Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/*
 * Qualcomm Technologies HIDMA DMA engine low level code
 *
 * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <linux/iopoll.h>
#include <linux/kfifo.h>
#include <linux/bitops.h>

#include "hidma.h"

#define HIDMA_EVRE_SIZE			16	/* each EVRE is 16 bytes */

#define HIDMA_TRCA_CTRLSTS_REG			0x000
#define HIDMA_TRCA_RING_LOW_REG		0x008
#define HIDMA_TRCA_RING_HIGH_REG		0x00C
#define HIDMA_TRCA_RING_LEN_REG		0x010
#define HIDMA_TRCA_DOORBELL_REG		0x400

#define HIDMA_EVCA_CTRLSTS_REG			0x000
#define HIDMA_EVCA_INTCTRL_REG			0x004
#define HIDMA_EVCA_RING_LOW_REG		0x008
#define HIDMA_EVCA_RING_HIGH_REG		0x00C
#define HIDMA_EVCA_RING_LEN_REG		0x010
#define HIDMA_EVCA_WRITE_PTR_REG		0x020
#define HIDMA_EVCA_DOORBELL_REG		0x400

#define HIDMA_EVCA_IRQ_STAT_REG		0x100
#define HIDMA_EVCA_IRQ_CLR_REG			0x108
#define HIDMA_EVCA_IRQ_EN_REG			0x110

#define HIDMA_EVRE_CFG_IDX			0

#define HIDMA_EVRE_ERRINFO_BIT_POS		24
#define HIDMA_EVRE_CODE_BIT_POS		28

#define HIDMA_EVRE_ERRINFO_MASK		GENMASK(3, 0)
#define HIDMA_EVRE_CODE_MASK			GENMASK(3, 0)

#define HIDMA_CH_CONTROL_MASK			GENMASK(7, 0)
#define HIDMA_CH_STATE_MASK			GENMASK(7, 0)
#define HIDMA_CH_STATE_BIT_POS			0x8

#define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS	0
#define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS	1
#define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS	9
#define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS	10
#define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS	11
#define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS	14

#define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS)	| \
		     BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS)	| \
		     BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS)	| \
		     BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS)	| \
		     BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS)	| \
		     BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS))

#define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size)	\
do {								\
	iter += size;						\
	if (iter >= ring_size)					\
		iter -= ring_size;				\
} while (0)

#define HIDMA_CH_STATE(val)	\
	((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK)

#define HIDMA_ERR_INT_MASK				\
	(BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS)   |	\
	 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) |	\
	 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS)	    |	\
	 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS)    |	\
	 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS))

enum ch_command {
	HIDMA_CH_DISABLE = 0,
	HIDMA_CH_ENABLE = 1,
	HIDMA_CH_SUSPEND = 2,
	HIDMA_CH_RESET = 9,
};

enum ch_state {
	HIDMA_CH_DISABLED = 0,
	HIDMA_CH_ENABLED = 1,
	HIDMA_CH_RUNNING = 2,
	HIDMA_CH_SUSPENDED = 3,
	HIDMA_CH_STOPPED = 4,
};

enum tre_type {
	HIDMA_TRE_MEMCPY = 3,
};

enum err_code {
	HIDMA_EVRE_STATUS_COMPLETE = 1,
	HIDMA_EVRE_STATUS_ERROR = 4,
};

static int hidma_is_chan_enabled(int state)
{
	switch (state) {
	case HIDMA_CH_ENABLED:
	case HIDMA_CH_RUNNING:
		return true;
	default:
		return false;
	}
}

void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch)
{
	struct hidma_tre *tre;

	if (tre_ch >= lldev->nr_tres) {
		dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch);
		return;
	}

	tre = &lldev->trepool[tre_ch];
	if (atomic_read(&tre->allocated) != true) {
		dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch);
		return;
	}

	atomic_set(&tre->allocated, 0);
}

int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name,
		     void (*callback)(void *data), void *data, u32 *tre_ch)
{
	unsigned int i;
	struct hidma_tre *tre;
	u32 *tre_local;

	if (!tre_ch || !lldev)
		return -EINVAL;

	/* need to have at least one empty spot in the queue */
	for (i = 0; i < lldev->nr_tres - 1; i++) {
		if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1))
			break;
	}

	if (i == (lldev->nr_tres - 1))
		return -ENOMEM;

	tre = &lldev->trepool[i];
	tre->dma_sig = sig;
	tre->dev_name = dev_name;
	tre->callback = callback;
	tre->data = data;
	tre->idx = i;
	tre->status = 0;
	tre->queued = 0;
	tre->err_code = 0;
	tre->err_info = 0;
	tre->lldev = lldev;
	tre_local = &tre->tre_local[0];
	tre_local[HIDMA_TRE_CFG_IDX] = HIDMA_TRE_MEMCPY;
	tre_local[HIDMA_TRE_CFG_IDX] |= (lldev->chidx & 0xFF) << 8;
	tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16);	/* set IEOB */
	*tre_ch = i;
	if (callback)
		callback(data);
	return 0;
}

/*
 * Multiple TREs may be queued and waiting in the pending queue.
 */
static void hidma_ll_tre_complete(unsigned long arg)
{
	struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
	struct hidma_tre *tre;

	while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) {
		/* call the user if it has been read by the hardware */
		if (tre->callback)
			tre->callback(tre->data);
	}
}

static int hidma_post_completed(struct hidma_lldev *lldev, int tre_iterator,
				u8 err_info, u8 err_code)
{
	struct hidma_tre *tre;
	unsigned long flags;

	spin_lock_irqsave(&lldev->lock, flags);
	tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE];
	if (!tre) {
		spin_unlock_irqrestore(&lldev->lock, flags);
		dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n",
			 tre_iterator / HIDMA_TRE_SIZE);
		return -EINVAL;
	}
	lldev->pending_tre_list[tre->tre_index] = NULL;

	/*
	 * Keep track of pending TREs that SW is expecting to receive
	 * from HW. We got one now. Decrement our counter.
	 */
	lldev->pending_tre_count--;
	if (lldev->pending_tre_count < 0) {
		dev_warn(lldev->dev, "tre count mismatch on completion");
		lldev->pending_tre_count = 0;
	}

	spin_unlock_irqrestore(&lldev->lock, flags);

	tre->err_info = err_info;
	tre->err_code = err_code;
	tre->queued = 0;

	kfifo_put(&lldev->handoff_fifo, tre);
	tasklet_schedule(&lldev->task);

	return 0;
}

/*
 * Called to handle the interrupt for the channel.
 * Return a positive number if TRE or EVRE were consumed on this run.
 * Return a positive number if there are pending TREs or EVREs.
 * Return 0 if there is nothing to consume or no pending TREs/EVREs found.
 */
static int hidma_handle_tre_completion(struct hidma_lldev *lldev)
{
	u32 evre_ring_size = lldev->evre_ring_size;
	u32 tre_ring_size = lldev->tre_ring_size;
	u32 err_info, err_code, evre_write_off;
	u32 tre_iterator, evre_iterator;
	u32 num_completed = 0;

	evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
	tre_iterator = lldev->tre_processed_off;
	evre_iterator = lldev->evre_processed_off;

	if ((evre_write_off > evre_ring_size) ||
	    (evre_write_off % HIDMA_EVRE_SIZE)) {
		dev_err(lldev->dev, "HW reports invalid EVRE write offset\n");
		return 0;
	}

	/*
	 * By the time control reaches here the number of EVREs and TREs
	 * may not match. Only consume the ones that hardware told us.
	 */
	while ((evre_iterator != evre_write_off)) {
		u32 *current_evre = lldev->evre_ring + evre_iterator;
		u32 cfg;

		cfg = current_evre[HIDMA_EVRE_CFG_IDX];
		err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS;
		err_info &= HIDMA_EVRE_ERRINFO_MASK;
		err_code =
		    (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK;

		if (hidma_post_completed(lldev, tre_iterator, err_info,
					 err_code))
			break;

		HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
					 tre_ring_size);
		HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE,
					 evre_ring_size);

		/*
		 * Read the new event descriptor written by the HW.
		 * As we are processing the delivered events, other events
		 * get queued to the SW for processing.
		 */
		evre_write_off =
		    readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
		num_completed++;
	}

	if (num_completed) {
		u32 evre_read_off = (lldev->evre_processed_off +
				     HIDMA_EVRE_SIZE * num_completed);
		u32 tre_read_off = (lldev->tre_processed_off +
				    HIDMA_TRE_SIZE * num_completed);

		evre_read_off = evre_read_off % evre_ring_size;
		tre_read_off = tre_read_off % tre_ring_size;

		writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG);

		/* record the last processed tre offset */
		lldev->tre_processed_off = tre_read_off;
		lldev->evre_processed_off = evre_read_off;
	}

	return num_completed;
}

void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info,
			       u8 err_code)
{
	u32 tre_iterator;
	u32 tre_ring_size = lldev->tre_ring_size;
	int num_completed = 0;
	u32 tre_read_off;

	tre_iterator = lldev->tre_processed_off;
	while (lldev->pending_tre_count) {
		if (hidma_post_completed(lldev, tre_iterator, err_info,
					 err_code))
			break;
		HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
					 tre_ring_size);
		num_completed++;
	}
	tre_read_off = (lldev->tre_processed_off +
			HIDMA_TRE_SIZE * num_completed);

	tre_read_off = tre_read_off % tre_ring_size;

	/* record the last processed tre offset */
	lldev->tre_processed_off = tre_read_off;
}

static int hidma_ll_reset(struct hidma_lldev *lldev)
{
	u32 val;
	int ret;

	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
	val |= HIDMA_CH_RESET << 16;
	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);

	/*
	 * Delay 10ms after reset to allow DMA logic to quiesce.
	 * Do a polled read up to 1ms and 10ms maximum.
	 */
	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
				 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
				 1000, 10000);
	if (ret) {
		dev_err(lldev->dev, "transfer channel did not reset\n");
		return ret;
	}

	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
	val |= HIDMA_CH_RESET << 16;
	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);

	/*
	 * Delay 10ms after reset to allow DMA logic to quiesce.
	 * Do a polled read up to 1ms and 10ms maximum.
	 */
	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
				 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
				 1000, 10000);
	if (ret)
		return ret;

	lldev->trch_state = HIDMA_CH_DISABLED;
	lldev->evch_state = HIDMA_CH_DISABLED;
	return 0;
}

/*
 * Abort all transactions and perform a reset.
 */
static void hidma_ll_abort(unsigned long arg)
{
	struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
	u8 err_code = HIDMA_EVRE_STATUS_ERROR;
	u8 err_info = 0xFF;
	int rc;

	hidma_cleanup_pending_tre(lldev, err_info, err_code);

	/* reset the channel for recovery */
	rc = hidma_ll_setup(lldev);
	if (rc) {
		dev_err(lldev->dev, "channel reinitialize failed after error\n");
		return;
	}
	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
}

/*
 * The interrupt handler for HIDMA will try to consume as many pending
 * EVRE from the event queue as possible. Each EVRE has an associated
 * TRE that holds the user interface parameters. EVRE reports the
 * result of the transaction. Hardware guarantees ordering between EVREs
 * and TREs. We use last processed offset to figure out which TRE is
 * associated with which EVRE. If two TREs are consumed by HW, the EVREs
 * are in order in the event ring.
 *
 * This handler will do a one pass for consuming EVREs. Other EVREs may
 * be delivered while we are working. It will try to consume incoming
 * EVREs one more time and return.
 *
 * For unprocessed EVREs, hardware will trigger another interrupt until
 * all the interrupt bits are cleared.
 *
 * Hardware guarantees that by the time interrupt is observed, all data
 * transactions in flight are delivered to their respective places and
 * are visible to the CPU.
 *
 * On demand paging for IOMMU is only supported for PCIe via PRI
 * (Page Request Interface) not for HIDMA. All other hardware instances
 * including HIDMA work on pinned DMA addresses.
 *
 * HIDMA is not aware of IOMMU presence since it follows the DMA API. All
 * IOMMU latency will be built into the data movement time. By the time
 * interrupt happens, IOMMU lookups + data movement has already taken place.
 *
 * While the first read in a typical PCI endpoint ISR flushes all outstanding
 * requests traditionally to the destination, this concept does not apply
 * here for this HW.
 */
irqreturn_t hidma_ll_inthandler(int chirq, void *arg)
{
	struct hidma_lldev *lldev = arg;
	u32 status;
	u32 enable;
	u32 cause;

	/*
	 * Fine tuned for this HW...
	 *
	 * This ISR has been designed for this particular hardware. Relaxed
	 * read and write accessors are used for performance reasons due to
	 * interrupt delivery guarantees. Do not copy this code blindly and
	 * expect that to work.
	 */
	status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
	enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
	cause = status & enable;

	while (cause) {
		if (cause & HIDMA_ERR_INT_MASK) {
			dev_err(lldev->dev, "error 0x%x, resetting...\n",
					cause);

			/* Clear out pending interrupts */
			writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);

			tasklet_schedule(&lldev->rst_task);
			goto out;
		}

		/*
		 * Try to consume as many EVREs as possible.
		 */
		hidma_handle_tre_completion(lldev);

		/* We consumed TREs or there are pending TREs or EVREs. */
		writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);

		/*
		 * Another interrupt might have arrived while we are
		 * processing this one. Read the new cause.
		 */
		status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
		enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
		cause = status & enable;
	}

out:
	return IRQ_HANDLED;
}

int hidma_ll_enable(struct hidma_lldev *lldev)
{
	u32 val;
	int ret;

	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
	val |= HIDMA_CH_ENABLE << 16;
	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);

	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
				 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
				 1000, 10000);
	if (ret) {
		dev_err(lldev->dev, "event channel did not get enabled\n");
		return ret;
	}

	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
	val |= HIDMA_CH_ENABLE << 16;
	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);

	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
				 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
				 1000, 10000);
	if (ret) {
		dev_err(lldev->dev, "transfer channel did not get enabled\n");
		return ret;
	}

	lldev->trch_state = HIDMA_CH_ENABLED;
	lldev->evch_state = HIDMA_CH_ENABLED;

	return 0;
}

void hidma_ll_start(struct hidma_lldev *lldev)
{
	unsigned long irqflags;

	spin_lock_irqsave(&lldev->lock, irqflags);
	writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG);
	spin_unlock_irqrestore(&lldev->lock, irqflags);
}

bool hidma_ll_isenabled(struct hidma_lldev *lldev)
{
	u32 val;

	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
	lldev->trch_state = HIDMA_CH_STATE(val);
	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
	lldev->evch_state = HIDMA_CH_STATE(val);

	/* both channels have to be enabled before calling this function */
	if (hidma_is_chan_enabled(lldev->trch_state) &&
	    hidma_is_chan_enabled(lldev->evch_state))
		return true;

	return false;
}

void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch)
{
	struct hidma_tre *tre;
	unsigned long flags;

	tre = &lldev->trepool[tre_ch];

	/* copy the TRE into its location in the TRE ring */
	spin_lock_irqsave(&lldev->lock, flags);
	tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE;
	lldev->pending_tre_list[tre->tre_index] = tre;
	memcpy(lldev->tre_ring + lldev->tre_write_offset,
			&tre->tre_local[0], HIDMA_TRE_SIZE);
	tre->err_code = 0;
	tre->err_info = 0;
	tre->queued = 1;
	lldev->pending_tre_count++;
	lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE)
					% lldev->tre_ring_size;
	spin_unlock_irqrestore(&lldev->lock, flags);
}

/*
 * Note that even though we stop this channel if there is a pending transaction
 * in flight it will complete and follow the callback. This request will
 * prevent further requests to be made.
 */
int hidma_ll_disable(struct hidma_lldev *lldev)
{
	u32 val;
	int ret;

	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
	lldev->evch_state = HIDMA_CH_STATE(val);
	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
	lldev->trch_state = HIDMA_CH_STATE(val);

	/* already suspended by this OS */
	if ((lldev->trch_state == HIDMA_CH_SUSPENDED) ||
	    (lldev->evch_state == HIDMA_CH_SUSPENDED))
		return 0;

	/* already stopped by the manager */
	if ((lldev->trch_state == HIDMA_CH_STOPPED) ||
	    (lldev->evch_state == HIDMA_CH_STOPPED))
		return 0;

	val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
	val |= HIDMA_CH_SUSPEND << 16;
	writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);

	/*
	 * Start the wait right after the suspend is confirmed.
	 * Do a polled read up to 1ms and 10ms maximum.
	 */
	ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
				 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
				 1000, 10000);
	if (ret)
		return ret;

	val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
	val &= ~(HIDMA_CH_CONTROL_MASK << 16);
	val |= HIDMA_CH_SUSPEND << 16;
	writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);

	/*
	 * Start the wait right after the suspend is confirmed
	 * Delay up to 10ms after reset to allow DMA logic to quiesce.
	 */
	ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
				 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
				 1000, 10000);
	if (ret)
		return ret;

	lldev->trch_state = HIDMA_CH_SUSPENDED;
	lldev->evch_state = HIDMA_CH_SUSPENDED;
	return 0;
}

void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch,
				  dma_addr_t src, dma_addr_t dest, u32 len,
				  u32 flags)
{
	struct hidma_tre *tre;
	u32 *tre_local;

	if (tre_ch >= lldev->nr_tres) {
		dev_err(lldev->dev, "invalid TRE number in transfer params:%d",
			tre_ch);
		return;
	}

	tre = &lldev->trepool[tre_ch];
	if (atomic_read(&tre->allocated) != true) {
		dev_err(lldev->dev, "trying to set params on an unused TRE:%d",
			tre_ch);
		return;
	}

	tre_local = &tre->tre_local[0];
	tre_local[HIDMA_TRE_LEN_IDX] = len;
	tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src);
	tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src);
	tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest);
	tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest);
	tre->int_flags = flags;
}

/*
 * Called during initialization and after an error condition
 * to restore hardware state.
 */
int hidma_ll_setup(struct hidma_lldev *lldev)
{
	int rc;
	u64 addr;
	u32 val;
	u32 nr_tres = lldev->nr_tres;

	lldev->pending_tre_count = 0;
	lldev->tre_processed_off = 0;
	lldev->evre_processed_off = 0;
	lldev->tre_write_offset = 0;

	/* disable interrupts */
	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);

	/* clear all pending interrupts */
	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);

	rc = hidma_ll_reset(lldev);
	if (rc)
		return rc;

	/*
	 * Clear all pending interrupts again.
	 * Otherwise, we observe reset complete interrupts.
	 */
	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);

	/* disable interrupts again after reset */
	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);

	addr = lldev->tre_dma;
	writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG);
	writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG);
	writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG);

	addr = lldev->evre_dma;
	writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG);
	writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG);
	writel(HIDMA_EVRE_SIZE * nr_tres,
			lldev->evca + HIDMA_EVCA_RING_LEN_REG);

	/* support IRQ only for now */
	val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG);
	val &= ~0xF;
	val |= 0x1;
	writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG);

	/* clear all pending interrupts and enable them */
	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);

	return hidma_ll_enable(lldev);
}

struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres,
				  void __iomem *trca, void __iomem *evca,
				  u8 chidx)
{
	u32 required_bytes;
	struct hidma_lldev *lldev;
	int rc;
	size_t sz;

	if (!trca || !evca || !dev || !nr_tres)
		return NULL;

	/* need at least four TREs */
	if (nr_tres < 4)
		return NULL;

	/* need an extra space */
	nr_tres += 1;

	lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL);
	if (!lldev)
		return NULL;

	lldev->evca = evca;
	lldev->trca = trca;
	lldev->dev = dev;
	sz = sizeof(struct hidma_tre);
	lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL);
	if (!lldev->trepool)
		return NULL;

	required_bytes = sizeof(lldev->pending_tre_list[0]);
	lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes,
					       GFP_KERNEL);
	if (!lldev->pending_tre_list)
		return NULL;

	sz = (HIDMA_TRE_SIZE + 1) * nr_tres;
	lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma,
					      GFP_KERNEL);
	if (!lldev->tre_ring)
		return NULL;

	memset(lldev->tre_ring, 0, (HIDMA_TRE_SIZE + 1) * nr_tres);
	lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres;
	lldev->nr_tres = nr_tres;

	/* the TRE ring has to be TRE_SIZE aligned */
	if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) {
		u8 tre_ring_shift;

		tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE;
		tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift;
		lldev->tre_dma += tre_ring_shift;
		lldev->tre_ring += tre_ring_shift;
	}

	sz = (HIDMA_EVRE_SIZE + 1) * nr_tres;
	lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma,
					       GFP_KERNEL);
	if (!lldev->evre_ring)
		return NULL;

	memset(lldev->evre_ring, 0, (HIDMA_EVRE_SIZE + 1) * nr_tres);
	lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres;

	/* the EVRE ring has to be EVRE_SIZE aligned */
	if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) {
		u8 evre_ring_shift;

		evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE;
		evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift;
		lldev->evre_dma += evre_ring_shift;
		lldev->evre_ring += evre_ring_shift;
	}
	lldev->nr_tres = nr_tres;
	lldev->chidx = chidx;

	sz = nr_tres * sizeof(struct hidma_tre *);
	rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL);
	if (rc)
		return NULL;

	rc = hidma_ll_setup(lldev);
	if (rc)
		return NULL;

	spin_lock_init(&lldev->lock);
	tasklet_init(&lldev->rst_task, hidma_ll_abort, (unsigned long)lldev);
	tasklet_init(&lldev->task, hidma_ll_tre_complete, (unsigned long)lldev);
	lldev->initialized = 1;
	writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
	return lldev;
}

int hidma_ll_uninit(struct hidma_lldev *lldev)
{
	u32 required_bytes;
	int rc = 0;
	u32 val;

	if (!lldev)
		return -ENODEV;

	if (!lldev->initialized)
		return 0;

	lldev->initialized = 0;

	required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres;
	tasklet_kill(&lldev->task);
	tasklet_kill(&lldev->rst_task);
	memset(lldev->trepool, 0, required_bytes);
	lldev->trepool = NULL;
	lldev->pending_tre_count = 0;
	lldev->tre_write_offset = 0;

	rc = hidma_ll_reset(lldev);

	/*
	 * Clear all pending interrupts again.
	 * Otherwise, we observe reset complete interrupts.
	 */
	val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
	writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
	writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
	return rc;
}

enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch)
{
	enum dma_status ret = DMA_ERROR;
	struct hidma_tre *tre;
	unsigned long flags;
	u8 err_code;

	spin_lock_irqsave(&lldev->lock, flags);

	tre = &lldev->trepool[tre_ch];
	err_code = tre->err_code;

	if (err_code & HIDMA_EVRE_STATUS_COMPLETE)
		ret = DMA_COMPLETE;
	else if (err_code & HIDMA_EVRE_STATUS_ERROR)
		ret = DMA_ERROR;
	else
		ret = DMA_IN_PROGRESS;
	spin_unlock_irqrestore(&lldev->lock, flags);

	return ret;
}