Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
#include <asm/fpu/internal.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/signal.h>
#include <asm/traps.h>

#include <linux/hardirq.h>

/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
union fpregs_state init_fpstate __read_mostly;

/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
static DEFINE_PER_CPU(bool, in_kernel_fpu);

/*
 * Track which context is using the FPU on the CPU:
 */
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

static void kernel_fpu_disable(void)
{
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
	this_cpu_write(in_kernel_fpu, true);
}

static void kernel_fpu_enable(void)
{
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
	this_cpu_write(in_kernel_fpu, false);
}

static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

static bool interrupted_kernel_fpu_idle(void)
{
	return !kernel_fpu_disabled();
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
static bool interrupted_user_mode(void)
{
	struct pt_regs *regs = get_irq_regs();
	return regs && user_mode(regs);
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

void __kernel_fpu_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	WARN_ON_FPU(!irq_fpu_usable());

	kernel_fpu_disable();

	if (fpu->fpregs_active) {
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
		copy_fpregs_to_fpstate(fpu);
	} else {
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
	}
}
EXPORT_SYMBOL(__kernel_fpu_begin);

void __kernel_fpu_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	if (fpu->fpregs_active)
		copy_kernel_to_fpregs(&fpu->state);

	kernel_fpu_enable();
}
EXPORT_SYMBOL(__kernel_fpu_end);

void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

/*
 * CR0::TS save/restore functions:
 */
int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(irq_ts_save);

void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}
EXPORT_SYMBOL_GPL(irq_ts_restore);

/*
 * Save the FPU state (mark it for reload if necessary):
 *
 * This only ever gets called for the current task.
 */
void fpu__save(struct fpu *fpu)
{
	WARN_ON_FPU(fpu != &current->thread.fpu);

	preempt_disable();
	if (fpu->fpregs_active) {
		if (!copy_fpregs_to_fpstate(fpu)) {
			copy_kernel_to_fpregs(&fpu->state);
		}
	}
	preempt_enable();
}
EXPORT_SYMBOL_GPL(fpu__save);

/*
 * Legacy x87 fpstate state init:
 */
static inline void fpstate_init_fstate(struct fregs_state *fp)
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

void fpstate_init(union fpregs_state *state)
{
	if (!cpu_has_fpu) {
		fpstate_init_soft(&state->soft);
		return;
	}

	memset(state, 0, xstate_size);

	if (cpu_has_fxsr)
		fpstate_init_fxstate(&state->fxsave);
	else
		fpstate_init_fstate(&state->fsave);
}
EXPORT_SYMBOL_GPL(fpstate_init);

/*
 * Copy the current task's FPU state to a new task's FPU context.
 *
 * In both the 'eager' and the 'lazy' case we save hardware registers
 * directly to the destination buffer.
 */
static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
{
	WARN_ON_FPU(src_fpu != &current->thread.fpu);

	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
	memset(&dst_fpu->state.xsave, 0, xstate_size);

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
	 *
	 * If the FPU context got destroyed in the process (FNSAVE
	 * done on old CPUs) then copy it back into the source
	 * context and mark the current task for lazy restore.
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
		memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);

		copy_kernel_to_fpregs(&src_fpu->state);
	}
	preempt_enable();
}

int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
{
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

	if (src_fpu->fpstate_active && cpu_has_fpu)
		fpu_copy(dst_fpu, src_fpu);

	return 0;
}

/*
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
 */
void fpu__activate_curr(struct fpu *fpu)
{
	WARN_ON_FPU(fpu != &current->thread.fpu);

	if (!fpu->fpstate_active) {
		fpstate_init(&fpu->state);

		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
}
EXPORT_SYMBOL_GPL(fpu__activate_curr);

/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
		if (!fpu->fpstate_active) {
			fpstate_init(&fpu->state);

			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

/*
 * This function must be called before we write a task's fpstate.
 *
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
 *
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
 */
void fpu__activate_fpstate_write(struct fpu *fpu)
{
	/*
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
	 */
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
		fpu->last_cpu = -1;
	} else {
		fpstate_init(&fpu->state);

		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
	}
}

/*
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
 *
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
 */
void fpu__restore(struct fpu *fpu)
{
	fpu__activate_curr(fpu);

	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
	kernel_fpu_disable();
	fpregs_activate(fpu);
	copy_kernel_to_fpregs(&fpu->state);
	kernel_fpu_enable();
}
EXPORT_SYMBOL_GPL(fpu__restore);

/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

	preempt_enable();
}

/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
	else if (static_cpu_has(X86_FEATURE_FXSR))
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
}

/*
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
 */
void fpu__clear(struct fpu *fpu)
{
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */

	if (!static_cpu_has(X86_FEATURE_FPU)) {
		/* FPU state will be reallocated lazily at the first use. */
		fpu__drop(fpu);
	} else {
		if (!fpu->fpstate_active) {
			fpu__activate_curr(fpu);
			user_fpu_begin();
		}
		copy_init_fpstate_to_fpregs();
	}
}

/*
 * x87 math exception handling:
 */

static inline unsigned short get_fpu_cwd(struct fpu *fpu)
{
	if (cpu_has_fxsr) {
		return fpu->state.fxsave.cwd;
	} else {
		return (unsigned short)fpu->state.fsave.cwd;
	}
}

static inline unsigned short get_fpu_swd(struct fpu *fpu)
{
	if (cpu_has_fxsr) {
		return fpu->state.fxsave.swd;
	} else {
		return (unsigned short)fpu->state.fsave.swd;
	}
}

static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
{
	if (cpu_has_xmm) {
		return fpu->state.fxsave.mxcsr;
	} else {
		return MXCSR_DEFAULT;
	}
}

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
		 * fully reproduce the context of the exception
		 */
		cwd = get_fpu_cwd(fpu);
		swd = get_fpu_swd(fpu);

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
		unsigned short mxcsr = get_fpu_mxcsr(fpu);
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}