Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
/*
 * Copyright 2012 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/kernel.h>      /* printk() */
#include <linux/slab.h>        /* kmalloc() */
#include <linux/errno.h>       /* error codes */
#include <linux/types.h>       /* size_t */
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/irq.h>
#include <linux/netdevice.h>   /* struct device, and other headers */
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/skbuff.h>
#include <linux/ioctl.h>
#include <linux/cdev.h>
#include <linux/hugetlb.h>
#include <linux/in6.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/io.h>
#include <linux/ctype.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/net_tstamp.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/tick.h>

#include <asm/checksum.h>
#include <asm/homecache.h>
#include <gxio/mpipe.h>
#include <arch/sim.h>

/* Default transmit lockup timeout period, in jiffies. */
#define TILE_NET_TIMEOUT (5 * HZ)

/* The maximum number of distinct channels (idesc.channel is 5 bits). */
#define TILE_NET_CHANNELS 32

/* Maximum number of idescs to handle per "poll". */
#define TILE_NET_BATCH 128

/* Maximum number of packets to handle per "poll". */
#define TILE_NET_WEIGHT 64

/* Number of entries in each iqueue. */
#define IQUEUE_ENTRIES 512

/* Number of entries in each equeue. */
#define EQUEUE_ENTRIES 2048

/* Total header bytes per equeue slot.  Must be big enough for 2 bytes
 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
 * 60 bytes of actual TCP header.  We round up to align to cache lines.
 */
#define HEADER_BYTES 128

/* Maximum completions per cpu per device (must be a power of two).
 * ISSUE: What is the right number here?  If this is too small, then
 * egress might block waiting for free space in a completions array.
 * ISSUE: At the least, allocate these only for initialized echannels.
 */
#define TILE_NET_MAX_COMPS 64

#define MAX_FRAGS (MAX_SKB_FRAGS + 1)

/* The "kinds" of buffer stacks (small/large/jumbo). */
#define MAX_KINDS 3

/* Size of completions data to allocate.
 * ISSUE: Probably more than needed since we don't use all the channels.
 */
#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))

/* Size of NotifRing data to allocate. */
#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))

/* Timeout to wake the per-device TX timer after we stop the queue.
 * We don't want the timeout too short (adds overhead, and might end
 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
 */
#define TX_TIMER_DELAY_USEC 30

/* Timeout to wake the per-cpu egress timer to free completions. */
#define EGRESS_TIMER_DELAY_USEC 1000

MODULE_AUTHOR("Tilera Corporation");
MODULE_LICENSE("GPL");

/* A "packet fragment" (a chunk of memory). */
struct frag {
	void *buf;
	size_t length;
};

/* A single completion. */
struct tile_net_comp {
	/* The "complete_count" when the completion will be complete. */
	s64 when;
	/* The buffer to be freed when the completion is complete. */
	struct sk_buff *skb;
};

/* The completions for a given cpu and echannel. */
struct tile_net_comps {
	/* The completions. */
	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
	/* The number of completions used. */
	unsigned long comp_next;
	/* The number of completions freed. */
	unsigned long comp_last;
};

/* The transmit wake timer for a given cpu and echannel. */
struct tile_net_tx_wake {
	int tx_queue_idx;
	struct hrtimer timer;
	struct net_device *dev;
};

/* Info for a specific cpu. */
struct tile_net_info {
	/* Our cpu. */
	int my_cpu;
	/* A timer for handling egress completions. */
	struct hrtimer egress_timer;
	/* True if "egress_timer" is scheduled. */
	bool egress_timer_scheduled;
	struct info_mpipe {
		/* Packet queue. */
		gxio_mpipe_iqueue_t iqueue;
		/* The NAPI struct. */
		struct napi_struct napi;
		/* Number of buffers (by kind) which must still be provided. */
		unsigned int num_needed_buffers[MAX_KINDS];
		/* instance id. */
		int instance;
		/* True if iqueue is valid. */
		bool has_iqueue;
		/* NAPI flags. */
		bool napi_added;
		bool napi_enabled;
		/* Comps for each egress channel. */
		struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
		/* Transmit wake timer for each egress channel. */
		struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
	} mpipe[NR_MPIPE_MAX];
};

/* Info for egress on a particular egress channel. */
struct tile_net_egress {
	/* The "equeue". */
	gxio_mpipe_equeue_t *equeue;
	/* The headers for TSO. */
	unsigned char *headers;
};

/* Info for a specific device. */
struct tile_net_priv {
	/* Our network device. */
	struct net_device *dev;
	/* The primary link. */
	gxio_mpipe_link_t link;
	/* The primary channel, if open, else -1. */
	int channel;
	/* The "loopify" egress link, if needed. */
	gxio_mpipe_link_t loopify_link;
	/* The "loopify" egress channel, if open, else -1. */
	int loopify_channel;
	/* The egress channel (channel or loopify_channel). */
	int echannel;
	/* mPIPE instance, 0 or 1. */
	int instance;
	/* The timestamp config. */
	struct hwtstamp_config stamp_cfg;
};

static struct mpipe_data {
	/* The ingress irq. */
	int ingress_irq;

	/* The "context" for all devices. */
	gxio_mpipe_context_t context;

	/* Egress info, indexed by "priv->echannel"
	 * (lazily created as needed).
	 */
	struct tile_net_egress
	egress_for_echannel[TILE_NET_CHANNELS];

	/* Devices currently associated with each channel.
	 * NOTE: The array entry can become NULL after ifconfig down, but
	 * we do not free the underlying net_device structures, so it is
	 * safe to use a pointer after reading it from this array.
	 */
	struct net_device
	*tile_net_devs_for_channel[TILE_NET_CHANNELS];

	/* The actual memory allocated for the buffer stacks. */
	void *buffer_stack_vas[MAX_KINDS];

	/* The amount of memory allocated for each buffer stack. */
	size_t buffer_stack_bytes[MAX_KINDS];

	/* The first buffer stack index
	 * (small = +0, large = +1, jumbo = +2).
	 */
	int first_buffer_stack;

	/* The buckets. */
	int first_bucket;
	int num_buckets;

	/* PTP-specific data. */
	struct ptp_clock *ptp_clock;
	struct ptp_clock_info caps;

	/* Lock for ptp accessors. */
	struct mutex ptp_lock;

} mpipe_data[NR_MPIPE_MAX] = {
	[0 ... (NR_MPIPE_MAX - 1)] {
		.ingress_irq = -1,
		.first_buffer_stack = -1,
		.first_bucket = -1,
		.num_buckets = 1
	}
};

/* A mutex for "tile_net_devs_for_channel". */
static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);

/* The per-cpu info. */
static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);


/* The buffer size enums for each buffer stack.
 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
 * We avoid the "10384" size because it can induce "false chaining"
 * on "cut-through" jumbo packets.
 */
static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
	GXIO_MPIPE_BUFFER_SIZE_128,
	GXIO_MPIPE_BUFFER_SIZE_1664,
	GXIO_MPIPE_BUFFER_SIZE_16384
};

/* Text value of tile_net.cpus if passed as a module parameter. */
static char *network_cpus_string;

/* The actual cpus in "network_cpus". */
static struct cpumask network_cpus_map;

/* If "tile_net.loopify=LINK" was specified, this is "LINK". */
static char *loopify_link_name;

/* If "tile_net.custom" was specified, this is true. */
static bool custom_flag;

/* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
static uint jumbo_num;

/* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
static inline int mpipe_instance(struct net_device *dev)
{
	struct tile_net_priv *priv = netdev_priv(dev);
	return priv->instance;
}

/* The "tile_net.cpus" argument specifies the cpus that are dedicated
 * to handle ingress packets.
 *
 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
 * m, n, x, y are integer numbers that represent the cpus that can be
 * neither a dedicated cpu nor a dataplane cpu.
 */
static bool network_cpus_init(void)
{
	int rc;

	if (network_cpus_string == NULL)
		return false;

	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
	if (rc != 0) {
		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
			network_cpus_string);
		return false;
	}

	/* Remove dedicated cpus. */
	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);

	if (cpumask_empty(&network_cpus_map)) {
		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
			network_cpus_string);
		return false;
	}

	pr_info("Linux network CPUs: %*pbl\n",
		cpumask_pr_args(&network_cpus_map));
	return true;
}

module_param_named(cpus, network_cpus_string, charp, 0444);
MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");

/* The "tile_net.loopify=LINK" argument causes the named device to
 * actually use "loop0" for ingress, and "loop1" for egress.  This
 * allows an app to sit between the actual link and linux, passing
 * (some) packets along to linux, and forwarding (some) packets sent
 * out by linux.
 */
module_param_named(loopify, loopify_link_name, charp, 0444);
MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");

/* The "tile_net.custom" argument causes us to ignore the "conventional"
 * classifier metadata, in particular, the "l2_offset".
 */
module_param_named(custom, custom_flag, bool, 0444);
MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");

/* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
 * and to allocate the given number of "jumbo" buffers.
 */
module_param_named(jumbo, jumbo_num, uint, 0444);
MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");

/* Atomically update a statistics field.
 * Note that on TILE-Gx, this operation is fire-and-forget on the
 * issuing core (single-cycle dispatch) and takes only a few cycles
 * longer than a regular store when the request reaches the home cache.
 * No expensive bus management overhead is required.
 */
static void tile_net_stats_add(unsigned long value, unsigned long *field)
{
	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
	atomic_long_add(value, (atomic_long_t *)field);
}

/* Allocate and push a buffer. */
static bool tile_net_provide_buffer(int instance, int kind)
{
	struct mpipe_data *md = &mpipe_data[instance];
	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
	const unsigned long buffer_alignment = 128;
	struct sk_buff *skb;
	int len;

	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
	skb = dev_alloc_skb(len);
	if (skb == NULL)
		return false;

	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
	skb_reserve(skb, sizeof(struct sk_buff **));
	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));

	/* Save a back-pointer to 'skb'. */
	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;

	/* Make sure "skb" and the back-pointer have been flushed. */
	wmb();

	gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
			       (void *)va_to_tile_io_addr(skb->data));

	return true;
}

/* Convert a raw mpipe buffer to its matching skb pointer. */
static struct sk_buff *mpipe_buf_to_skb(void *va)
{
	/* Acquire the associated "skb". */
	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
	struct sk_buff *skb = *skb_ptr;

	/* Paranoia. */
	if (skb->data != va) {
		/* Panic here since there's a reasonable chance
		 * that corrupt buffers means generic memory
		 * corruption, with unpredictable system effects.
		 */
		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
		      va, skb, skb->data);
	}

	return skb;
}

static void tile_net_pop_all_buffers(int instance, int stack)
{
	struct mpipe_data *md = &mpipe_data[instance];

	for (;;) {
		tile_io_addr_t addr =
			(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
							      stack);
		if (addr == 0)
			break;
		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
	}
}

/* Provide linux buffers to mPIPE. */
static void tile_net_provide_needed_buffers(void)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	int instance, kind;
	for (instance = 0; instance < NR_MPIPE_MAX &&
		     info->mpipe[instance].has_iqueue; instance++)	{
		for (kind = 0; kind < MAX_KINDS; kind++) {
			while (info->mpipe[instance].num_needed_buffers[kind]
			       != 0) {
				if (!tile_net_provide_buffer(instance, kind)) {
					pr_notice("Tile %d still needs"
						  " some buffers\n",
						  info->my_cpu);
					return;
				}
				info->mpipe[instance].
					num_needed_buffers[kind]--;
			}
		}
	}
}

/* Get RX timestamp, and store it in the skb. */
static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
			      gxio_mpipe_idesc_t *idesc)
{
	if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
		shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
						  idesc->time_stamp_ns);
	}
}

/* Get TX timestamp, and store it in the skb. */
static void tile_tx_timestamp(struct sk_buff *skb, int instance)
{
	struct skb_shared_info *shtx = skb_shinfo(skb);
	if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
		struct mpipe_data *md = &mpipe_data[instance];
		struct skb_shared_hwtstamps shhwtstamps;
		struct timespec64 ts;

		shtx->tx_flags |= SKBTX_IN_PROGRESS;
		gxio_mpipe_get_timestamp(&md->context, &ts);
		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
		skb_tstamp_tx(skb, &shhwtstamps);
	}
}

/* Use ioctl() to enable or disable TX or RX timestamping. */
static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
{
	struct hwtstamp_config config;
	struct tile_net_priv *priv = netdev_priv(dev);

	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
		return -EFAULT;

	if (config.flags)  /* reserved for future extensions */
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_SOME:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	default:
		return -ERANGE;
	}

	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
		return -EFAULT;

	priv->stamp_cfg = config;
	return 0;
}

static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
{
	struct tile_net_priv *priv = netdev_priv(dev);

	if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
			 sizeof(priv->stamp_cfg)))
		return -EFAULT;

	return 0;
}

static inline bool filter_packet(struct net_device *dev, void *buf)
{
	/* Filter packets received before we're up. */
	if (dev == NULL || !(dev->flags & IFF_UP))
		return true;

	/* Filter out packets that aren't for us. */
	if (!(dev->flags & IFF_PROMISC) &&
	    !is_multicast_ether_addr(buf) &&
	    !ether_addr_equal(dev->dev_addr, buf))
		return true;

	return false;
}

static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
				 gxio_mpipe_idesc_t *idesc, unsigned long len)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	struct tile_net_priv *priv = netdev_priv(dev);
	int instance = priv->instance;

	/* Encode the actual packet length. */
	skb_put(skb, len);

	skb->protocol = eth_type_trans(skb, dev);

	/* Acknowledge "good" hardware checksums. */
	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	/* Get RX timestamp from idesc. */
	tile_rx_timestamp(priv, skb, idesc);

	napi_gro_receive(&info->mpipe[instance].napi, skb);

	/* Update stats. */
	tile_net_stats_add(1, &dev->stats.rx_packets);
	tile_net_stats_add(len, &dev->stats.rx_bytes);

	/* Need a new buffer. */
	if (idesc->size == buffer_size_enums[0])
		info->mpipe[instance].num_needed_buffers[0]++;
	else if (idesc->size == buffer_size_enums[1])
		info->mpipe[instance].num_needed_buffers[1]++;
	else
		info->mpipe[instance].num_needed_buffers[2]++;
}

/* Handle a packet.  Return true if "processed", false if "filtered". */
static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	struct mpipe_data *md = &mpipe_data[instance];
	struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
	uint8_t l2_offset;
	void *va;
	void *buf;
	unsigned long len;
	bool filter;

	/* Drop packets for which no buffer was available (which can
	 * happen under heavy load), or for which the me/tr/ce flags
	 * are set (which can happen for jumbo cut-through packets,
	 * or with a customized classifier).
	 */
	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
		if (dev)
			tile_net_stats_add(1, &dev->stats.rx_errors);
		goto drop;
	}

	/* Get the "l2_offset", if allowed. */
	l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);

	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
	va = tile_io_addr_to_va((unsigned long)idesc->va);

	/* Get the actual packet start/length. */
	buf = va + l2_offset;
	len = idesc->l2_size - l2_offset;

	/* Point "va" at the raw buffer. */
	va -= NET_IP_ALIGN;

	filter = filter_packet(dev, buf);
	if (filter) {
		if (dev)
			tile_net_stats_add(1, &dev->stats.rx_dropped);
drop:
		gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
	} else {
		struct sk_buff *skb = mpipe_buf_to_skb(va);

		/* Skip headroom, and any custom header. */
		skb_reserve(skb, NET_IP_ALIGN + l2_offset);

		tile_net_receive_skb(dev, skb, idesc, len);
	}

	gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
	return !filter;
}

/* Handle some packets for the current CPU.
 *
 * This function handles up to TILE_NET_BATCH idescs per call.
 *
 * ISSUE: Since we do not provide new buffers until this function is
 * complete, we must initially provide enough buffers for each network
 * cpu to fill its iqueue and also its batched idescs.
 *
 * ISSUE: The "rotting packet" race condition occurs if a packet
 * arrives after the queue appears to be empty, and before the
 * hypervisor interrupt is re-enabled.
 */
static int tile_net_poll(struct napi_struct *napi, int budget)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	unsigned int work = 0;
	gxio_mpipe_idesc_t *idesc;
	int instance, i, n;
	struct mpipe_data *md;
	struct info_mpipe *info_mpipe =
		container_of(napi, struct info_mpipe, napi);

	if (budget <= 0)
		goto done;

	instance = info_mpipe->instance;
	while ((n = gxio_mpipe_iqueue_try_peek(
			&info_mpipe->iqueue,
			&idesc)) > 0) {
		for (i = 0; i < n; i++) {
			if (i == TILE_NET_BATCH)
				goto done;
			if (tile_net_handle_packet(instance,
						   idesc + i)) {
				if (++work >= budget)
					goto done;
			}
		}
	}

	/* There are no packets left. */
	napi_complete(&info_mpipe->napi);

	md = &mpipe_data[instance];
	/* Re-enable hypervisor interrupts. */
	gxio_mpipe_enable_notif_ring_interrupt(
		&md->context, info->mpipe[instance].iqueue.ring);

	/* HACK: Avoid the "rotting packet" problem. */
	if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
		napi_schedule(&info_mpipe->napi);

	/* ISSUE: Handle completions? */

done:
	tile_net_provide_needed_buffers();

	return work;
}

/* Handle an ingress interrupt from an instance on the current cpu. */
static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	napi_schedule(&info->mpipe[(uint64_t)id].napi);
	return IRQ_HANDLED;
}

/* Free some completions.  This must be called with interrupts blocked. */
static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
				struct tile_net_comps *comps,
				int limit, bool force_update)
{
	int n = 0;
	while (comps->comp_last < comps->comp_next) {
		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
		struct tile_net_comp *comp = &comps->comp_queue[cid];
		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
						   force_update || n == 0))
			break;
		dev_kfree_skb_irq(comp->skb);
		comps->comp_last++;
		if (++n == limit)
			break;
	}
	return n;
}

/* Add a completion.  This must be called with interrupts blocked.
 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
 */
static void add_comp(gxio_mpipe_equeue_t *equeue,
		     struct tile_net_comps *comps,
		     uint64_t when, struct sk_buff *skb)
{
	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
	comps->comp_queue[cid].when = when;
	comps->comp_queue[cid].skb = skb;
	comps->comp_next++;
}

static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
                                            int tx_queue_idx)
{
	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
	struct tile_net_priv *priv = netdev_priv(dev);
	int instance = priv->instance;
	struct tile_net_tx_wake *tx_wake =
		&info->mpipe[instance].tx_wake[priv->echannel];

	hrtimer_start(&tx_wake->timer,
		      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
		      HRTIMER_MODE_REL_PINNED);
}

static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
{
	struct tile_net_tx_wake *tx_wake =
		container_of(t, struct tile_net_tx_wake, timer);
	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
	return HRTIMER_NORESTART;
}

/* Make sure the egress timer is scheduled. */
static void tile_net_schedule_egress_timer(void)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);

	if (!info->egress_timer_scheduled) {
		hrtimer_start(&info->egress_timer,
			      ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
			      HRTIMER_MODE_REL_PINNED);
		info->egress_timer_scheduled = true;
	}
}

/* The "function" for "info->egress_timer".
 *
 * This timer will reschedule itself as long as there are any pending
 * completions expected for this tile.
 */
static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	unsigned long irqflags;
	bool pending = false;
	int i, instance;

	local_irq_save(irqflags);

	/* The timer is no longer scheduled. */
	info->egress_timer_scheduled = false;

	/* Free all possible comps for this tile. */
	for (instance = 0; instance < NR_MPIPE_MAX &&
		     info->mpipe[instance].has_iqueue; instance++) {
		for (i = 0; i < TILE_NET_CHANNELS; i++) {
			struct tile_net_egress *egress =
				&mpipe_data[instance].egress_for_echannel[i];
			struct tile_net_comps *comps =
				info->mpipe[instance].comps_for_echannel[i];
			if (!egress || comps->comp_last >= comps->comp_next)
				continue;
			tile_net_free_comps(egress->equeue, comps, -1, true);
			pending = pending ||
				(comps->comp_last < comps->comp_next);
		}
	}

	/* Reschedule timer if needed. */
	if (pending)
		tile_net_schedule_egress_timer();

	local_irq_restore(irqflags);

	return HRTIMER_NORESTART;
}

/* PTP clock operations. */

static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	int ret = 0;
	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
	mutex_lock(&md->ptp_lock);
	if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
		ret = -EINVAL;
	mutex_unlock(&md->ptp_lock);
	return ret;
}

static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	int ret = 0;
	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
	mutex_lock(&md->ptp_lock);
	if (gxio_mpipe_adjust_timestamp(&md->context, delta))
		ret = -EBUSY;
	mutex_unlock(&md->ptp_lock);
	return ret;
}

static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
			     struct timespec64 *ts)
{
	int ret = 0;
	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
	mutex_lock(&md->ptp_lock);
	if (gxio_mpipe_get_timestamp(&md->context, ts))
		ret = -EBUSY;
	mutex_unlock(&md->ptp_lock);
	return ret;
}

static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
			     const struct timespec64 *ts)
{
	int ret = 0;
	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
	mutex_lock(&md->ptp_lock);
	if (gxio_mpipe_set_timestamp(&md->context, ts))
		ret = -EBUSY;
	mutex_unlock(&md->ptp_lock);
	return ret;
}

static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *request, int on)
{
	return -EOPNOTSUPP;
}

static struct ptp_clock_info ptp_mpipe_caps = {
	.owner		= THIS_MODULE,
	.name		= "mPIPE clock",
	.max_adj	= 999999999,
	.n_ext_ts	= 0,
	.n_pins		= 0,
	.pps		= 0,
	.adjfreq	= ptp_mpipe_adjfreq,
	.adjtime	= ptp_mpipe_adjtime,
	.gettime64	= ptp_mpipe_gettime,
	.settime64	= ptp_mpipe_settime,
	.enable		= ptp_mpipe_enable,
};

/* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
{
	struct timespec64 ts;

	ktime_get_ts64(&ts);
	gxio_mpipe_set_timestamp(&md->context, &ts);

	mutex_init(&md->ptp_lock);
	md->caps = ptp_mpipe_caps;
	md->ptp_clock = ptp_clock_register(&md->caps, NULL);
	if (IS_ERR(md->ptp_clock))
		netdev_err(dev, "ptp_clock_register failed %ld\n",
			   PTR_ERR(md->ptp_clock));
}

/* Initialize PTP fields in a new device. */
static void init_ptp_dev(struct tile_net_priv *priv)
{
	priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
	priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
}

/* Helper functions for "tile_net_update()". */
static void enable_ingress_irq(void *irq)
{
	enable_percpu_irq((long)irq, 0);
}

static void disable_ingress_irq(void *irq)
{
	disable_percpu_irq((long)irq);
}

/* Helper function for tile_net_open() and tile_net_stop().
 * Always called under tile_net_devs_for_channel_mutex.
 */
static int tile_net_update(struct net_device *dev)
{
	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
	bool saw_channel = false;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];
	int channel;
	int rc;
	int cpu;

	saw_channel = false;
	gxio_mpipe_rules_init(&rules, &md->context);

	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
		if (md->tile_net_devs_for_channel[channel] == NULL)
			continue;
		if (!saw_channel) {
			saw_channel = true;
			gxio_mpipe_rules_begin(&rules, md->first_bucket,
					       md->num_buckets, NULL);
			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
		}
		gxio_mpipe_rules_add_channel(&rules, channel);
	}

	/* NOTE: This can fail if there is no classifier.
	 * ISSUE: Can anything else cause it to fail?
	 */
	rc = gxio_mpipe_rules_commit(&rules);
	if (rc != 0) {
		netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
			    instance, rc);
		return -EIO;
	}

	/* Update all cpus, sequentially (to protect "netif_napi_add()").
	 * We use on_each_cpu to handle the IPI mask or unmask.
	 */
	if (!saw_channel)
		on_each_cpu(disable_ingress_irq,
			    (void *)(long)(md->ingress_irq), 1);
	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);

		if (!info->mpipe[instance].has_iqueue)
			continue;
		if (saw_channel) {
			if (!info->mpipe[instance].napi_added) {
				netif_napi_add(dev, &info->mpipe[instance].napi,
					       tile_net_poll, TILE_NET_WEIGHT);
				info->mpipe[instance].napi_added = true;
			}
			if (!info->mpipe[instance].napi_enabled) {
				napi_enable(&info->mpipe[instance].napi);
				info->mpipe[instance].napi_enabled = true;
			}
		} else {
			if (info->mpipe[instance].napi_enabled) {
				napi_disable(&info->mpipe[instance].napi);
				info->mpipe[instance].napi_enabled = false;
			}
			/* FIXME: Drain the iqueue. */
		}
	}
	if (saw_channel)
		on_each_cpu(enable_ingress_irq,
			    (void *)(long)(md->ingress_irq), 1);

	/* HACK: Allow packets to flow in the simulator. */
	if (saw_channel)
		sim_enable_mpipe_links(instance, -1);

	return 0;
}

/* Initialize a buffer stack. */
static int create_buffer_stack(struct net_device *dev,
			       int kind, size_t num_buffers)
{
	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];
	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
	int stack_idx = md->first_buffer_stack + kind;
	void *va;
	int i, rc;

	/* Round up to 64KB and then use alloc_pages() so we get the
	 * required 64KB alignment.
	 */
	md->buffer_stack_bytes[kind] =
		ALIGN(needed, 64 * 1024);

	va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
	if (va == NULL) {
		netdev_err(dev,
			   "Could not alloc %zd bytes for buffer stack %d\n",
			   md->buffer_stack_bytes[kind], kind);
		return -ENOMEM;
	}

	/* Initialize the buffer stack. */
	rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
					  buffer_size_enums[kind],  va,
					  md->buffer_stack_bytes[kind], 0);
	if (rc != 0) {
		netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
			   instance, rc);
		free_pages_exact(va, md->buffer_stack_bytes[kind]);
		return rc;
	}

	md->buffer_stack_vas[kind] = va;

	rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
					       hash_pte, 0);
	if (rc != 0) {
		netdev_err(dev,
			   "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
			   instance, rc);
		return rc;
	}

	/* Provide initial buffers. */
	for (i = 0; i < num_buffers; i++) {
		if (!tile_net_provide_buffer(instance, kind)) {
			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
			return -ENOMEM;
		}
	}

	return 0;
}

/* Allocate and initialize mpipe buffer stacks, and register them in
 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
 * This routine supports tile_net_init_mpipe(), below.
 */
static int init_buffer_stacks(struct net_device *dev,
			      int network_cpus_count)
{
	int num_kinds = MAX_KINDS - (jumbo_num == 0);
	size_t num_buffers;
	int rc;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];

	/* Allocate the buffer stacks. */
	rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
	if (rc < 0) {
		netdev_err(dev,
			   "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
			   instance, rc);
		return rc;
	}
	md->first_buffer_stack = rc;

	/* Enough small/large buffers to (normally) avoid buffer errors. */
	num_buffers =
		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);

	/* Allocate the small memory stack. */
	if (rc >= 0)
		rc = create_buffer_stack(dev, 0, num_buffers);

	/* Allocate the large buffer stack. */
	if (rc >= 0)
		rc = create_buffer_stack(dev, 1, num_buffers);

	/* Allocate the jumbo buffer stack if needed. */
	if (rc >= 0 && jumbo_num != 0)
		rc = create_buffer_stack(dev, 2, jumbo_num);

	return rc;
}

/* Allocate per-cpu resources (memory for completions and idescs).
 * This routine supports tile_net_init_mpipe(), below.
 */
static int alloc_percpu_mpipe_resources(struct net_device *dev,
					int cpu, int ring)
{
	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
	int order, i, rc;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];
	struct page *page;
	void *addr;

	/* Allocate the "comps". */
	order = get_order(COMPS_SIZE);
	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
	if (page == NULL) {
		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
			   COMPS_SIZE);
		return -ENOMEM;
	}
	addr = pfn_to_kaddr(page_to_pfn(page));
	memset(addr, 0, COMPS_SIZE);
	for (i = 0; i < TILE_NET_CHANNELS; i++)
		info->mpipe[instance].comps_for_echannel[i] =
			addr + i * sizeof(struct tile_net_comps);

	/* If this is a network cpu, create an iqueue. */
	if (cpumask_test_cpu(cpu, &network_cpus_map)) {
		order = get_order(NOTIF_RING_SIZE);
		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
		if (page == NULL) {
			netdev_err(dev,
				   "Failed to alloc %zd bytes iqueue memory\n",
				   NOTIF_RING_SIZE);
			return -ENOMEM;
		}
		addr = pfn_to_kaddr(page_to_pfn(page));
		rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
					    &md->context, ring++, addr,
					    NOTIF_RING_SIZE, 0);
		if (rc < 0) {
			netdev_err(dev,
				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
			return rc;
		}
		info->mpipe[instance].has_iqueue = true;
	}

	return ring;
}

/* Initialize NotifGroup and buckets.
 * This routine supports tile_net_init_mpipe(), below.
 */
static int init_notif_group_and_buckets(struct net_device *dev,
					int ring, int network_cpus_count)
{
	int group, rc;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];

	/* Allocate one NotifGroup. */
	rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
			   instance, rc);
		return rc;
	}
	group = rc;

	/* Initialize global num_buckets value. */
	if (network_cpus_count > 4)
		md->num_buckets = 256;
	else if (network_cpus_count > 1)
		md->num_buckets = 16;

	/* Allocate some buckets, and set global first_bucket value. */
	rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
			   instance, rc);
		return rc;
	}
	md->first_bucket = rc;

	/* Init group and buckets. */
	rc = gxio_mpipe_init_notif_group_and_buckets(
		&md->context, group, ring, network_cpus_count,
		md->first_bucket, md->num_buckets,
		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
	if (rc != 0) {
		netdev_err(dev,	"gxio_mpipe_init_notif_group_and_buckets: "
			   "mpipe[%d] %d\n", instance, rc);
		return rc;
	}

	return 0;
}

/* Create an irq and register it, then activate the irq and request
 * interrupts on all cores.  Note that "ingress_irq" being initialized
 * is how we know not to call tile_net_init_mpipe() again.
 * This routine supports tile_net_init_mpipe(), below.
 */
static int tile_net_setup_interrupts(struct net_device *dev)
{
	int cpu, rc, irq;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];

	irq = md->ingress_irq;
	if (irq < 0) {
		irq = irq_alloc_hwirq(-1);
		if (!irq) {
			netdev_err(dev,
				   "create_irq failed: mpipe[%d] %d\n",
				   instance, irq);
			return irq;
		}
		tile_irq_activate(irq, TILE_IRQ_PERCPU);

		rc = request_irq(irq, tile_net_handle_ingress_irq,
				 0, "tile_net", (void *)((uint64_t)instance));

		if (rc != 0) {
			netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
				   instance, rc);
			irq_free_hwirq(irq);
			return rc;
		}
		md->ingress_irq = irq;
	}

	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		if (info->mpipe[instance].has_iqueue) {
			gxio_mpipe_request_notif_ring_interrupt(&md->context,
				cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
				info->mpipe[instance].iqueue.ring);
		}
	}

	return 0;
}

/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
static void tile_net_init_mpipe_fail(int instance)
{
	int kind, cpu;
	struct mpipe_data *md = &mpipe_data[instance];

	/* Do cleanups that require the mpipe context first. */
	for (kind = 0; kind < MAX_KINDS; kind++) {
		if (md->buffer_stack_vas[kind] != NULL) {
			tile_net_pop_all_buffers(instance,
						 md->first_buffer_stack +
						 kind);
		}
	}

	/* Destroy mpipe context so the hardware no longer owns any memory. */
	gxio_mpipe_destroy(&md->context);

	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		free_pages(
			(unsigned long)(
				info->mpipe[instance].comps_for_echannel[0]),
			get_order(COMPS_SIZE));
		info->mpipe[instance].comps_for_echannel[0] = NULL;
		free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
			   get_order(NOTIF_RING_SIZE));
		info->mpipe[instance].iqueue.idescs = NULL;
	}

	for (kind = 0; kind < MAX_KINDS; kind++) {
		if (md->buffer_stack_vas[kind] != NULL) {
			free_pages_exact(md->buffer_stack_vas[kind],
					 md->buffer_stack_bytes[kind]);
			md->buffer_stack_vas[kind] = NULL;
		}
	}

	md->first_buffer_stack = -1;
	md->first_bucket = -1;
}

/* The first time any tilegx network device is opened, we initialize
 * the global mpipe state.  If this step fails, we fail to open the
 * device, but if it succeeds, we never need to do it again, and since
 * tile_net can't be unloaded, we never undo it.
 *
 * Note that some resources in this path (buffer stack indices,
 * bindings from init_buffer_stack, etc.) are hypervisor resources
 * that are freed implicitly by gxio_mpipe_destroy().
 */
static int tile_net_init_mpipe(struct net_device *dev)
{
	int rc;
	int cpu;
	int first_ring, ring;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];
	int network_cpus_count = cpumask_weight(&network_cpus_map);

	if (!hash_default) {
		netdev_err(dev, "Networking requires hash_default!\n");
		return -EIO;
	}

	rc = gxio_mpipe_init(&md->context, instance);
	if (rc != 0) {
		netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
			   instance, rc);
		return -EIO;
	}

	/* Set up the buffer stacks. */
	rc = init_buffer_stacks(dev, network_cpus_count);
	if (rc != 0)
		goto fail;

	/* Allocate one NotifRing for each network cpu. */
	rc = gxio_mpipe_alloc_notif_rings(&md->context,
					  network_cpus_count, 0, 0);
	if (rc < 0) {
		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
			   rc);
		goto fail;
	}

	/* Init NotifRings per-cpu. */
	first_ring = rc;
	ring = first_ring;
	for_each_online_cpu(cpu) {
		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
		if (rc < 0)
			goto fail;
		ring = rc;
	}

	/* Initialize NotifGroup and buckets. */
	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
	if (rc != 0)
		goto fail;

	/* Create and enable interrupts. */
	rc = tile_net_setup_interrupts(dev);
	if (rc != 0)
		goto fail;

	/* Register PTP clock and set mPIPE timestamp, if configured. */
	register_ptp_clock(dev, md);

	return 0;

fail:
	tile_net_init_mpipe_fail(instance);
	return rc;
}

/* Create persistent egress info for a given egress channel.
 * Note that this may be shared between, say, "gbe0" and "xgbe0".
 * ISSUE: Defer header allocation until TSO is actually needed?
 */
static int tile_net_init_egress(struct net_device *dev, int echannel)
{
	static int ering = -1;
	struct page *headers_page, *edescs_page, *equeue_page;
	gxio_mpipe_edesc_t *edescs;
	gxio_mpipe_equeue_t *equeue;
	unsigned char *headers;
	int headers_order, edescs_order, equeue_order;
	size_t edescs_size;
	int rc = -ENOMEM;
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];

	/* Only initialize once. */
	if (md->egress_for_echannel[echannel].equeue != NULL)
		return 0;

	/* Allocate memory for the "headers". */
	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
	headers_page = alloc_pages(GFP_KERNEL, headers_order);
	if (headers_page == NULL) {
		netdev_warn(dev,
			    "Could not alloc %zd bytes for TSO headers.\n",
			    PAGE_SIZE << headers_order);
		goto fail;
	}
	headers = pfn_to_kaddr(page_to_pfn(headers_page));

	/* Allocate memory for the "edescs". */
	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
	edescs_order = get_order(edescs_size);
	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
	if (edescs_page == NULL) {
		netdev_warn(dev,
			    "Could not alloc %zd bytes for eDMA ring.\n",
			    edescs_size);
		goto fail_headers;
	}
	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));

	/* Allocate memory for the "equeue". */
	equeue_order = get_order(sizeof(*equeue));
	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
	if (equeue_page == NULL) {
		netdev_warn(dev,
			    "Could not alloc %zd bytes for equeue info.\n",
			    PAGE_SIZE << equeue_order);
		goto fail_edescs;
	}
	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));

	/* Allocate an edma ring (using a one entry "free list"). */
	if (ering < 0) {
		rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
		if (rc < 0) {
			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
				    "mpipe[%d] %d\n", instance, rc);
			goto fail_equeue;
		}
		ering = rc;
	}

	/* Initialize the equeue. */
	rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
				    edescs, edescs_size, 0);
	if (rc != 0) {
		netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
			   instance, rc);
		goto fail_equeue;
	}

	/* Don't reuse the ering later. */
	ering = -1;

	if (jumbo_num != 0) {
		/* Make sure "jumbo" packets can be egressed safely. */
		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
			netdev_warn(dev, "Jumbo packets may not be egressed"
				    " properly on channel %d\n", echannel);
		}
	}

	/* Done. */
	md->egress_for_echannel[echannel].equeue = equeue;
	md->egress_for_echannel[echannel].headers = headers;
	return 0;

fail_equeue:
	__free_pages(equeue_page, equeue_order);

fail_edescs:
	__free_pages(edescs_page, edescs_order);

fail_headers:
	__free_pages(headers_page, headers_order);

fail:
	return rc;
}

/* Return channel number for a newly-opened link. */
static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
			      const char *link_name)
{
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];
	int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
	if (rc < 0) {
		netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
			   link_name, instance, rc);
		return rc;
	}
	if (jumbo_num != 0) {
		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
		rc = gxio_mpipe_link_set_attr(link, attr, 1);
		if (rc != 0) {
			netdev_err(dev,
				   "Cannot receive jumbo packets on '%s'\n",
				   link_name);
			gxio_mpipe_link_close(link);
			return rc;
		}
	}
	rc = gxio_mpipe_link_channel(link);
	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
		gxio_mpipe_link_close(link);
		return -EINVAL;
	}
	return rc;
}

/* Help the kernel activate the given network interface. */
static int tile_net_open(struct net_device *dev)
{
	struct tile_net_priv *priv = netdev_priv(dev);
	int cpu, rc, instance;

	mutex_lock(&tile_net_devs_for_channel_mutex);

	/* Get the instance info. */
	rc = gxio_mpipe_link_instance(dev->name);
	if (rc < 0 || rc >= NR_MPIPE_MAX) {
		mutex_unlock(&tile_net_devs_for_channel_mutex);
		return -EIO;
	}

	priv->instance = rc;
	instance = rc;
	if (!mpipe_data[rc].context.mmio_fast_base) {
		/* Do one-time initialization per instance the first time
		 * any device is opened.
		 */
		rc = tile_net_init_mpipe(dev);
		if (rc != 0)
			goto fail;
	}

	/* Determine if this is the "loopify" device. */
	if (unlikely((loopify_link_name != NULL) &&
		     !strcmp(dev->name, loopify_link_name))) {
		rc = tile_net_link_open(dev, &priv->link, "loop0");
		if (rc < 0)
			goto fail;
		priv->channel = rc;
		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
		if (rc < 0)
			goto fail;
		priv->loopify_channel = rc;
		priv->echannel = rc;
	} else {
		rc = tile_net_link_open(dev, &priv->link, dev->name);
		if (rc < 0)
			goto fail;
		priv->channel = rc;
		priv->echannel = rc;
	}

	/* Initialize egress info (if needed).  Once ever, per echannel. */
	rc = tile_net_init_egress(dev, priv->echannel);
	if (rc != 0)
		goto fail;

	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;

	rc = tile_net_update(dev);
	if (rc != 0)
		goto fail;

	mutex_unlock(&tile_net_devs_for_channel_mutex);

	/* Initialize the transmit wake timer for this device for each cpu. */
	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		struct tile_net_tx_wake *tx_wake =
			&info->mpipe[instance].tx_wake[priv->echannel];

		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL);
		tx_wake->tx_queue_idx = cpu;
		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
		tx_wake->dev = dev;
	}

	for_each_online_cpu(cpu)
		netif_start_subqueue(dev, cpu);
	netif_carrier_on(dev);
	return 0;

fail:
	if (priv->loopify_channel >= 0) {
		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
			netdev_warn(dev, "Failed to close loopify link!\n");
		priv->loopify_channel = -1;
	}
	if (priv->channel >= 0) {
		if (gxio_mpipe_link_close(&priv->link) != 0)
			netdev_warn(dev, "Failed to close link!\n");
		priv->channel = -1;
	}
	priv->echannel = -1;
	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] =	NULL;
	mutex_unlock(&tile_net_devs_for_channel_mutex);

	/* Don't return raw gxio error codes to generic Linux. */
	return (rc > -512) ? rc : -EIO;
}

/* Help the kernel deactivate the given network interface. */
static int tile_net_stop(struct net_device *dev)
{
	struct tile_net_priv *priv = netdev_priv(dev);
	int cpu;
	int instance = priv->instance;
	struct mpipe_data *md = &mpipe_data[instance];

	for_each_online_cpu(cpu) {
		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
		struct tile_net_tx_wake *tx_wake =
			&info->mpipe[instance].tx_wake[priv->echannel];

		hrtimer_cancel(&tx_wake->timer);
		netif_stop_subqueue(dev, cpu);
	}

	mutex_lock(&tile_net_devs_for_channel_mutex);
	md->tile_net_devs_for_channel[priv->channel] = NULL;
	(void)tile_net_update(dev);
	if (priv->loopify_channel >= 0) {
		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
			netdev_warn(dev, "Failed to close loopify link!\n");
		priv->loopify_channel = -1;
	}
	if (priv->channel >= 0) {
		if (gxio_mpipe_link_close(&priv->link) != 0)
			netdev_warn(dev, "Failed to close link!\n");
		priv->channel = -1;
	}
	priv->echannel = -1;
	mutex_unlock(&tile_net_devs_for_channel_mutex);

	return 0;
}

/* Determine the VA for a fragment. */
static inline void *tile_net_frag_buf(skb_frag_t *f)
{
	unsigned long pfn = page_to_pfn(skb_frag_page(f));
	return pfn_to_kaddr(pfn) + f->page_offset;
}

/* Acquire a completion entry and an egress slot, or if we can't,
 * stop the queue and schedule the tx_wake timer.
 */
static s64 tile_net_equeue_try_reserve(struct net_device *dev,
				       int tx_queue_idx,
				       struct tile_net_comps *comps,
				       gxio_mpipe_equeue_t *equeue,
				       int num_edescs)
{
	/* Try to acquire a completion entry. */
	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
	    tile_net_free_comps(equeue, comps, 32, false) != 0) {

		/* Try to acquire an egress slot. */
		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
		if (slot >= 0)
			return slot;

		/* Freeing some completions gives the equeue time to drain. */
		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);

		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
		if (slot >= 0)
			return slot;
	}

	/* Still nothing; give up and stop the queue for a short while. */
	netif_stop_subqueue(dev, tx_queue_idx);
	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
	return -1;
}

/* Determine how many edesc's are needed for TSO.
 *
 * Sometimes, if "sendfile()" requires copying, we will be called with
 * "data" containing the header and payload, with "frags" being empty.
 * Sometimes, for example when using NFS over TCP, a single segment can
 * span 3 fragments.  This requires special care.
 */
static int tso_count_edescs(struct sk_buff *skb)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	unsigned int data_len = skb->len - sh_len;
	unsigned int p_len = sh->gso_size;
	long f_id = -1;    /* id of the current fragment */
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
	long n;            /* size of the current piece of payload */
	int num_edescs = 0;
	int segment;

	for (segment = 0; segment < sh->gso_segs; segment++) {

		unsigned int p_used = 0;

		/* One edesc for header and for each piece of the payload. */
		for (num_edescs++; p_used < p_len; num_edescs++) {

			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
				f_size = skb_frag_size(&sh->frags[f_id]);
				f_used = 0;
			}

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;
		}

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	return num_edescs;
}

/* Prepare modified copies of the skbuff headers. */
static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
				s64 slot)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	struct iphdr *ih;
	struct ipv6hdr *ih6;
	struct tcphdr *th;
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	unsigned int data_len = skb->len - sh_len;
	unsigned char *data = skb->data;
	unsigned int ih_off, th_off, p_len;
	unsigned int isum_seed, tsum_seed, seq;
	unsigned int uninitialized_var(id);
	int is_ipv6;
	long f_id = -1;    /* id of the current fragment */
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
	long n;            /* size of the current piece of payload */
	int segment;

	/* Locate original headers and compute various lengths. */
	is_ipv6 = skb_is_gso_v6(skb);
	if (is_ipv6) {
		ih6 = ipv6_hdr(skb);
		ih_off = skb_network_offset(skb);
	} else {
		ih = ip_hdr(skb);
		ih_off = skb_network_offset(skb);
		isum_seed = ((0xFFFF - ih->check) +
			     (0xFFFF - ih->tot_len) +
			     (0xFFFF - ih->id));
		id = ntohs(ih->id);
	}

	th = tcp_hdr(skb);
	th_off = skb_transport_offset(skb);
	p_len = sh->gso_size;

	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
	seq = ntohl(th->seq);

	/* Prepare all the headers. */
	for (segment = 0; segment < sh->gso_segs; segment++) {
		unsigned char *buf;
		unsigned int p_used = 0;

		/* Copy to the header memory for this segment. */
		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
			NET_IP_ALIGN;
		memcpy(buf, data, sh_len);

		/* Update copied ip header. */
		if (is_ipv6) {
			ih6 = (struct ipv6hdr *)(buf + ih_off);
			ih6->payload_len = htons(sh_len + p_len - ih_off -
						 sizeof(*ih6));
		} else {
			ih = (struct iphdr *)(buf + ih_off);
			ih->tot_len = htons(sh_len + p_len - ih_off);
			ih->id = htons(id++);
			ih->check = csum_long(isum_seed + ih->tot_len +
					      ih->id) ^ 0xffff;
		}

		/* Update copied tcp header. */
		th = (struct tcphdr *)(buf + th_off);
		th->seq = htonl(seq);
		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
		if (segment != sh->gso_segs - 1) {
			th->fin = 0;
			th->psh = 0;
		}

		/* Skip past the header. */
		slot++;

		/* Skip past the payload. */
		while (p_used < p_len) {

			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
				f_size = skb_frag_size(&sh->frags[f_id]);
				f_used = 0;
			}

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;

			slot++;
		}

		seq += p_len;

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	/* Flush the headers so they are ready for hardware DMA. */
	wmb();
}

/* Pass all the data to mpipe for egress. */
static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
		       struct sk_buff *skb, unsigned char *headers, s64 slot)
{
	struct skb_shared_info *sh = skb_shinfo(skb);
	int instance = mpipe_instance(dev);
	struct mpipe_data *md = &mpipe_data[instance];
	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	unsigned int data_len = skb->len - sh_len;
	unsigned int p_len = sh->gso_size;
	gxio_mpipe_edesc_t edesc_head = { { 0 } };
	gxio_mpipe_edesc_t edesc_body = { { 0 } };
	long f_id = -1;    /* id of the current fragment */
	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
	long f_used = 0;  /* bytes used from the current fragment */
	void *f_data = skb->data + sh_len;
	long n;            /* size of the current piece of payload */
	unsigned long tx_packets = 0, tx_bytes = 0;
	unsigned int csum_start;
	int segment;

	/* Prepare to egress the headers: set up header edesc. */
	csum_start = skb_checksum_start_offset(skb);
	edesc_head.csum = 1;
	edesc_head.csum_start = csum_start;
	edesc_head.csum_dest = csum_start + skb->csum_offset;
	edesc_head.xfer_size = sh_len;

	/* This is only used to specify the TLB. */
	edesc_head.stack_idx = md->first_buffer_stack;
	edesc_body.stack_idx = md->first_buffer_stack;

	/* Egress all the edescs. */
	for (segment = 0; segment < sh->gso_segs; segment++) {
		unsigned char *buf;
		unsigned int p_used = 0;

		/* Egress the header. */
		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
			NET_IP_ALIGN;
		edesc_head.va = va_to_tile_io_addr(buf);
		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
		slot++;

		/* Egress the payload. */
		while (p_used < p_len) {
			void *va;

			/* Advance as needed. */
			while (f_used >= f_size) {
				f_id++;
				f_size = skb_frag_size(&sh->frags[f_id]);
				f_data = tile_net_frag_buf(&sh->frags[f_id]);
				f_used = 0;
			}

			va = f_data + f_used;

			/* Use bytes from the current fragment. */
			n = p_len - p_used;
			if (n > f_size - f_used)
				n = f_size - f_used;
			f_used += n;
			p_used += n;

			/* Egress a piece of the payload. */
			edesc_body.va = va_to_tile_io_addr(va);
			edesc_body.xfer_size = n;
			edesc_body.bound = !(p_used < p_len);
			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
			slot++;
		}

		tx_packets++;
		tx_bytes += sh_len + p_len;

		/* The last segment may be less than gso_size. */
		data_len -= p_len;
		if (data_len < p_len)
			p_len = data_len;
	}

	/* Update stats. */
	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
}

/* Do "TSO" handling for egress.
 *
 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
 * otherwise the stack uses scatter-gather to implement GSO in software.
 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
 * performance down to around 7.5 Gbps on the 10G interfaces, although
 * also dropping cpu utilization way down, to under 8%.  But
 * implementing "TSO" in the driver brings performance back up to line
 * rate, while dropping cpu usage even further, to less than 4%.  In
 * practice, profiling of GSO shows that skb_segment() is what causes
 * the performance overheads; we benefit in the driver from using
 * preallocated memory to duplicate the TCP/IP headers.
 */
static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	struct tile_net_priv *priv = netdev_priv(dev);
	int channel = priv->echannel;
	int instance = priv->instance;
	struct mpipe_data *md = &mpipe_data[instance];
	struct tile_net_egress *egress = &md->egress_for_echannel[channel];
	struct tile_net_comps *comps =
		info->mpipe[instance].comps_for_echannel[channel];
	gxio_mpipe_equeue_t *equeue = egress->equeue;
	unsigned long irqflags;
	int num_edescs;
	s64 slot;

	/* Determine how many mpipe edesc's are needed. */
	num_edescs = tso_count_edescs(skb);

	local_irq_save(irqflags);

	/* Try to acquire a completion entry and an egress slot. */
	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
					   equeue, num_edescs);
	if (slot < 0) {
		local_irq_restore(irqflags);
		return NETDEV_TX_BUSY;
	}

	/* Set up copies of header data properly. */
	tso_headers_prepare(skb, egress->headers, slot);

	/* Actually pass the data to the network hardware. */
	tso_egress(dev, equeue, skb, egress->headers, slot);

	/* Add a completion record. */
	add_comp(equeue, comps, slot + num_edescs - 1, skb);

	local_irq_restore(irqflags);

	/* Make sure the egress timer is scheduled. */
	tile_net_schedule_egress_timer();

	return NETDEV_TX_OK;
}

/* Analyze the body and frags for a transmit request. */
static unsigned int tile_net_tx_frags(struct frag *frags,
				       struct sk_buff *skb,
				       void *b_data, unsigned int b_len)
{
	unsigned int i, n = 0;

	struct skb_shared_info *sh = skb_shinfo(skb);

	if (b_len != 0) {
		frags[n].buf = b_data;
		frags[n++].length = b_len;
	}

	for (i = 0; i < sh->nr_frags; i++) {
		skb_frag_t *f = &sh->frags[i];
		frags[n].buf = tile_net_frag_buf(f);
		frags[n++].length = skb_frag_size(f);
	}

	return n;
}

/* Help the kernel transmit a packet. */
static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	struct tile_net_priv *priv = netdev_priv(dev);
	int instance = priv->instance;
	struct mpipe_data *md = &mpipe_data[instance];
	struct tile_net_egress *egress =
		&md->egress_for_echannel[priv->echannel];
	gxio_mpipe_equeue_t *equeue = egress->equeue;
	struct tile_net_comps *comps =
		info->mpipe[instance].comps_for_echannel[priv->echannel];
	unsigned int len = skb->len;
	unsigned char *data = skb->data;
	unsigned int num_edescs;
	struct frag frags[MAX_FRAGS];
	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
	unsigned long irqflags;
	gxio_mpipe_edesc_t edesc = { { 0 } };
	unsigned int i;
	s64 slot;

	if (skb_is_gso(skb))
		return tile_net_tx_tso(skb, dev);

	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));

	/* This is only used to specify the TLB. */
	edesc.stack_idx = md->first_buffer_stack;

	/* Prepare the edescs. */
	for (i = 0; i < num_edescs; i++) {
		edesc.xfer_size = frags[i].length;
		edesc.va = va_to_tile_io_addr(frags[i].buf);
		edescs[i] = edesc;
	}

	/* Mark the final edesc. */
	edescs[num_edescs - 1].bound = 1;

	/* Add checksum info to the initial edesc, if needed. */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		unsigned int csum_start = skb_checksum_start_offset(skb);
		edescs[0].csum = 1;
		edescs[0].csum_start = csum_start;
		edescs[0].csum_dest = csum_start + skb->csum_offset;
	}

	local_irq_save(irqflags);

	/* Try to acquire a completion entry and an egress slot. */
	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
					   equeue, num_edescs);
	if (slot < 0) {
		local_irq_restore(irqflags);
		return NETDEV_TX_BUSY;
	}

	for (i = 0; i < num_edescs; i++)
		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);

	/* Store TX timestamp if needed. */
	tile_tx_timestamp(skb, instance);

	/* Add a completion record. */
	add_comp(equeue, comps, slot - 1, skb);

	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
	tile_net_stats_add(1, &dev->stats.tx_packets);
	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
			   &dev->stats.tx_bytes);

	local_irq_restore(irqflags);

	/* Make sure the egress timer is scheduled. */
	tile_net_schedule_egress_timer();

	return NETDEV_TX_OK;
}

/* Return subqueue id on this core (one per core). */
static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
				 void *accel_priv, select_queue_fallback_t fallback)
{
	return smp_processor_id();
}

/* Deal with a transmit timeout. */
static void tile_net_tx_timeout(struct net_device *dev)
{
	int cpu;

	for_each_online_cpu(cpu)
		netif_wake_subqueue(dev, cpu);
}

/* Ioctl commands. */
static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	if (cmd == SIOCSHWTSTAMP)
		return tile_hwtstamp_set(dev, rq);
	if (cmd == SIOCGHWTSTAMP)
		return tile_hwtstamp_get(dev, rq);

	return -EOPNOTSUPP;
}

/* Change the MTU. */
static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
{
	if (new_mtu < 68)
		return -EINVAL;
	if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
		return -EINVAL;
	dev->mtu = new_mtu;
	return 0;
}

/* Change the Ethernet address of the NIC.
 *
 * The hypervisor driver does not support changing MAC address.  However,
 * the hardware does not do anything with the MAC address, so the address
 * which gets used on outgoing packets, and which is accepted on incoming
 * packets, is completely up to us.
 *
 * Returns 0 on success, negative on failure.
 */
static int tile_net_set_mac_address(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EINVAL;
	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void tile_net_netpoll(struct net_device *dev)
{
	int instance = mpipe_instance(dev);
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	struct mpipe_data *md = &mpipe_data[instance];

	disable_percpu_irq(md->ingress_irq);
	napi_schedule(&info->mpipe[instance].napi);
	enable_percpu_irq(md->ingress_irq, 0);
}
#endif

static const struct net_device_ops tile_net_ops = {
	.ndo_open = tile_net_open,
	.ndo_stop = tile_net_stop,
	.ndo_start_xmit = tile_net_tx,
	.ndo_select_queue = tile_net_select_queue,
	.ndo_do_ioctl = tile_net_ioctl,
	.ndo_change_mtu = tile_net_change_mtu,
	.ndo_tx_timeout = tile_net_tx_timeout,
	.ndo_set_mac_address = tile_net_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = tile_net_netpoll,
#endif
};

/* The setup function.
 *
 * This uses ether_setup() to assign various fields in dev, including
 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
 */
static void tile_net_setup(struct net_device *dev)
{
	netdev_features_t features = 0;

	ether_setup(dev);
	dev->netdev_ops = &tile_net_ops;
	dev->watchdog_timeo = TILE_NET_TIMEOUT;
	dev->mtu = 1500;

	features |= NETIF_F_HW_CSUM;
	features |= NETIF_F_SG;
	features |= NETIF_F_TSO;
	features |= NETIF_F_TSO6;

	dev->hw_features   |= features;
	dev->vlan_features |= features;
	dev->features      |= features;
}

/* Allocate the device structure, register the device, and obtain the
 * MAC address from the hypervisor.
 */
static void tile_net_dev_init(const char *name, const uint8_t *mac)
{
	int ret;
	struct net_device *dev;
	struct tile_net_priv *priv;

	/* HACK: Ignore "loop" links. */
	if (strncmp(name, "loop", 4) == 0)
		return;

	/* Allocate the device structure.  Normally, "name" is a
	 * template, instantiated by register_netdev(), but not for us.
	 */
	dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
			       tile_net_setup, NR_CPUS, 1);
	if (!dev) {
		pr_err("alloc_netdev_mqs(%s) failed\n", name);
		return;
	}

	/* Initialize "priv". */
	priv = netdev_priv(dev);
	priv->dev = dev;
	priv->channel = -1;
	priv->loopify_channel = -1;
	priv->echannel = -1;
	init_ptp_dev(priv);

	/* Get the MAC address and set it in the device struct; this must
	 * be done before the device is opened.  If the MAC is all zeroes,
	 * we use a random address, since we're probably on the simulator.
	 */
	if (!is_zero_ether_addr(mac))
		ether_addr_copy(dev->dev_addr, mac);
	else
		eth_hw_addr_random(dev);

	/* Register the network device. */
	ret = register_netdev(dev);
	if (ret) {
		netdev_err(dev, "register_netdev failed %d\n", ret);
		free_netdev(dev);
		return;
	}
}

/* Per-cpu module initialization. */
static void tile_net_init_module_percpu(void *unused)
{
	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
	int my_cpu = smp_processor_id();
	int instance;

	for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
		info->mpipe[instance].has_iqueue = false;
		info->mpipe[instance].instance = instance;
	}
	info->my_cpu = my_cpu;

	/* Initialize the egress timer. */
	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	info->egress_timer.function = tile_net_handle_egress_timer;
}

/* Module initialization. */
static int __init tile_net_init_module(void)
{
	int i;
	char name[GXIO_MPIPE_LINK_NAME_LEN];
	uint8_t mac[6];

	pr_info("Tilera Network Driver\n");

	BUILD_BUG_ON(NR_MPIPE_MAX != 2);

	mutex_init(&tile_net_devs_for_channel_mutex);

	/* Initialize each CPU. */
	on_each_cpu(tile_net_init_module_percpu, NULL, 1);

	/* Find out what devices we have, and initialize them. */
	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
		tile_net_dev_init(name, mac);

	if (!network_cpus_init())
		cpumask_and(&network_cpus_map, housekeeping_cpumask(),
			    cpu_online_mask);

	return 0;
}

module_init(tile_net_init_module);