Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/poison.h>
#include <linux/const.h>
#include <linux/kernel.h>

/*
 * Circular doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

/**
 * INIT_LIST_HEAD - Initialize a list_head structure
 * @list: list_head structure to be initialized.
 *
 * Initializes the list_head to point to itself.  If it is a list header,
 * the result is an empty list.
 */
static inline void INIT_LIST_HEAD(struct list_head *list)
{
	WRITE_ONCE(list->next, list);
	list->prev = list;
}

#ifdef CONFIG_DEBUG_LIST
extern bool __list_add_valid(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next);
extern bool __list_del_entry_valid(struct list_head *entry);
#else
static inline bool __list_add_valid(struct list_head *new,
				struct list_head *prev,
				struct list_head *next)
{
	return true;
}
static inline bool __list_del_entry_valid(struct list_head *entry)
{
	return true;
}
#endif

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	if (!__list_add_valid(new, prev, next))
		return;

	next->prev = new;
	new->next = next;
	new->prev = prev;
	WRITE_ONCE(prev->next, new);
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}


/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
	next->prev = prev;
	WRITE_ONCE(prev->next, next);
}

/*
 * Delete a list entry and clear the 'prev' pointer.
 *
 * This is a special-purpose list clearing method used in the networking code
 * for lists allocated as per-cpu, where we don't want to incur the extra
 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
 * needs to check the node 'prev' pointer instead of calling list_empty().
 */
static inline void __list_del_clearprev(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->prev = NULL;
}

static inline void __list_del_entry(struct list_head *entry)
{
	if (!__list_del_entry_valid(entry))
		return;

	__list_del(entry->prev, entry->next);
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void list_del(struct list_head *entry)
{
	__list_del_entry(entry);
	entry->next = LIST_POISON1;
	entry->prev = LIST_POISON2;
}

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
				struct list_head *new)
{
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}

/**
 * list_replace_init - replace old entry by new one and initialize the old one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace_init(struct list_head *old,
				     struct list_head *new)
{
	list_replace(old, new);
	INIT_LIST_HEAD(old);
}

/**
 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
 * @entry1: the location to place entry2
 * @entry2: the location to place entry1
 */
static inline void list_swap(struct list_head *entry1,
			     struct list_head *entry2)
{
	struct list_head *pos = entry2->prev;

	list_del(entry2);
	list_replace(entry1, entry2);
	if (pos == entry1)
		pos = entry2;
	list_add(entry1, pos);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
	__list_del_entry(entry);
	INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
	__list_del_entry(list);
	list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
				  struct list_head *head)
{
	__list_del_entry(list);
	list_add_tail(list, head);
}

/**
 * list_bulk_move_tail - move a subsection of a list to its tail
 * @head: the head that will follow our entry
 * @first: first entry to move
 * @last: last entry to move, can be the same as first
 *
 * Move all entries between @first and including @last before @head.
 * All three entries must belong to the same linked list.
 */
static inline void list_bulk_move_tail(struct list_head *head,
				       struct list_head *first,
				       struct list_head *last)
{
	first->prev->next = last->next;
	last->next->prev = first->prev;

	head->prev->next = first;
	first->prev = head->prev;

	last->next = head;
	head->prev = last;
}

/**
 * list_is_first -- tests whether @list is the first entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_first(const struct list_head *list,
					const struct list_head *head)
{
	return list->prev == head;
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
				const struct list_head *head)
{
	return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
	return READ_ONCE(head->next) == head;
}

/**
 * list_del_init_careful - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 *
 * This is the same as list_del_init(), except designed to be used
 * together with list_empty_careful() in a way to guarantee ordering
 * of other memory operations.
 *
 * Any memory operations done before a list_del_init_careful() are
 * guaranteed to be visible after a list_empty_careful() test.
 */
static inline void list_del_init_careful(struct list_head *entry)
{
	__list_del_entry(entry);
	entry->prev = entry;
	smp_store_release(&entry->next, entry);
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
	struct list_head *next = smp_load_acquire(&head->next);
	return (next == head) && (next == head->prev);
}

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
	struct list_head *first;

	if (!list_empty(head)) {
		first = head->next;
		list_move_tail(first, head);
	}
}

/**
 * list_rotate_to_front() - Rotate list to specific item.
 * @list: The desired new front of the list.
 * @head: The head of the list.
 *
 * Rotates list so that @list becomes the new front of the list.
 */
static inline void list_rotate_to_front(struct list_head *list,
					struct list_head *head)
{
	/*
	 * Deletes the list head from the list denoted by @head and
	 * places it as the tail of @list, this effectively rotates the
	 * list so that @list is at the front.
	 */
	list_move_tail(head, list);
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
	return !list_empty(head) && (head->next == head->prev);
}

static inline void __list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry)
{
	struct list_head *new_first = entry->next;
	list->next = head->next;
	list->next->prev = list;
	list->prev = entry;
	entry->next = list;
	head->next = new_first;
	new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *	and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
		struct list_head *head, struct list_head *entry)
{
	if (list_empty(head))
		return;
	if (list_is_singular(head) &&
		(head->next != entry && head != entry))
		return;
	if (entry == head)
		INIT_LIST_HEAD(list);
	else
		__list_cut_position(list, head, entry);
}

/**
 * list_cut_before - cut a list into two, before given entry
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *
 * This helper moves the initial part of @head, up to but
 * excluding @entry, from @head to @list.  You should pass
 * in @entry an element you know is on @head.  @list should
 * be an empty list or a list you do not care about losing
 * its data.
 * If @entry == @head, all entries on @head are moved to
 * @list.
 */
static inline void list_cut_before(struct list_head *list,
				   struct list_head *head,
				   struct list_head *entry)
{
	if (head->next == entry) {
		INIT_LIST_HEAD(list);
		return;
	}
	list->next = head->next;
	list->next->prev = list;
	list->prev = entry->prev;
	list->prev->next = list;
	head->next = entry;
	entry->prev = head;
}

static inline void __list_splice(const struct list_head *list,
				 struct list_head *prev,
				 struct list_head *next)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
				struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
				struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
				    struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head, head->next);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
					 struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head->prev, head);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 */
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
	list_entry((ptr)->next, type, member)

/**
 * list_last_entry - get the last element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_last_entry(ptr, type, member) \
	list_entry((ptr)->prev, type, member)

/**
 * list_first_entry_or_null - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note that if the list is empty, it returns NULL.
 */
#define list_first_entry_or_null(ptr, type, member) ({ \
	struct list_head *head__ = (ptr); \
	struct list_head *pos__ = READ_ONCE(head__->next); \
	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})

/**
 * list_next_entry - get the next element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_next_entry(pos, member) \
	list_entry((pos)->member.next, typeof(*(pos)), member)

/**
 * list_prev_entry - get the prev element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_prev_entry(pos, member) \
	list_entry((pos)->member.prev, typeof(*(pos)), member)

/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_continue - continue iteration over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 *
 * Continue to iterate over a list, continuing after the current position.
 */
#define list_for_each_continue(pos, head) \
	for (pos = pos->next; pos != (head); pos = pos->next)

/**
 * list_for_each_prev	-	iterate over a list backwards
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each_prev(pos, head) \
	for (pos = (head)->prev; pos != (head); pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
	for (pos = (head)->prev, n = pos->prev; \
	     pos != (head); \
	     pos = n, n = pos->prev)

/**
 * list_entry_is_head - test if the entry points to the head of the list
 * @pos:	the type * to cursor
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_entry_is_head(pos, head, member)				\
	(&pos->member == (head))

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)				\
	for (pos = list_first_entry(head, typeof(*pos), member);	\
	     !list_entry_is_head(pos, head, member);			\
	     pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)			\
	for (pos = list_last_entry(head, typeof(*pos), member);		\
	     !list_entry_is_head(pos, head, member); 			\
	     pos = list_prev_entry(pos, member))

/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos:	the type * to use as a start point
 * @head:	the head of the list
 * @member:	the name of the list_head within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member) \
	((pos) ? : list_entry(head, typeof(*pos), member))

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member) 		\
	for (pos = list_next_entry(pos, member);			\
	     !list_entry_is_head(pos, head, member);			\
	     pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member)		\
	for (pos = list_prev_entry(pos, member);			\
	     !list_entry_is_head(pos, head, member);			\
	     pos = list_prev_entry(pos, member))

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member) 			\
	for (; !list_entry_is_head(pos, head, member);			\
	     pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_from_reverse - iterate backwards over list of given type
 *                                    from the current point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate backwards over list of given type, continuing from current position.
 */
#define list_for_each_entry_from_reverse(pos, head, member)		\
	for (; !list_entry_is_head(pos, head, member);			\
	     pos = list_prev_entry(pos, member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)			\
	for (pos = list_first_entry(head, typeof(*pos), member),	\
		n = list_next_entry(pos, member);			\
	     !list_entry_is_head(pos, head, member); 			\
	     pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member) 		\
	for (pos = list_next_entry(pos, member), 				\
		n = list_next_entry(pos, member);				\
	     !list_entry_is_head(pos, head, member);				\
	     pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member) 			\
	for (n = list_next_entry(pos, member);					\
	     !list_entry_is_head(pos, head, member);				\
	     pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member)		\
	for (pos = list_last_entry(head, typeof(*pos), member),		\
		n = list_prev_entry(pos, member);			\
	     !list_entry_is_head(pos, head, member); 			\
	     pos = n, n = list_prev_entry(n, member))

/**
 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 * @pos:	the loop cursor used in the list_for_each_entry_safe loop
 * @n:		temporary storage used in list_for_each_entry_safe
 * @member:	the name of the list_head within the struct.
 *
 * list_safe_reset_next is not safe to use in general if the list may be
 * modified concurrently (eg. the lock is dropped in the loop body). An
 * exception to this is if the cursor element (pos) is pinned in the list,
 * and list_safe_reset_next is called after re-taking the lock and before
 * completing the current iteration of the loop body.
 */
#define list_safe_reset_next(pos, n, member)				\
	n = list_next_entry(pos, member)

/*
 * Double linked lists with a single pointer list head.
 * Mostly useful for hash tables where the two pointer list head is
 * too wasteful.
 * You lose the ability to access the tail in O(1).
 */

#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static inline void INIT_HLIST_NODE(struct hlist_node *h)
{
	h->next = NULL;
	h->pprev = NULL;
}

/**
 * hlist_unhashed - Has node been removed from list and reinitialized?
 * @h: Node to be checked
 *
 * Not that not all removal functions will leave a node in unhashed
 * state.  For example, hlist_nulls_del_init_rcu() does leave the
 * node in unhashed state, but hlist_nulls_del() does not.
 */
static inline int hlist_unhashed(const struct hlist_node *h)
{
	return !h->pprev;
}

/**
 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
 * @h: Node to be checked
 *
 * This variant of hlist_unhashed() must be used in lockless contexts
 * to avoid potential load-tearing.  The READ_ONCE() is paired with the
 * various WRITE_ONCE() in hlist helpers that are defined below.
 */
static inline int hlist_unhashed_lockless(const struct hlist_node *h)
{
	return !READ_ONCE(h->pprev);
}

/**
 * hlist_empty - Is the specified hlist_head structure an empty hlist?
 * @h: Structure to check.
 */
static inline int hlist_empty(const struct hlist_head *h)
{
	return !READ_ONCE(h->first);
}

static inline void __hlist_del(struct hlist_node *n)
{
	struct hlist_node *next = n->next;
	struct hlist_node **pprev = n->pprev;

	WRITE_ONCE(*pprev, next);
	if (next)
		WRITE_ONCE(next->pprev, pprev);
}

/**
 * hlist_del - Delete the specified hlist_node from its list
 * @n: Node to delete.
 *
 * Note that this function leaves the node in hashed state.  Use
 * hlist_del_init() or similar instead to unhash @n.
 */
static inline void hlist_del(struct hlist_node *n)
{
	__hlist_del(n);
	n->next = LIST_POISON1;
	n->pprev = LIST_POISON2;
}

/**
 * hlist_del_init - Delete the specified hlist_node from its list and initialize
 * @n: Node to delete.
 *
 * Note that this function leaves the node in unhashed state.
 */
static inline void hlist_del_init(struct hlist_node *n)
{
	if (!hlist_unhashed(n)) {
		__hlist_del(n);
		INIT_HLIST_NODE(n);
	}
}

/**
 * hlist_add_head - add a new entry at the beginning of the hlist
 * @n: new entry to be added
 * @h: hlist head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
	struct hlist_node *first = h->first;
	WRITE_ONCE(n->next, first);
	if (first)
		WRITE_ONCE(first->pprev, &n->next);
	WRITE_ONCE(h->first, n);
	WRITE_ONCE(n->pprev, &h->first);
}

/**
 * hlist_add_before - add a new entry before the one specified
 * @n: new entry to be added
 * @next: hlist node to add it before, which must be non-NULL
 */
static inline void hlist_add_before(struct hlist_node *n,
				    struct hlist_node *next)
{
	WRITE_ONCE(n->pprev, next->pprev);
	WRITE_ONCE(n->next, next);
	WRITE_ONCE(next->pprev, &n->next);
	WRITE_ONCE(*(n->pprev), n);
}

/**
 * hlist_add_behing - add a new entry after the one specified
 * @n: new entry to be added
 * @prev: hlist node to add it after, which must be non-NULL
 */
static inline void hlist_add_behind(struct hlist_node *n,
				    struct hlist_node *prev)
{
	WRITE_ONCE(n->next, prev->next);
	WRITE_ONCE(prev->next, n);
	WRITE_ONCE(n->pprev, &prev->next);

	if (n->next)
		WRITE_ONCE(n->next->pprev, &n->next);
}

/**
 * hlist_add_fake - create a fake hlist consisting of a single headless node
 * @n: Node to make a fake list out of
 *
 * This makes @n appear to be its own predecessor on a headless hlist.
 * The point of this is to allow things like hlist_del() to work correctly
 * in cases where there is no list.
 */
static inline void hlist_add_fake(struct hlist_node *n)
{
	n->pprev = &n->next;
}

/**
 * hlist_fake: Is this node a fake hlist?
 * @h: Node to check for being a self-referential fake hlist.
 */
static inline bool hlist_fake(struct hlist_node *h)
{
	return h->pprev == &h->next;
}

/**
 * hlist_is_singular_node - is node the only element of the specified hlist?
 * @n: Node to check for singularity.
 * @h: Header for potentially singular list.
 *
 * Check whether the node is the only node of the head without
 * accessing head, thus avoiding unnecessary cache misses.
 */
static inline bool
hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
{
	return !n->next && n->pprev == &h->first;
}

/**
 * hlist_move_list - Move an hlist
 * @old: hlist_head for old list.
 * @new: hlist_head for new list.
 *
 * Move a list from one list head to another. Fixup the pprev
 * reference of the first entry if it exists.
 */
static inline void hlist_move_list(struct hlist_head *old,
				   struct hlist_head *new)
{
	new->first = old->first;
	if (new->first)
		new->first->pprev = &new->first;
	old->first = NULL;
}

#define hlist_entry(ptr, type, member) container_of(ptr,type,member)

#define hlist_for_each(pos, head) \
	for (pos = (head)->first; pos ; pos = pos->next)

#define hlist_for_each_safe(pos, n, head) \
	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
	     pos = n)

#define hlist_entry_safe(ptr, type, member) \
	({ typeof(ptr) ____ptr = (ptr); \
	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
	})

/**
 * hlist_for_each_entry	- iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry(pos, head, member)				\
	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
	     pos;							\
	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))

/**
 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 * @pos:	the type * to use as a loop cursor.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_continue(pos, member)			\
	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
	     pos;							\
	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))

/**
 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
 * @pos:	the type * to use as a loop cursor.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_from(pos, member)				\
	for (; pos;							\
	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))

/**
 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		a &struct hlist_node to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_safe(pos, n, head, member) 		\
	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
	     pos && ({ n = pos->member.next; 1; });			\
	     pos = hlist_entry_safe(n, typeof(*pos), member))

#endif