Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * A small micro-assembler. It is intentionally kept simple, does only
 * support a subset of instructions, and does not try to hide pipeline
 * effects like branch delay slots.
 *
 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 * Copyright (C) 2012, 2013   MIPS Technologies, Inc.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/types.h>

#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#include <asm/uasm.h>

#define RS_MASK		0x1f
#define RS_SH		16
#define RT_MASK		0x1f
#define RT_SH		21
#define SCIMM_MASK	0x3ff
#define SCIMM_SH	16

/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f)					\
	((a) << OP_SH						\
	 | (b) << RT_SH						\
	 | (c) << RS_SH						\
	 | (d) << RD_SH						\
	 | (e) << RE_SH						\
	 | (f) << FUNC_SH)

#include "uasm.c"

static const struct insn insn_table_MM[insn_invalid] = {
	[insn_addu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
	[insn_addiu]	= {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
	[insn_and]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
	[insn_andi]	= {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
	[insn_beq]	= {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
	[insn_beql]	= {0, 0},
	[insn_bgez]	= {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
	[insn_bgezl]	= {0, 0},
	[insn_bltz]	= {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
	[insn_bltzl]	= {0, 0},
	[insn_bne]	= {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
	[insn_cache]	= {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
	[insn_cfc1]	= {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
	[insn_cfcmsa]	= {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
	[insn_ctc1]	= {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
	[insn_ctcmsa]	= {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
	[insn_daddu]	= {0, 0},
	[insn_daddiu]	= {0, 0},
	[insn_di]	= {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
	[insn_divu]	= {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
	[insn_dmfc0]	= {0, 0},
	[insn_dmtc0]	= {0, 0},
	[insn_dsll]	= {0, 0},
	[insn_dsll32]	= {0, 0},
	[insn_dsra]	= {0, 0},
	[insn_dsrl]	= {0, 0},
	[insn_dsrl32]	= {0, 0},
	[insn_drotr]	= {0, 0},
	[insn_drotr32]	= {0, 0},
	[insn_dsubu]	= {0, 0},
	[insn_eret]	= {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
	[insn_ins]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
	[insn_ext]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
	[insn_j]	= {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
	[insn_jal]	= {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
	[insn_jalr]	= {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
	[insn_jr]	= {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
	[insn_lb]	= {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
	[insn_ld]	= {0, 0},
	[insn_lh]	= {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
	[insn_ll]	= {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
	[insn_lld]	= {0, 0},
	[insn_lui]	= {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
	[insn_lw]	= {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
	[insn_mfc0]	= {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
	[insn_mfhi]	= {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
	[insn_mflo]	= {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
	[insn_mtc0]	= {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
	[insn_mthi]	= {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
	[insn_mtlo]	= {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
	[insn_mul]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
	[insn_or]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
	[insn_ori]	= {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
	[insn_pref]	= {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
	[insn_rfe]	= {0, 0},
	[insn_sc]	= {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
	[insn_scd]	= {0, 0},
	[insn_sd]	= {0, 0},
	[insn_sll]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
	[insn_sllv]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
	[insn_slt]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
	[insn_sltiu]	= {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
	[insn_sltu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
	[insn_sra]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
	[insn_srav]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD},
	[insn_srl]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
	[insn_srlv]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
	[insn_rotr]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
	[insn_subu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
	[insn_sw]	= {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
	[insn_sync]	= {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
	[insn_tlbp]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
	[insn_tlbr]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
	[insn_tlbwi]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
	[insn_tlbwr]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
	[insn_wait]	= {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
	[insn_wsbh]	= {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
	[insn_xor]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
	[insn_xori]	= {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
	[insn_dins]	= {0, 0},
	[insn_dinsm]	= {0, 0},
	[insn_syscall]	= {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
	[insn_bbit0]	= {0, 0},
	[insn_bbit1]	= {0, 0},
	[insn_lwx]	= {0, 0},
	[insn_ldx]	= {0, 0},
};

#undef M

static inline u32 build_bimm(s32 arg)
{
	WARN(arg > 0xffff || arg < -0x10000,
	     KERN_WARNING "Micro-assembler field overflow\n");

	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");

	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
}

static inline u32 build_jimm(u32 arg)
{

	WARN(arg & ~((JIMM_MASK << 2) | 1),
	     KERN_WARNING "Micro-assembler field overflow\n");

	return (arg >> 1) & JIMM_MASK;
}

/*
 * The order of opcode arguments is implicitly left to right,
 * starting with RS and ending with FUNC or IMM.
 */
static void build_insn(u32 **buf, enum opcode opc, ...)
{
	const struct insn *ip;
	va_list ap;
	u32 op;

	if (opc < 0 || opc >= insn_invalid ||
	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
	    (insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
		panic("Unsupported Micro-assembler instruction %d", opc);

	ip = &insn_table_MM[opc];

	op = ip->match;
	va_start(ap, opc);
	if (ip->fields & RS) {
		if (opc == insn_mfc0 || opc == insn_mtc0 ||
		    opc == insn_cfc1 || opc == insn_ctc1)
			op |= build_rt(va_arg(ap, u32));
		else
			op |= build_rs(va_arg(ap, u32));
	}
	if (ip->fields & RT) {
		if (opc == insn_mfc0 || opc == insn_mtc0 ||
		    opc == insn_cfc1 || opc == insn_ctc1)
			op |= build_rs(va_arg(ap, u32));
		else
			op |= build_rt(va_arg(ap, u32));
	}
	if (ip->fields & RD)
		op |= build_rd(va_arg(ap, u32));
	if (ip->fields & RE)
		op |= build_re(va_arg(ap, u32));
	if (ip->fields & SIMM)
		op |= build_simm(va_arg(ap, s32));
	if (ip->fields & UIMM)
		op |= build_uimm(va_arg(ap, u32));
	if (ip->fields & BIMM)
		op |= build_bimm(va_arg(ap, s32));
	if (ip->fields & JIMM)
		op |= build_jimm(va_arg(ap, u32));
	if (ip->fields & FUNC)
		op |= build_func(va_arg(ap, u32));
	if (ip->fields & SET)
		op |= build_set(va_arg(ap, u32));
	if (ip->fields & SCIMM)
		op |= build_scimm(va_arg(ap, u32));
	va_end(ap);

#ifdef CONFIG_CPU_LITTLE_ENDIAN
	**buf = ((op & 0xffff) << 16) | (op >> 16);
#else
	**buf = op;
#endif
	(*buf)++;
}

static inline void
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
	long laddr = (long)lab->addr;
	long raddr = (long)rel->addr;

	switch (rel->type) {
	case R_MIPS_PC16:
#ifdef CONFIG_CPU_LITTLE_ENDIAN
		*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
#else
		*rel->addr |= build_bimm(laddr - (raddr + 4));
#endif
		break;

	default:
		panic("Unsupported Micro-assembler relocation %d",
		      rel->type);
	}
}