Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*
 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/device.h>
#include <linux/interrupt.h>
#include <crypto/internal/hash.h>

#include "common.h"
#include "core.h"
#include "sha.h"

/* crypto hw padding constant for first operation */
#define SHA_PADDING		64
#define SHA_PADDING_MASK	(SHA_PADDING - 1)

static LIST_HEAD(ahash_algs);

static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
};

static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
};

static void qce_ahash_done(void *data)
{
	struct crypto_async_request *async_req = data;
	struct ahash_request *req = ahash_request_cast(async_req);
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
	struct qce_device *qce = tmpl->qce;
	struct qce_result_dump *result = qce->dma.result_buf;
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	int error;
	u32 status;

	error = qce_dma_terminate_all(&qce->dma);
	if (error)
		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);

	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);

	memcpy(rctx->digest, result->auth_iv, digestsize);
	if (req->result)
		memcpy(req->result, result->auth_iv, digestsize);

	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);

	error = qce_check_status(qce, &status);
	if (error < 0)
		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);

	req->src = rctx->src_orig;
	req->nbytes = rctx->nbytes_orig;
	rctx->last_blk = false;
	rctx->first_blk = false;

	qce->async_req_done(tmpl->qce, error);
}

static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
{
	struct ahash_request *req = ahash_request_cast(async_req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
	struct qce_device *qce = tmpl->qce;
	unsigned long flags = rctx->flags;
	int ret;

	if (IS_SHA_HMAC(flags)) {
		rctx->authkey = ctx->authkey;
		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
	} else if (IS_CMAC(flags)) {
		rctx->authkey = ctx->authkey;
		rctx->authklen = AES_KEYSIZE_128;
	}

	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
	if (rctx->src_nents < 0) {
		dev_err(qce->dev, "Invalid numbers of src SG.\n");
		return rctx->src_nents;
	}

	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
	if (ret < 0)
		return ret;

	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);

	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
	if (ret < 0)
		goto error_unmap_src;

	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
			       &rctx->result_sg, 1, qce_ahash_done, async_req);
	if (ret)
		goto error_unmap_dst;

	qce_dma_issue_pending(&qce->dma);

	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
	if (ret)
		goto error_terminate;

	return 0;

error_terminate:
	qce_dma_terminate_all(&qce->dma);
error_unmap_dst:
	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
error_unmap_src:
	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
	return ret;
}

static int qce_ahash_init(struct ahash_request *req)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	const u32 *std_iv = tmpl->std_iv;

	memset(rctx, 0, sizeof(*rctx));
	rctx->first_blk = true;
	rctx->last_blk = false;
	rctx->flags = tmpl->alg_flags;
	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));

	return 0;
}

static int qce_ahash_export(struct ahash_request *req, void *out)
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	unsigned long flags = rctx->flags;
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	unsigned int blocksize =
			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));

	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
		struct sha1_state *out_state = out;

		out_state->count = rctx->count;
		qce_cpu_to_be32p_array((__be32 *)out_state->state,
				       rctx->digest, digestsize);
		memcpy(out_state->buffer, rctx->buf, blocksize);
	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
		struct sha256_state *out_state = out;

		out_state->count = rctx->count;
		qce_cpu_to_be32p_array((__be32 *)out_state->state,
				       rctx->digest, digestsize);
		memcpy(out_state->buf, rctx->buf, blocksize);
	} else {
		return -EINVAL;
	}

	return 0;
}

static int qce_import_common(struct ahash_request *req, u64 in_count,
			     const u32 *state, const u8 *buffer, bool hmac)
{
	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	unsigned int digestsize = crypto_ahash_digestsize(ahash);
	unsigned int blocksize;
	u64 count = in_count;

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
	rctx->count = in_count;
	memcpy(rctx->buf, buffer, blocksize);

	if (in_count <= blocksize) {
		rctx->first_blk = 1;
	} else {
		rctx->first_blk = 0;
		/*
		 * For HMAC, there is a hardware padding done when first block
		 * is set. Therefore the byte_count must be incremened by 64
		 * after the first block operation.
		 */
		if (hmac)
			count += SHA_PADDING;
	}

	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
	rctx->byte_count[1] = (__force __be32)(count >> 32);
	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
			       digestsize);
	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));

	return 0;
}

static int qce_ahash_import(struct ahash_request *req, const void *in)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	unsigned long flags = rctx->flags;
	bool hmac = IS_SHA_HMAC(flags);
	int ret = -EINVAL;

	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
		const struct sha1_state *state = in;

		ret = qce_import_common(req, state->count, state->state,
					state->buffer, hmac);
	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
		const struct sha256_state *state = in;

		ret = qce_import_common(req, state->count, state->state,
					state->buf, hmac);
	}

	return ret;
}

static int qce_ahash_update(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	struct qce_device *qce = tmpl->qce;
	struct scatterlist *sg_last, *sg;
	unsigned int total, len;
	unsigned int hash_later;
	unsigned int nbytes;
	unsigned int blocksize;

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
	rctx->count += req->nbytes;

	/* check for buffer from previous updates and append it */
	total = req->nbytes + rctx->buflen;

	if (total <= blocksize) {
		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
					 0, req->nbytes, 0);
		rctx->buflen += req->nbytes;
		return 0;
	}

	/* save the original req structure fields */
	rctx->src_orig = req->src;
	rctx->nbytes_orig = req->nbytes;

	/*
	 * if we have data from previous update copy them on buffer. The old
	 * data will be combined with current request bytes.
	 */
	if (rctx->buflen)
		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);

	/* calculate how many bytes will be hashed later */
	hash_later = total % blocksize;
	if (hash_later) {
		unsigned int src_offset = req->nbytes - hash_later;
		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
					 hash_later, 0);
	}

	/* here nbytes is multiple of blocksize */
	nbytes = total - hash_later;

	len = rctx->buflen;
	sg = sg_last = req->src;

	while (len < nbytes && sg) {
		if (len + sg_dma_len(sg) > nbytes)
			break;
		len += sg_dma_len(sg);
		sg_last = sg;
		sg = sg_next(sg);
	}

	if (!sg_last)
		return -EINVAL;

	sg_mark_end(sg_last);

	if (rctx->buflen) {
		sg_init_table(rctx->sg, 2);
		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
		sg_chain(rctx->sg, 2, req->src);
		req->src = rctx->sg;
	}

	req->nbytes = nbytes;
	rctx->buflen = hash_later;

	return qce->async_req_enqueue(tmpl->qce, &req->base);
}

static int qce_ahash_final(struct ahash_request *req)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	struct qce_device *qce = tmpl->qce;

	if (!rctx->buflen)
		return 0;

	rctx->last_blk = true;

	rctx->src_orig = req->src;
	rctx->nbytes_orig = req->nbytes;

	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);

	req->src = rctx->sg;
	req->nbytes = rctx->buflen;

	return qce->async_req_enqueue(tmpl->qce, &req->base);
}

static int qce_ahash_digest(struct ahash_request *req)
{
	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
	struct qce_device *qce = tmpl->qce;
	int ret;

	ret = qce_ahash_init(req);
	if (ret)
		return ret;

	rctx->src_orig = req->src;
	rctx->nbytes_orig = req->nbytes;
	rctx->first_blk = true;
	rctx->last_blk = true;

	return qce->async_req_enqueue(tmpl->qce, &req->base);
}

struct qce_ahash_result {
	struct completion completion;
	int error;
};

static void qce_digest_complete(struct crypto_async_request *req, int error)
{
	struct qce_ahash_result *result = req->data;

	if (error == -EINPROGRESS)
		return;

	result->error = error;
	complete(&result->completion);
}

static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
				 unsigned int keylen)
{
	unsigned int digestsize = crypto_ahash_digestsize(tfm);
	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
	struct qce_ahash_result result;
	struct ahash_request *req;
	struct scatterlist sg;
	unsigned int blocksize;
	struct crypto_ahash *ahash_tfm;
	u8 *buf;
	int ret;
	const char *alg_name;

	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
	memset(ctx->authkey, 0, sizeof(ctx->authkey));

	if (keylen <= blocksize) {
		memcpy(ctx->authkey, key, keylen);
		return 0;
	}

	if (digestsize == SHA1_DIGEST_SIZE)
		alg_name = "sha1-qce";
	else if (digestsize == SHA256_DIGEST_SIZE)
		alg_name = "sha256-qce";
	else
		return -EINVAL;

	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
				       CRYPTO_ALG_TYPE_AHASH_MASK);
	if (IS_ERR(ahash_tfm))
		return PTR_ERR(ahash_tfm);

	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto err_free_ahash;
	}

	init_completion(&result.completion);
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				   qce_digest_complete, &result);
	crypto_ahash_clear_flags(ahash_tfm, ~0);

	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto err_free_req;
	}

	memcpy(buf, key, keylen);
	sg_init_one(&sg, buf, keylen);
	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);

	ret = crypto_ahash_digest(req);
	if (ret == -EINPROGRESS || ret == -EBUSY) {
		ret = wait_for_completion_interruptible(&result.completion);
		if (!ret)
			ret = result.error;
	}

	if (ret)
		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);

	kfree(buf);
err_free_req:
	ahash_request_free(req);
err_free_ahash:
	crypto_free_ahash(ahash_tfm);
	return ret;
}

static int qce_ahash_cra_init(struct crypto_tfm *tfm)
{
	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
	memset(ctx, 0, sizeof(*ctx));
	return 0;
}

struct qce_ahash_def {
	unsigned long flags;
	const char *name;
	const char *drv_name;
	unsigned int digestsize;
	unsigned int blocksize;
	unsigned int statesize;
	const u32 *std_iv;
};

static const struct qce_ahash_def ahash_def[] = {
	{
		.flags		= QCE_HASH_SHA1,
		.name		= "sha1",
		.drv_name	= "sha1-qce",
		.digestsize	= SHA1_DIGEST_SIZE,
		.blocksize	= SHA1_BLOCK_SIZE,
		.statesize	= sizeof(struct sha1_state),
		.std_iv		= std_iv_sha1,
	},
	{
		.flags		= QCE_HASH_SHA256,
		.name		= "sha256",
		.drv_name	= "sha256-qce",
		.digestsize	= SHA256_DIGEST_SIZE,
		.blocksize	= SHA256_BLOCK_SIZE,
		.statesize	= sizeof(struct sha256_state),
		.std_iv		= std_iv_sha256,
	},
	{
		.flags		= QCE_HASH_SHA1_HMAC,
		.name		= "hmac(sha1)",
		.drv_name	= "hmac-sha1-qce",
		.digestsize	= SHA1_DIGEST_SIZE,
		.blocksize	= SHA1_BLOCK_SIZE,
		.statesize	= sizeof(struct sha1_state),
		.std_iv		= std_iv_sha1,
	},
	{
		.flags		= QCE_HASH_SHA256_HMAC,
		.name		= "hmac(sha256)",
		.drv_name	= "hmac-sha256-qce",
		.digestsize	= SHA256_DIGEST_SIZE,
		.blocksize	= SHA256_BLOCK_SIZE,
		.statesize	= sizeof(struct sha256_state),
		.std_iv		= std_iv_sha256,
	},
};

static int qce_ahash_register_one(const struct qce_ahash_def *def,
				  struct qce_device *qce)
{
	struct qce_alg_template *tmpl;
	struct ahash_alg *alg;
	struct crypto_alg *base;
	int ret;

	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
	if (!tmpl)
		return -ENOMEM;

	tmpl->std_iv = def->std_iv;

	alg = &tmpl->alg.ahash;
	alg->init = qce_ahash_init;
	alg->update = qce_ahash_update;
	alg->final = qce_ahash_final;
	alg->digest = qce_ahash_digest;
	alg->export = qce_ahash_export;
	alg->import = qce_ahash_import;
	if (IS_SHA_HMAC(def->flags))
		alg->setkey = qce_ahash_hmac_setkey;
	alg->halg.digestsize = def->digestsize;
	alg->halg.statesize = def->statesize;

	base = &alg->halg.base;
	base->cra_blocksize = def->blocksize;
	base->cra_priority = 300;
	base->cra_flags = CRYPTO_ALG_ASYNC;
	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
	base->cra_alignmask = 0;
	base->cra_module = THIS_MODULE;
	base->cra_init = qce_ahash_cra_init;
	INIT_LIST_HEAD(&base->cra_list);

	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
		 def->drv_name);

	INIT_LIST_HEAD(&tmpl->entry);
	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
	tmpl->alg_flags = def->flags;
	tmpl->qce = qce;

	ret = crypto_register_ahash(alg);
	if (ret) {
		kfree(tmpl);
		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
		return ret;
	}

	list_add_tail(&tmpl->entry, &ahash_algs);
	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
	return 0;
}

static void qce_ahash_unregister(struct qce_device *qce)
{
	struct qce_alg_template *tmpl, *n;

	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
		crypto_unregister_ahash(&tmpl->alg.ahash);
		list_del(&tmpl->entry);
		kfree(tmpl);
	}
}

static int qce_ahash_register(struct qce_device *qce)
{
	int ret, i;

	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
		ret = qce_ahash_register_one(&ahash_def[i], qce);
		if (ret)
			goto err;
	}

	return 0;
err:
	qce_ahash_unregister(qce);
	return ret;
}

const struct qce_algo_ops ahash_ops = {
	.type = CRYPTO_ALG_TYPE_AHASH,
	.register_algs = qce_ahash_register,
	.unregister_algs = qce_ahash_unregister,
	.async_req_handle = qce_ahash_async_req_handle,
};