handlers.
 *
 * Page fault handlers return a bitmask of %VM_FAULT values.
 */
typedef __bitwise unsigned int vm_fault_t;

/**
 * enum vm_fault_reason - Page fault handlers return a bitmask of
 * these values to tell the core VM what happened when handling the
 * fault. Used to decide whether a process gets delivered SIGBUS or
 * just gets major/minor fault counters bumped up.
 *
 * @VM_FAULT_OOM:		Out Of Memory
 * @VM_FAULT_SIGBUS:		Bad access
 * @VM_FAULT_MAJOR:		Page read from storage
 * @VM_FAULT_WRITE:		Special case for get_user_pages
 * @VM_FAULT_HWPOISON:		Hit poisoned small page
 * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
 *				in upper bits
 * @VM_FAULT_SIGSEGV:		segmentation fault
 * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
 * @VM_FAULT_LOCKED:		->fault locked the returned page
 * @VM_FAULT_RETRY:		->fault blocked, must retry
 * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
 * @VM_FAULT_DONE_COW:		->fault has fully handled COW
 * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
 *				fsync() to complete (for synchronous page faults
 *				in DAX)
 * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
 *
 */
enum vm_fault_reason {
	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
};

/* Encode hstate index for a hwpoisoned large page */
#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)

#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)

#define VM_FAULT_RESULT_TRACE \
	{ VM_FAULT_OOM,                 "OOM" },	\
	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
	{ VM_FAULT_MAJOR,               "MAJOR" },	\
	{ VM_FAULT_WRITE,               "WRITE" },	\
	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
	{ VM_FAULT_LOCKED,              "LOCKED" },	\
	{ VM_FAULT_RETRY,               "RETRY" },	\
	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }

struct vm_special_mapping {
	const char *name;	/* The name, e.g. "[vdso]". */

	/*
	 * If .fault is not provided, this points to a
	 * NULL-terminated array of pages that back the special mapping.
	 *
	 * This must not be NULL unless .fault is provided.
	 */
	struct page **pages;

	/*
	 * If non-NULL, then this is called to resolve page faults
	 * on the special mapping.  If used, .pages is not checked.
	 */
	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
				struct vm_area_struct *vma,
				struct vm_fault *vmf);

	int (*mremap)(const struct vm_special_mapping *sm,
		     struct vm_area_struct *new_vma);
};

enum tlb_flush_reason {
	TLB_FLUSH_ON_TASK_SWITCH,
	TLB_REMOTE_SHOOTDOWN,
	TLB_LOCAL_SHOOTDOWN,
	TLB_LOCAL_MM_SHOOTDOWN,
	TLB_REMOTE_SEND_IPI,
	NR_TLB_FLUSH_REASONS,
};

 /*
  * A swap entry has to fit into a "unsigned long", as the entry is hidden
  * in the "index" field of the swapper address space.
  */
typedef struct {
	unsigned long val;
} swp_entry_t;

/**
 * enum fault_flag - Fault flag definitions.
 * @FAULT_FLAG_WRITE: Fault was a write fault.
 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
 * @FAULT_FLAG_TRIED: The fault has been tried once.
 * @FAULT_FLAG_USER: The fault originated in userspace.
 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
 *
 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
 * whether we would allow page faults to retry by specifying these two
 * fault flags correctly.  Currently there can be three legal combinations:
 *
 * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
 *                              this is the first try
 *
 * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
 *                              we've already tried at least once
 *
 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
 *
 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
 * be used.  Note that page faults can be allowed to retry for multiple times,
 * in which case we'll have an initial fault with flags (a) then later on
 * continuous faults with flags (b).  We should always try to detect pending
 * signals before a retry to make sure the continuous page faults can still be
 * interrupted if necessary.
 */
enum fault_flag {
	FAULT_FLAG_WRITE =		1 << 0,
	FAULT_FLAG_MKWRITE =		1 << 1,
	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
	FAULT_FLAG_KILLABLE =		1 << 4,
	FAULT_FLAG_TRIED = 		1 << 5,
	FAULT_FLAG_USER =		1 << 6,
	FAULT_FLAG_REMOTE =		1 << 7,
	FAULT_FLAG_INSTRUCTION =	1 << 8,
	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
};

#endif /* _LINUX_MM_TYPES_H */