Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/*
 * Copyright 2011 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/kernel.h>
#include <linux/string.h>
#include <asm/byteorder.h>
#include <asm/backtrace.h>
#include <asm/tile-desc.h>
#include <arch/abi.h>

#ifdef __tilegx__
#define TILE_MAX_INSTRUCTIONS_PER_BUNDLE TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE
#define tile_decoded_instruction tilegx_decoded_instruction
#define tile_mnemonic tilegx_mnemonic
#define parse_insn_tile parse_insn_tilegx
#define TILE_OPC_IRET TILEGX_OPC_IRET
#define TILE_OPC_ADDI TILEGX_OPC_ADDI
#define TILE_OPC_ADDLI TILEGX_OPC_ADDLI
#define TILE_OPC_INFO TILEGX_OPC_INFO
#define TILE_OPC_INFOL TILEGX_OPC_INFOL
#define TILE_OPC_JRP TILEGX_OPC_JRP
#define TILE_OPC_MOVE TILEGX_OPC_MOVE
#define OPCODE_STORE TILEGX_OPC_ST
typedef long long bt_int_reg_t;
#else
#define TILE_MAX_INSTRUCTIONS_PER_BUNDLE TILEPRO_MAX_INSTRUCTIONS_PER_BUNDLE
#define tile_decoded_instruction tilepro_decoded_instruction
#define tile_mnemonic tilepro_mnemonic
#define parse_insn_tile parse_insn_tilepro
#define TILE_OPC_IRET TILEPRO_OPC_IRET
#define TILE_OPC_ADDI TILEPRO_OPC_ADDI
#define TILE_OPC_ADDLI TILEPRO_OPC_ADDLI
#define TILE_OPC_INFO TILEPRO_OPC_INFO
#define TILE_OPC_INFOL TILEPRO_OPC_INFOL
#define TILE_OPC_JRP TILEPRO_OPC_JRP
#define TILE_OPC_MOVE TILEPRO_OPC_MOVE
#define OPCODE_STORE TILEPRO_OPC_SW
typedef int bt_int_reg_t;
#endif

/* A decoded bundle used for backtracer analysis. */
struct BacktraceBundle {
	tile_bundle_bits bits;
	int num_insns;
	struct tile_decoded_instruction
	insns[TILE_MAX_INSTRUCTIONS_PER_BUNDLE];
};


/* Locates an instruction inside the given bundle that
 * has the specified mnemonic, and whose first 'num_operands_to_match'
 * operands exactly match those in 'operand_values'.
 */
static const struct tile_decoded_instruction *find_matching_insn(
	const struct BacktraceBundle *bundle,
	tile_mnemonic mnemonic,
	const int *operand_values,
	int num_operands_to_match)
{
	int i, j;
	bool match;

	for (i = 0; i < bundle->num_insns; i++) {
		const struct tile_decoded_instruction *insn =
			&bundle->insns[i];

		if (insn->opcode->mnemonic != mnemonic)
			continue;

		match = true;
		for (j = 0; j < num_operands_to_match; j++) {
			if (operand_values[j] != insn->operand_values[j]) {
				match = false;
				break;
			}
		}

		if (match)
			return insn;
	}

	return NULL;
}

/* Does this bundle contain an 'iret' instruction? */
static inline bool bt_has_iret(const struct BacktraceBundle *bundle)
{
	return find_matching_insn(bundle, TILE_OPC_IRET, NULL, 0) != NULL;
}

/* Does this bundle contain an 'addi sp, sp, OFFSET' or
 * 'addli sp, sp, OFFSET' instruction, and if so, what is OFFSET?
 */
static bool bt_has_addi_sp(const struct BacktraceBundle *bundle, int *adjust)
{
	static const int vals[2] = { TREG_SP, TREG_SP };

	const struct tile_decoded_instruction *insn =
		find_matching_insn(bundle, TILE_OPC_ADDI, vals, 2);
	if (insn == NULL)
		insn = find_matching_insn(bundle, TILE_OPC_ADDLI, vals, 2);
#ifdef __tilegx__
	if (insn == NULL)
		insn = find_matching_insn(bundle, TILEGX_OPC_ADDXLI, vals, 2);
	if (insn == NULL)
		insn = find_matching_insn(bundle, TILEGX_OPC_ADDXI, vals, 2);
#endif
	if (insn == NULL)
		return false;

	*adjust = insn->operand_values[2];
	return true;
}

/* Does this bundle contain any 'info OP' or 'infol OP'
 * instruction, and if so, what are their OP?  Note that OP is interpreted
 * as an unsigned value by this code since that's what the caller wants.
 * Returns the number of info ops found.
 */
static int bt_get_info_ops(const struct BacktraceBundle *bundle,
		int operands[MAX_INFO_OPS_PER_BUNDLE])
{
	int num_ops = 0;
	int i;

	for (i = 0; i < bundle->num_insns; i++) {
		const struct tile_decoded_instruction *insn =
			&bundle->insns[i];

		if (insn->opcode->mnemonic == TILE_OPC_INFO ||
		    insn->opcode->mnemonic == TILE_OPC_INFOL) {
			operands[num_ops++] = insn->operand_values[0];
		}
	}

	return num_ops;
}

/* Does this bundle contain a jrp instruction, and if so, to which
 * register is it jumping?
 */
static bool bt_has_jrp(const struct BacktraceBundle *bundle, int *target_reg)
{
	const struct tile_decoded_instruction *insn =
		find_matching_insn(bundle, TILE_OPC_JRP, NULL, 0);
	if (insn == NULL)
		return false;

	*target_reg = insn->operand_values[0];
	return true;
}

/* Does this bundle modify the specified register in any way? */
static bool bt_modifies_reg(const struct BacktraceBundle *bundle, int reg)
{
	int i, j;
	for (i = 0; i < bundle->num_insns; i++) {
		const struct tile_decoded_instruction *insn =
			&bundle->insns[i];

		if (insn->opcode->implicitly_written_register == reg)
			return true;

		for (j = 0; j < insn->opcode->num_operands; j++)
			if (insn->operands[j]->is_dest_reg &&
			    insn->operand_values[j] == reg)
				return true;
	}

	return false;
}

/* Does this bundle modify sp? */
static inline bool bt_modifies_sp(const struct BacktraceBundle *bundle)
{
	return bt_modifies_reg(bundle, TREG_SP);
}

/* Does this bundle modify lr? */
static inline bool bt_modifies_lr(const struct BacktraceBundle *bundle)
{
	return bt_modifies_reg(bundle, TREG_LR);
}

/* Does this bundle contain the instruction 'move fp, sp'? */
static inline bool bt_has_move_r52_sp(const struct BacktraceBundle *bundle)
{
	static const int vals[2] = { 52, TREG_SP };
	return find_matching_insn(bundle, TILE_OPC_MOVE, vals, 2) != NULL;
}

/* Does this bundle contain a store of lr to sp? */
static inline bool bt_has_sw_sp_lr(const struct BacktraceBundle *bundle)
{
	static const int vals[2] = { TREG_SP, TREG_LR };
	return find_matching_insn(bundle, OPCODE_STORE, vals, 2) != NULL;
}

#ifdef __tilegx__
/* Track moveli values placed into registers. */
static inline void bt_update_moveli(const struct BacktraceBundle *bundle,
				    int moveli_args[])
{
	int i;
	for (i = 0; i < bundle->num_insns; i++) {
		const struct tile_decoded_instruction *insn =
			&bundle->insns[i];

		if (insn->opcode->mnemonic == TILEGX_OPC_MOVELI) {
			int reg = insn->operand_values[0];
			moveli_args[reg] = insn->operand_values[1];
		}
	}
}

/* Does this bundle contain an 'add sp, sp, reg' instruction
 * from a register that we saw a moveli into, and if so, what
 * is the value in the register?
 */
static bool bt_has_add_sp(const struct BacktraceBundle *bundle, int *adjust,
			  int moveli_args[])
{
	static const int vals[2] = { TREG_SP, TREG_SP };

	const struct tile_decoded_instruction *insn =
		find_matching_insn(bundle, TILEGX_OPC_ADDX, vals, 2);
	if (insn) {
		int reg = insn->operand_values[2];
		if (moveli_args[reg]) {
			*adjust = moveli_args[reg];
			return true;
		}
	}
	return false;
}
#endif

/* Locates the caller's PC and SP for a program starting at the
 * given address.
 */
static void find_caller_pc_and_caller_sp(CallerLocation *location,
					 const unsigned long start_pc,
					 BacktraceMemoryReader read_memory_func,
					 void *read_memory_func_extra)
{
	/* Have we explicitly decided what the sp is,
	 * rather than just the default?
	 */
	bool sp_determined = false;

	/* Has any bundle seen so far modified lr? */
	bool lr_modified = false;

	/* Have we seen a move from sp to fp? */
	bool sp_moved_to_r52 = false;

	/* Have we seen a terminating bundle? */
	bool seen_terminating_bundle = false;

	/* Cut down on round-trip reading overhead by reading several
	 * bundles at a time.
	 */
	tile_bundle_bits prefetched_bundles[32];
	int num_bundles_prefetched = 0;
	int next_bundle = 0;
	unsigned long pc;

#ifdef __tilegx__
	/* Naively try to track moveli values to support addx for -m32. */
	int moveli_args[TILEGX_NUM_REGISTERS] = { 0 };
#endif

	/* Default to assuming that the caller's sp is the current sp.
	 * This is necessary to handle the case where we start backtracing
	 * right at the end of the epilog.
	 */
	location->sp_location = SP_LOC_OFFSET;
	location->sp_offset = 0;

	/* Default to having no idea where the caller PC is. */
	location->pc_location = PC_LOC_UNKNOWN;

	/* Don't even try if the PC is not aligned. */
	if (start_pc % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0)
		return;

	for (pc = start_pc;; pc += sizeof(tile_bundle_bits)) {

		struct BacktraceBundle bundle;
		int num_info_ops, info_operands[MAX_INFO_OPS_PER_BUNDLE];
		int one_ago, jrp_reg;
		bool has_jrp;

		if (next_bundle >= num_bundles_prefetched) {
			/* Prefetch some bytes, but don't cross a page
			 * boundary since that might cause a read failure we
			 * don't care about if we only need the first few
			 * bytes. Note: we don't care what the actual page
			 * size is; using the minimum possible page size will
			 * prevent any problems.
			 */
			unsigned int bytes_to_prefetch = 4096 - (pc & 4095);
			if (bytes_to_prefetch > sizeof prefetched_bundles)
				bytes_to_prefetch = sizeof prefetched_bundles;

			if (!read_memory_func(prefetched_bundles, pc,
					      bytes_to_prefetch,
					      read_memory_func_extra)) {
				if (pc == start_pc) {
					/* The program probably called a bad
					 * address, such as a NULL pointer.
					 * So treat this as if we are at the
					 * start of the function prolog so the
					 * backtrace will show how we got here.
					 */
					location->pc_location = PC_LOC_IN_LR;
					return;
				}

				/* Unreadable address. Give up. */
				break;
			}

			next_bundle = 0;
			num_bundles_prefetched =
				bytes_to_prefetch / sizeof(tile_bundle_bits);
		}

		/*
		 * Decode the next bundle.
		 * TILE always stores instruction bundles in little-endian
		 * mode, even when the chip is running in big-endian mode.
		 */
		bundle.bits = le64_to_cpu(prefetched_bundles[next_bundle++]);
		bundle.num_insns =
			parse_insn_tile(bundle.bits, pc, bundle.insns);
		num_info_ops = bt_get_info_ops(&bundle, info_operands);

		/* First look at any one_ago info ops if they are interesting,
		 * since they should shadow any non-one-ago info ops.
		 */
		for (one_ago = (pc != start_pc) ? 1 : 0;
		     one_ago >= 0; one_ago--) {
			int i;
			for (i = 0; i < num_info_ops; i++) {
				int info_operand = info_operands[i];
				if (info_operand < CALLER_UNKNOWN_BASE)	{
					/* Weird; reserved value, ignore it. */
					continue;
				}

				/* Skip info ops which are not in the
				 * "one_ago" mode we want right now.
				 */
				if (((info_operand & ONE_BUNDLE_AGO_FLAG) != 0)
				    != (one_ago != 0))
					continue;

				/* Clear the flag to make later checking
				 * easier. */
				info_operand &= ~ONE_BUNDLE_AGO_FLAG;

				/* Default to looking at PC_IN_LR_FLAG. */
				if (info_operand & PC_IN_LR_FLAG)
					location->pc_location =
						PC_LOC_IN_LR;
				else
					location->pc_location =
						PC_LOC_ON_STACK;

				switch (info_operand) {
				case CALLER_UNKNOWN_BASE:
					location->pc_location = PC_LOC_UNKNOWN;
					location->sp_location = SP_LOC_UNKNOWN;
					return;

				case CALLER_SP_IN_R52_BASE:
				case CALLER_SP_IN_R52_BASE | PC_IN_LR_FLAG:
					location->sp_location = SP_LOC_IN_R52;
					return;

				default:
				{
					const unsigned int val = info_operand
						- CALLER_SP_OFFSET_BASE;
					const unsigned int sp_offset =
						(val >> NUM_INFO_OP_FLAGS) * 8;
					if (sp_offset < 32768) {
						/* This is a properly encoded
						 * SP offset. */
						location->sp_location =
							SP_LOC_OFFSET;
						location->sp_offset =
							sp_offset;
						return;
					} else {
						/* This looked like an SP
						 * offset, but it's outside
						 * the legal range, so this
						 * must be an unrecognized
						 * info operand.  Ignore it.
						 */
					}
				}
				break;
				}
			}
		}

		if (seen_terminating_bundle) {
			/* We saw a terminating bundle during the previous
			 * iteration, so we were only looking for an info op.
			 */
			break;
		}

		if (bundle.bits == 0) {
			/* Wacky terminating bundle. Stop looping, and hope
			 * we've already seen enough to find the caller.
			 */
			break;
		}

		/*
		 * Try to determine caller's SP.
		 */

		if (!sp_determined) {
			int adjust;
			if (bt_has_addi_sp(&bundle, &adjust)
#ifdef __tilegx__
			    || bt_has_add_sp(&bundle, &adjust, moveli_args)
#endif
				) {
				location->sp_location = SP_LOC_OFFSET;

				if (adjust <= 0) {
					/* We are in prolog about to adjust
					 * SP. */
					location->sp_offset = 0;
				} else {
					/* We are in epilog restoring SP. */
					location->sp_offset = adjust;
				}

				sp_determined = true;
			} else {
				if (bt_has_move_r52_sp(&bundle)) {
					/* Maybe in prolog, creating an
					 * alloca-style frame.  But maybe in
					 * the middle of a fixed-size frame
					 * clobbering r52 with SP.
					 */
					sp_moved_to_r52 = true;
				}

				if (bt_modifies_sp(&bundle)) {
					if (sp_moved_to_r52) {
						/* We saw SP get saved into
						 * r52 earlier (or now), which
						 * must have been in the
						 * prolog, so we now know that
						 * SP is still holding the
						 * caller's sp value.
						 */
						location->sp_location =
							SP_LOC_OFFSET;
						location->sp_offset = 0;
					} else {
						/* Someone must have saved
						 * aside the caller's SP value
						 * into r52, so r52 holds the
						 * current value.
						 */
						location->sp_location =
							SP_LOC_IN_R52;
					}
					sp_determined = true;
				}
			}

#ifdef __tilegx__
			/* Track moveli arguments for -m32 mode. */
			bt_update_moveli(&bundle, moveli_args);
#endif
		}

		if (bt_has_iret(&bundle)) {
			/* This is a terminating bundle. */
			seen_terminating_bundle = true;
			continue;
		}

		/*
		 * Try to determine caller's PC.
		 */

		jrp_reg = -1;
		has_jrp = bt_has_jrp(&bundle, &jrp_reg);
		if (has_jrp)
			seen_terminating_bundle = true;

		if (location->pc_location == PC_LOC_UNKNOWN) {
			if (has_jrp) {
				if (jrp_reg == TREG_LR && !lr_modified) {
					/* Looks like a leaf function, or else
					 * lr is already restored. */
					location->pc_location =
						PC_LOC_IN_LR;
				} else {
					location->pc_location =
						PC_LOC_ON_STACK;
				}
			} else if (bt_has_sw_sp_lr(&bundle)) {
				/* In prolog, spilling initial lr to stack. */
				location->pc_location = PC_LOC_IN_LR;
			} else if (bt_modifies_lr(&bundle)) {
				lr_modified = true;
			}
		}
	}
}

/* Initializes a backtracer to start from the given location.
 *
 * If the frame pointer cannot be determined it is set to -1.
 *
 * state: The state to be filled in.
 * read_memory_func: A callback that reads memory.
 * read_memory_func_extra: An arbitrary argument to read_memory_func.
 * pc: The current PC.
 * lr: The current value of the 'lr' register.
 * sp: The current value of the 'sp' register.
 * r52: The current value of the 'r52' register.
 */
void backtrace_init(BacktraceIterator *state,
		    BacktraceMemoryReader read_memory_func,
		    void *read_memory_func_extra,
		    unsigned long pc, unsigned long lr,
		    unsigned long sp, unsigned long r52)
{
	CallerLocation location;
	unsigned long fp, initial_frame_caller_pc;

	/* Find out where we are in the initial frame. */
	find_caller_pc_and_caller_sp(&location, pc,
				     read_memory_func, read_memory_func_extra);

	switch (location.sp_location) {
	case SP_LOC_UNKNOWN:
		/* Give up. */
		fp = -1;
		break;

	case SP_LOC_IN_R52:
		fp = r52;
		break;

	case SP_LOC_OFFSET:
		fp = sp + location.sp_offset;
		break;

	default:
		/* Give up. */
		fp = -1;
		break;
	}

	/* If the frame pointer is not aligned to the basic word size
	 * something terrible happened and we should mark it as invalid.
	 */
	if (fp % sizeof(bt_int_reg_t) != 0)
		fp = -1;

	/* -1 means "don't know initial_frame_caller_pc". */
	initial_frame_caller_pc = -1;

	switch (location.pc_location) {
	case PC_LOC_UNKNOWN:
		/* Give up. */
		fp = -1;
		break;

	case PC_LOC_IN_LR:
		if (lr == 0 || lr % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) {
			/* Give up. */
			fp = -1;
		} else {
			initial_frame_caller_pc = lr;
		}
		break;

	case PC_LOC_ON_STACK:
		/* Leave initial_frame_caller_pc as -1,
		 * meaning check the stack.
		 */
		break;

	default:
		/* Give up. */
		fp = -1;
		break;
	}

	state->pc = pc;
	state->sp = sp;
	state->fp = fp;
	state->initial_frame_caller_pc = initial_frame_caller_pc;
	state->read_memory_func = read_memory_func;
	state->read_memory_func_extra = read_memory_func_extra;
}

/* Handle the case where the register holds more bits than the VA. */
static bool valid_addr_reg(bt_int_reg_t reg)
{
	return ((unsigned long)reg == reg);
}

/* Advances the backtracing state to the calling frame, returning
 * true iff successful.
 */
bool backtrace_next(BacktraceIterator *state)
{
	unsigned long next_fp, next_pc;
	bt_int_reg_t next_frame[2];

	if (state->fp == -1) {
		/* No parent frame. */
		return false;
	}

	/* Try to read the frame linkage data chaining to the next function. */
	if (!state->read_memory_func(&next_frame, state->fp, sizeof next_frame,
				     state->read_memory_func_extra)) {
		return false;
	}

	next_fp = next_frame[1];
	if (!valid_addr_reg(next_frame[1]) ||
	    next_fp % sizeof(bt_int_reg_t) != 0) {
		/* Caller's frame pointer is suspect, so give up. */
		return false;
	}

	if (state->initial_frame_caller_pc != -1) {
		/* We must be in the initial stack frame and already know the
		 * caller PC.
		 */
		next_pc = state->initial_frame_caller_pc;

		/* Force reading stack next time, in case we were in the
		 * initial frame.  We don't do this above just to paranoidly
		 * avoid changing the struct at all when we return false.
		 */
		state->initial_frame_caller_pc = -1;
	} else {
		/* Get the caller PC from the frame linkage area. */
		next_pc = next_frame[0];
		if (!valid_addr_reg(next_frame[0]) || next_pc == 0 ||
		    next_pc % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) {
			/* The PC is suspect, so give up. */
			return false;
		}
	}

	/* Update state to become the caller's stack frame. */
	state->pc = next_pc;
	state->sp = state->fp;
	state->fp = next_fp;

	return true;
}