Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
/*
 * Coherent per-device memory handling.
 * Borrowed from i386
 */
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>

struct dma_coherent_mem {
	void		*virt_base;
	dma_addr_t	device_base;
	unsigned long	pfn_base;
	int		size;
	int		flags;
	unsigned long	*bitmap;
	spinlock_t	spinlock;
};

static bool dma_init_coherent_memory(
	phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
	struct dma_coherent_mem **mem)
{
	struct dma_coherent_mem *dma_mem = NULL;
	void __iomem *mem_base = NULL;
	int pages = size >> PAGE_SHIFT;
	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);

	if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
		goto out;
	if (!size)
		goto out;

	if (flags & DMA_MEMORY_MAP)
		mem_base = memremap(phys_addr, size, MEMREMAP_WC);
	else
		mem_base = ioremap(phys_addr, size);
	if (!mem_base)
		goto out;

	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
	if (!dma_mem)
		goto out;
	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!dma_mem->bitmap)
		goto out;

	dma_mem->virt_base = mem_base;
	dma_mem->device_base = device_addr;
	dma_mem->pfn_base = PFN_DOWN(phys_addr);
	dma_mem->size = pages;
	dma_mem->flags = flags;
	spin_lock_init(&dma_mem->spinlock);

	*mem = dma_mem;
	return true;

out:
	kfree(dma_mem);
	if (mem_base) {
		if (flags & DMA_MEMORY_MAP)
			memunmap(mem_base);
		else
			iounmap(mem_base);
	}
	return false;
}

static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
{
	if (!mem)
		return;

	if (mem->flags & DMA_MEMORY_MAP)
		memunmap(mem->virt_base);
	else
		iounmap(mem->virt_base);
	kfree(mem->bitmap);
	kfree(mem);
}

static int dma_assign_coherent_memory(struct device *dev,
				      struct dma_coherent_mem *mem)
{
	if (dev->dma_mem)
		return -EBUSY;

	dev->dma_mem = mem;
	/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */

	return 0;
}

int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
				dma_addr_t device_addr, size_t size, int flags)
{
	struct dma_coherent_mem *mem;

	if (!dma_init_coherent_memory(phys_addr, device_addr, size, flags,
				      &mem))
		return 0;

	if (dma_assign_coherent_memory(dev, mem) == 0)
		return flags & DMA_MEMORY_MAP ? DMA_MEMORY_MAP : DMA_MEMORY_IO;

	dma_release_coherent_memory(mem);
	return 0;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);

void dma_release_declared_memory(struct device *dev)
{
	struct dma_coherent_mem *mem = dev->dma_mem;

	if (!mem)
		return;
	dma_release_coherent_memory(mem);
	dev->dma_mem = NULL;
}
EXPORT_SYMBOL(dma_release_declared_memory);

void *dma_mark_declared_memory_occupied(struct device *dev,
					dma_addr_t device_addr, size_t size)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	unsigned long flags;
	int pos, err;

	size += device_addr & ~PAGE_MASK;

	if (!mem)
		return ERR_PTR(-EINVAL);

	spin_lock_irqsave(&mem->spinlock, flags);
	pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
	err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
	spin_unlock_irqrestore(&mem->spinlock, flags);

	if (err != 0)
		return ERR_PTR(err);
	return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);

/**
 * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area
 *
 * @dev:	device from which we allocate memory
 * @size:	size of requested memory area
 * @dma_handle:	This will be filled with the correct dma handle
 * @ret:	This pointer will be filled with the virtual address
 *		to allocated area.
 *
 * This function should be only called from per-arch dma_alloc_coherent()
 * to support allocation from per-device coherent memory pools.
 *
 * Returns 0 if dma_alloc_coherent should continue with allocating from
 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
 */
int dma_alloc_from_coherent(struct device *dev, ssize_t size,
				       dma_addr_t *dma_handle, void **ret)
{
	struct dma_coherent_mem *mem;
	int order = get_order(size);
	unsigned long flags;
	int pageno;
	int dma_memory_map;

	if (!dev)
		return 0;
	mem = dev->dma_mem;
	if (!mem)
		return 0;

	*ret = NULL;
	spin_lock_irqsave(&mem->spinlock, flags);

	if (unlikely(size > (mem->size << PAGE_SHIFT)))
		goto err;

	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
	if (unlikely(pageno < 0))
		goto err;

	/*
	 * Memory was found in the per-device area.
	 */
	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
	*ret = mem->virt_base + (pageno << PAGE_SHIFT);
	dma_memory_map = (mem->flags & DMA_MEMORY_MAP);
	spin_unlock_irqrestore(&mem->spinlock, flags);
	if (dma_memory_map)
		memset(*ret, 0, size);
	else
		memset_io(*ret, 0, size);

	return 1;

err:
	spin_unlock_irqrestore(&mem->spinlock, flags);
	/*
	 * In the case where the allocation can not be satisfied from the
	 * per-device area, try to fall back to generic memory if the
	 * constraints allow it.
	 */
	return mem->flags & DMA_MEMORY_EXCLUSIVE;
}
EXPORT_SYMBOL(dma_alloc_from_coherent);

/**
 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
 * @dev:	device from which the memory was allocated
 * @order:	the order of pages allocated
 * @vaddr:	virtual address of allocated pages
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, releases that memory.
 *
 * Returns 1 if we correctly released the memory, or 0 if
 * dma_release_coherent() should proceed with releasing memory from
 * generic pools.
 */
int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
{
	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;

	if (mem && vaddr >= mem->virt_base && vaddr <
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		unsigned long flags;

		spin_lock_irqsave(&mem->spinlock, flags);
		bitmap_release_region(mem->bitmap, page, order);
		spin_unlock_irqrestore(&mem->spinlock, flags);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(dma_release_from_coherent);

/**
 * dma_mmap_from_coherent() - try to mmap the memory allocated from
 * per-device coherent memory pool to userspace
 * @dev:	device from which the memory was allocated
 * @vma:	vm_area for the userspace memory
 * @vaddr:	cpu address returned by dma_alloc_from_coherent
 * @size:	size of the memory buffer allocated by dma_alloc_from_coherent
 * @ret:	result from remap_pfn_range()
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, maps that memory to the provided vma.
 *
 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
 * proceed with mapping memory from generic pools.
 */
int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
			   void *vaddr, size_t size, int *ret)
{
	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;

	if (mem && vaddr >= mem->virt_base && vaddr + size <=
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		unsigned long off = vma->vm_pgoff;
		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		int user_count = vma_pages(vma);
		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;

		*ret = -ENXIO;
		if (off < count && user_count <= count - off) {
			unsigned long pfn = mem->pfn_base + start + off;
			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
					       user_count << PAGE_SHIFT,
					       vma->vm_page_prot);
		}
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(dma_mmap_from_coherent);

/*
 * Support for reserved memory regions defined in device tree
 */
#ifdef CONFIG_OF_RESERVED_MEM
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>

static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
{
	struct dma_coherent_mem *mem = rmem->priv;

	if (!mem &&
	    !dma_init_coherent_memory(rmem->base, rmem->base, rmem->size,
				      DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE,
				      &mem)) {
		pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
			&rmem->base, (unsigned long)rmem->size / SZ_1M);
		return -ENODEV;
	}
	rmem->priv = mem;
	dma_assign_coherent_memory(dev, mem);
	return 0;
}

static void rmem_dma_device_release(struct reserved_mem *rmem,
				    struct device *dev)
{
	dev->dma_mem = NULL;
}

static const struct reserved_mem_ops rmem_dma_ops = {
	.device_init	= rmem_dma_device_init,
	.device_release	= rmem_dma_device_release,
};

static int __init rmem_dma_setup(struct reserved_mem *rmem)
{
	unsigned long node = rmem->fdt_node;

	if (of_get_flat_dt_prop(node, "reusable", NULL))
		return -EINVAL;

#ifdef CONFIG_ARM
	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
		pr_err("Reserved memory: regions without no-map are not yet supported\n");
		return -EINVAL;
	}
#endif

	rmem->ops = &rmem_dma_ops;
	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
		&rmem->base, (unsigned long)rmem->size / SZ_1M);
	return 0;
}
RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
#endif