Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*
 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "mt7601u.h"
#include "trace.h"
#include <linux/etherdevice.h>

static void
mt76_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate)
{
	u8 idx = FIELD_GET(MT_TXWI_RATE_MCS, rate);

	txrate->idx = 0;
	txrate->flags = 0;
	txrate->count = 1;

	switch (FIELD_GET(MT_TXWI_RATE_PHY_MODE, rate)) {
	case MT_PHY_TYPE_OFDM:
		txrate->idx = idx + 4;
		return;
	case MT_PHY_TYPE_CCK:
		if (idx >= 8)
			idx -= 8;

		txrate->idx = idx;
		return;
	case MT_PHY_TYPE_HT_GF:
		txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD;
		/* fall through */
	case MT_PHY_TYPE_HT:
		txrate->flags |= IEEE80211_TX_RC_MCS;
		txrate->idx = idx;
		break;
	default:
		WARN_ON(1);
		return;
	}

	if (FIELD_GET(MT_TXWI_RATE_BW, rate) == MT_PHY_BW_40)
		txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;

	if (rate & MT_TXWI_RATE_SGI)
		txrate->flags |= IEEE80211_TX_RC_SHORT_GI;
}

static void
mt76_mac_fill_tx_status(struct mt7601u_dev *dev, struct ieee80211_tx_info *info,
			struct mt76_tx_status *st)
{
	struct ieee80211_tx_rate *rate = info->status.rates;
	int cur_idx, last_rate;
	int i;

	last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1);
	mt76_mac_process_tx_rate(&rate[last_rate], st->rate);
	if (last_rate < IEEE80211_TX_MAX_RATES - 1)
		rate[last_rate + 1].idx = -1;

	cur_idx = rate[last_rate].idx + st->retry;
	for (i = 0; i <= last_rate; i++) {
		rate[i].flags = rate[last_rate].flags;
		rate[i].idx = max_t(int, 0, cur_idx - i);
		rate[i].count = 1;
	}

	if (last_rate > 0)
		rate[last_rate - 1].count = st->retry + 1 - last_rate;

	info->status.ampdu_len = 1;
	info->status.ampdu_ack_len = st->success;

	if (st->is_probe)
		info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;

	if (st->aggr)
		info->flags |= IEEE80211_TX_CTL_AMPDU |
			       IEEE80211_TX_STAT_AMPDU;

	if (!st->ack_req)
		info->flags |= IEEE80211_TX_CTL_NO_ACK;
	else if (st->success)
		info->flags |= IEEE80211_TX_STAT_ACK;
}

u16 mt76_mac_tx_rate_val(struct mt7601u_dev *dev,
			 const struct ieee80211_tx_rate *rate, u8 *nss_val)
{
	u16 rateval;
	u8 phy, rate_idx;
	u8 nss = 1;
	u8 bw = 0;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		rate_idx = rate->idx;
		nss = 1 + (rate->idx >> 3);
		phy = MT_PHY_TYPE_HT;
		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
			phy = MT_PHY_TYPE_HT_GF;
		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
			bw = 1;
	} else {
		const struct ieee80211_rate *r;
		int band = dev->chandef.chan->band;
		u16 val;

		r = &dev->hw->wiphy->bands[band]->bitrates[rate->idx];
		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
			val = r->hw_value_short;
		else
			val = r->hw_value;

		phy = val >> 8;
		rate_idx = val & 0xff;
		bw = 0;
	}

	rateval = FIELD_PREP(MT_RXWI_RATE_MCS, rate_idx);
	rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy);
	rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw);
	if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
		rateval |= MT_RXWI_RATE_SGI;

	*nss_val = nss;
	return rateval;
}

void mt76_mac_wcid_set_rate(struct mt7601u_dev *dev, struct mt76_wcid *wcid,
			    const struct ieee80211_tx_rate *rate)
{
	unsigned long flags;

	spin_lock_irqsave(&dev->lock, flags);
	wcid->tx_rate = mt76_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss);
	wcid->tx_rate_set = true;
	spin_unlock_irqrestore(&dev->lock, flags);
}

struct mt76_tx_status mt7601u_mac_fetch_tx_status(struct mt7601u_dev *dev)
{
	struct mt76_tx_status stat = {};
	u32 val;

	val = mt7601u_rr(dev, MT_TX_STAT_FIFO);
	stat.valid = !!(val & MT_TX_STAT_FIFO_VALID);
	stat.success = !!(val & MT_TX_STAT_FIFO_SUCCESS);
	stat.aggr = !!(val & MT_TX_STAT_FIFO_AGGR);
	stat.ack_req = !!(val & MT_TX_STAT_FIFO_ACKREQ);
	stat.pktid = FIELD_GET(MT_TX_STAT_FIFO_PID_TYPE, val);
	stat.wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, val);
	stat.rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, val);

	return stat;
}

void mt76_send_tx_status(struct mt7601u_dev *dev, struct mt76_tx_status *stat)
{
	struct ieee80211_tx_info info = {};
	struct ieee80211_sta *sta = NULL;
	struct mt76_wcid *wcid = NULL;
	void *msta;

	rcu_read_lock();
	if (stat->wcid < ARRAY_SIZE(dev->wcid))
		wcid = rcu_dereference(dev->wcid[stat->wcid]);

	if (wcid) {
		msta = container_of(wcid, struct mt76_sta, wcid);
		sta = container_of(msta, struct ieee80211_sta,
				   drv_priv);
	}

	mt76_mac_fill_tx_status(dev, &info, stat);

	spin_lock_bh(&dev->mac_lock);
	ieee80211_tx_status_noskb(dev->hw, sta, &info);
	spin_unlock_bh(&dev->mac_lock);

	rcu_read_unlock();
}

void mt7601u_mac_set_protection(struct mt7601u_dev *dev, bool legacy_prot,
				int ht_mode)
{
	int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION;
	bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
	u32 prot[6];
	bool ht_rts[4] = {};
	int i;

	prot[0] = MT_PROT_NAV_SHORT |
		  MT_PROT_TXOP_ALLOW_ALL |
		  MT_PROT_RTS_THR_EN;
	prot[1] = prot[0];
	if (legacy_prot)
		prot[1] |= MT_PROT_CTRL_CTS2SELF;

	prot[2] = prot[4] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_BW20;
	prot[3] = prot[5] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL;

	if (legacy_prot) {
		prot[2] |= MT_PROT_RATE_CCK_11;
		prot[3] |= MT_PROT_RATE_CCK_11;
		prot[4] |= MT_PROT_RATE_CCK_11;
		prot[5] |= MT_PROT_RATE_CCK_11;
	} else {
		prot[2] |= MT_PROT_RATE_OFDM_24;
		prot[3] |= MT_PROT_RATE_DUP_OFDM_24;
		prot[4] |= MT_PROT_RATE_OFDM_24;
		prot[5] |= MT_PROT_RATE_DUP_OFDM_24;
	}

	switch (mode) {
	case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
		break;

	case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
		ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
		break;

	case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
		ht_rts[1] = ht_rts[3] = true;
		break;

	case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
		ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
		break;
	}

	if (non_gf)
		ht_rts[2] = ht_rts[3] = true;

	for (i = 0; i < 4; i++)
		if (ht_rts[i])
			prot[i + 2] |= MT_PROT_CTRL_RTS_CTS;

	for (i = 0; i < 6; i++)
		mt7601u_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]);
}

void mt7601u_mac_set_short_preamble(struct mt7601u_dev *dev, bool short_preamb)
{
	if (short_preamb)
		mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
	else
		mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
}

void mt7601u_mac_config_tsf(struct mt7601u_dev *dev, bool enable, int interval)
{
	u32 val = mt7601u_rr(dev, MT_BEACON_TIME_CFG);

	val &= ~(MT_BEACON_TIME_CFG_TIMER_EN |
		 MT_BEACON_TIME_CFG_SYNC_MODE |
		 MT_BEACON_TIME_CFG_TBTT_EN);

	if (!enable) {
		mt7601u_wr(dev, MT_BEACON_TIME_CFG, val);
		return;
	}

	val &= ~MT_BEACON_TIME_CFG_INTVAL;
	val |= FIELD_PREP(MT_BEACON_TIME_CFG_INTVAL, interval << 4) |
		MT_BEACON_TIME_CFG_TIMER_EN |
		MT_BEACON_TIME_CFG_SYNC_MODE |
		MT_BEACON_TIME_CFG_TBTT_EN;
}

static void mt7601u_check_mac_err(struct mt7601u_dev *dev)
{
	u32 val = mt7601u_rr(dev, 0x10f4);

	if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5))))
		return;

	dev_err(dev->dev, "Error: MAC specific condition occurred\n");

	mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
	udelay(10);
	mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
}

void mt7601u_mac_work(struct work_struct *work)
{
	struct mt7601u_dev *dev = container_of(work, struct mt7601u_dev,
					       mac_work.work);
	struct {
		u32 addr_base;
		u32 span;
		u64 *stat_base;
	} spans[] = {
		{ MT_RX_STA_CNT0,	3,	dev->stats.rx_stat },
		{ MT_TX_STA_CNT0,	3,	dev->stats.tx_stat },
		{ MT_TX_AGG_STAT,	1,	dev->stats.aggr_stat },
		{ MT_MPDU_DENSITY_CNT,	1,	dev->stats.zero_len_del },
		{ MT_TX_AGG_CNT_BASE0,	8,	&dev->stats.aggr_n[0] },
		{ MT_TX_AGG_CNT_BASE1,	8,	&dev->stats.aggr_n[16] },
	};
	u32 sum, n;
	int i, j, k;

	/* Note: using MCU_RANDOM_READ is actually slower then reading all the
	 *	 registers by hand.  MCU takes ca. 20ms to complete read of 24
	 *	 registers while reading them one by one will takes roughly
	 *	 24*200us =~ 5ms.
	 */

	k = 0;
	n = 0;
	sum = 0;
	for (i = 0; i < ARRAY_SIZE(spans); i++)
		for (j = 0; j < spans[i].span; j++) {
			u32 val = mt7601u_rr(dev, spans[i].addr_base + j * 4);

			spans[i].stat_base[j * 2] += val & 0xffff;
			spans[i].stat_base[j * 2 + 1] += val >> 16;

			/* Calculate average AMPDU length */
			if (spans[i].addr_base != MT_TX_AGG_CNT_BASE0 &&
			    spans[i].addr_base != MT_TX_AGG_CNT_BASE1)
				continue;

			n += (val >> 16) + (val & 0xffff);
			sum += (val & 0xffff) * (1 + k * 2) +
				(val >> 16) * (2 + k * 2);
			k++;
		}

	atomic_set(&dev->avg_ampdu_len, n ? DIV_ROUND_CLOSEST(sum, n) : 1);

	mt7601u_check_mac_err(dev);

	ieee80211_queue_delayed_work(dev->hw, &dev->mac_work, 10 * HZ);
}

void
mt7601u_mac_wcid_setup(struct mt7601u_dev *dev, u8 idx, u8 vif_idx, u8 *mac)
{
	u8 zmac[ETH_ALEN] = {};
	u32 attr;

	attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) |
	       FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8));

	mt76_wr(dev, MT_WCID_ATTR(idx), attr);

	if (mac)
		memcpy(zmac, mac, sizeof(zmac));

	mt7601u_addr_wr(dev, MT_WCID_ADDR(idx), zmac);
}

void mt7601u_mac_set_ampdu_factor(struct mt7601u_dev *dev)
{
	struct ieee80211_sta *sta;
	struct mt76_wcid *wcid;
	void *msta;
	u8 min_factor = 3;
	int i;

	rcu_read_lock();
	for (i = 0; i < ARRAY_SIZE(dev->wcid); i++) {
		wcid = rcu_dereference(dev->wcid[i]);
		if (!wcid)
			continue;

		msta = container_of(wcid, struct mt76_sta, wcid);
		sta = container_of(msta, struct ieee80211_sta, drv_priv);

		min_factor = min(min_factor, sta->ht_cap.ampdu_factor);
	}
	rcu_read_unlock();

	mt7601u_wr(dev, MT_MAX_LEN_CFG, 0xa0fff |
		   FIELD_PREP(MT_MAX_LEN_CFG_AMPDU, min_factor));
}

static void
mt76_mac_process_rate(struct ieee80211_rx_status *status, u16 rate)
{
	u8 idx = FIELD_GET(MT_RXWI_RATE_MCS, rate);

	switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
	case MT_PHY_TYPE_OFDM:
		if (WARN_ON(idx >= 8))
			idx = 0;
		idx += 4;

		status->rate_idx = idx;
		return;
	case MT_PHY_TYPE_CCK:
		if (idx >= 8) {
			idx -= 8;
			status->flag |= RX_FLAG_SHORTPRE;
		}

		if (WARN_ON(idx >= 4))
			idx = 0;

		status->rate_idx = idx;
		return;
	case MT_PHY_TYPE_HT_GF:
		status->flag |= RX_FLAG_HT_GF;
		/* fall through */
	case MT_PHY_TYPE_HT:
		status->flag |= RX_FLAG_HT;
		status->rate_idx = idx;
		break;
	default:
		WARN_ON(1);
		return;
	}

	if (rate & MT_RXWI_RATE_SGI)
		status->flag |= RX_FLAG_SHORT_GI;

	if (rate & MT_RXWI_RATE_STBC)
		status->flag |= 1 << RX_FLAG_STBC_SHIFT;

	if (rate & MT_RXWI_RATE_BW)
		status->flag |= RX_FLAG_40MHZ;
}

static void
mt7601u_rx_monitor_beacon(struct mt7601u_dev *dev, struct mt7601u_rxwi *rxwi,
			  u16 rate, int rssi)
{
	dev->bcn_freq_off = rxwi->freq_off;
	dev->bcn_phy_mode = FIELD_GET(MT_RXWI_RATE_PHY, rate);
	dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8);
}

static int
mt7601u_rx_is_our_beacon(struct mt7601u_dev *dev, u8 *data)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;

	return ieee80211_is_beacon(hdr->frame_control) &&
		ether_addr_equal(hdr->addr2, dev->ap_bssid);
}

u32 mt76_mac_process_rx(struct mt7601u_dev *dev, struct sk_buff *skb,
			u8 *data, void *rxi)
{
	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
	struct mt7601u_rxwi *rxwi = rxi;
	u32 len, ctl = le32_to_cpu(rxwi->ctl);
	u16 rate = le16_to_cpu(rxwi->rate);
	int rssi;

	len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl);
	if (len < 10)
		return 0;

	if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) {
		status->flag |= RX_FLAG_DECRYPTED;
		status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED;
	}

	status->chains = BIT(0);
	rssi = mt7601u_phy_get_rssi(dev, rxwi, rate);
	status->chain_signal[0] = status->signal = rssi;
	status->freq = dev->chandef.chan->center_freq;
	status->band = dev->chandef.chan->band;

	mt76_mac_process_rate(status, rate);

	spin_lock_bh(&dev->con_mon_lock);
	if (mt7601u_rx_is_our_beacon(dev, data))
		mt7601u_rx_monitor_beacon(dev, rxwi, rate, rssi);
	else if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_U2M))
		dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8);
	spin_unlock_bh(&dev->con_mon_lock);

	return len;
}

static enum mt76_cipher_type
mt76_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
{
	memset(key_data, 0, 32);
	if (!key)
		return MT_CIPHER_NONE;

	if (key->keylen > 32)
		return MT_CIPHER_NONE;

	memcpy(key_data, key->key, key->keylen);

	switch (key->cipher) {
	case WLAN_CIPHER_SUITE_WEP40:
		return MT_CIPHER_WEP40;
	case WLAN_CIPHER_SUITE_WEP104:
		return MT_CIPHER_WEP104;
	case WLAN_CIPHER_SUITE_TKIP:
		return MT_CIPHER_TKIP;
	case WLAN_CIPHER_SUITE_CCMP:
		return MT_CIPHER_AES_CCMP;
	default:
		return MT_CIPHER_NONE;
	}
}

int mt76_mac_wcid_set_key(struct mt7601u_dev *dev, u8 idx,
			  struct ieee80211_key_conf *key)
{
	enum mt76_cipher_type cipher;
	u8 key_data[32];
	u8 iv_data[8];
	u32 val;

	cipher = mt76_mac_get_key_info(key, key_data);
	if (cipher == MT_CIPHER_NONE && key)
		return -EINVAL;

	trace_set_key(dev, idx);

	mt7601u_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data));

	memset(iv_data, 0, sizeof(iv_data));
	if (key) {
		iv_data[3] = key->keyidx << 6;
		if (cipher >= MT_CIPHER_TKIP) {
			/* Note: start with 1 to comply with spec,
			 *	 (see comment on common/cmm_wpa.c:4291).
			 */
			iv_data[0] |= 1;
			iv_data[3] |= 0x20;
		}
	}
	mt7601u_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data));

	val = mt7601u_rr(dev, MT_WCID_ATTR(idx));
	val &= ~MT_WCID_ATTR_PKEY_MODE & ~MT_WCID_ATTR_PKEY_MODE_EXT;
	val |= FIELD_PREP(MT_WCID_ATTR_PKEY_MODE, cipher & 7) |
	       FIELD_PREP(MT_WCID_ATTR_PKEY_MODE_EXT, cipher >> 3);
	val &= ~MT_WCID_ATTR_PAIRWISE;
	val |= MT_WCID_ATTR_PAIRWISE *
		!!(key && key->flags & IEEE80211_KEY_FLAG_PAIRWISE);
	mt7601u_wr(dev, MT_WCID_ATTR(idx), val);

	return 0;
}

int mt76_mac_shared_key_setup(struct mt7601u_dev *dev, u8 vif_idx, u8 key_idx,
			      struct ieee80211_key_conf *key)
{
	enum mt76_cipher_type cipher;
	u8 key_data[32];
	u32 val;

	cipher = mt76_mac_get_key_info(key, key_data);
	if (cipher == MT_CIPHER_NONE && key)
		return -EINVAL;

	trace_set_shared_key(dev, vif_idx, key_idx);

	mt7601u_wr_copy(dev, MT_SKEY(vif_idx, key_idx),
			key_data, sizeof(key_data));

	val = mt76_rr(dev, MT_SKEY_MODE(vif_idx));
	val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx));
	val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx);
	mt76_wr(dev, MT_SKEY_MODE(vif_idx), val);

	return 0;
}