Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
 * Copyright (c) 2013, Kenneth MacKay
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *  * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <linux/random.h>

#include "ecc.h"

/* 256-bit curve */
#define ECC_BYTES 32

#define MAX_TRIES 16

/* Number of u64's needed */
#define NUM_ECC_DIGITS (ECC_BYTES / 8)

struct ecc_point {
	u64 x[NUM_ECC_DIGITS];
	u64 y[NUM_ECC_DIGITS];
};

typedef struct {
	u64 m_low;
	u64 m_high;
} uint128_t;

#define CURVE_P_32 {	0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
			0x0000000000000000ull, 0xFFFFFFFF00000001ull }

#define CURVE_G_32 { \
		{	0xF4A13945D898C296ull, 0x77037D812DEB33A0ull,	\
			0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \
		{	0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull,	\
			0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull }	\
}

#define CURVE_N_32 {	0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull,	\
			0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }

static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32;
static struct ecc_point curve_g = CURVE_G_32;
static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32;

static void vli_clear(u64 *vli)
{
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++)
		vli[i] = 0;
}

/* Returns true if vli == 0, false otherwise. */
static bool vli_is_zero(const u64 *vli)
{
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++) {
		if (vli[i])
			return false;
	}

	return true;
}

/* Returns nonzero if bit bit of vli is set. */
static u64 vli_test_bit(const u64 *vli, unsigned int bit)
{
	return (vli[bit / 64] & ((u64) 1 << (bit % 64)));
}

/* Counts the number of 64-bit "digits" in vli. */
static unsigned int vli_num_digits(const u64 *vli)
{
	int i;

	/* Search from the end until we find a non-zero digit.
	 * We do it in reverse because we expect that most digits will
	 * be nonzero.
	 */
	for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--);

	return (i + 1);
}

/* Counts the number of bits required for vli. */
static unsigned int vli_num_bits(const u64 *vli)
{
	unsigned int i, num_digits;
	u64 digit;

	num_digits = vli_num_digits(vli);
	if (num_digits == 0)
		return 0;

	digit = vli[num_digits - 1];
	for (i = 0; digit; i++)
		digit >>= 1;

	return ((num_digits - 1) * 64 + i);
}

/* Sets dest = src. */
static void vli_set(u64 *dest, const u64 *src)
{
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++)
		dest[i] = src[i];
}

/* Returns sign of left - right. */
static int vli_cmp(const u64 *left, const u64 *right)
{
    int i;

    for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) {
	    if (left[i] > right[i])
		    return 1;
	    else if (left[i] < right[i])
		    return -1;
    }

    return 0;
}

/* Computes result = in << c, returning carry. Can modify in place
 * (if result == in). 0 < shift < 64.
 */
static u64 vli_lshift(u64 *result, const u64 *in,
			   unsigned int shift)
{
	u64 carry = 0;
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++) {
		u64 temp = in[i];

		result[i] = (temp << shift) | carry;
		carry = temp >> (64 - shift);
	}

	return carry;
}

/* Computes vli = vli >> 1. */
static void vli_rshift1(u64 *vli)
{
	u64 *end = vli;
	u64 carry = 0;

	vli += NUM_ECC_DIGITS;

	while (vli-- > end) {
		u64 temp = *vli;
		*vli = (temp >> 1) | carry;
		carry = temp << 63;
	}
}

/* Computes result = left + right, returning carry. Can modify in place. */
static u64 vli_add(u64 *result, const u64 *left,
			const u64 *right)
{
	u64 carry = 0;
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++) {
		u64 sum;

		sum = left[i] + right[i] + carry;
		if (sum != left[i])
			carry = (sum < left[i]);

		result[i] = sum;
	}

	return carry;
}

/* Computes result = left - right, returning borrow. Can modify in place. */
static u64 vli_sub(u64 *result, const u64 *left, const u64 *right)
{
	u64 borrow = 0;
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++) {
		u64 diff;

		diff = left[i] - right[i] - borrow;
		if (diff != left[i])
			borrow = (diff > left[i]);

		result[i] = diff;
	}

	return borrow;
}

static uint128_t mul_64_64(u64 left, u64 right)
{
	u64 a0 = left & 0xffffffffull;
	u64 a1 = left >> 32;
	u64 b0 = right & 0xffffffffull;
	u64 b1 = right >> 32;
	u64 m0 = a0 * b0;
	u64 m1 = a0 * b1;
	u64 m2 = a1 * b0;
	u64 m3 = a1 * b1;
	uint128_t result;

	m2 += (m0 >> 32);
	m2 += m1;

	/* Overflow */
	if (m2 < m1)
		m3 += 0x100000000ull;

	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
	result.m_high = m3 + (m2 >> 32);

	return result;
}

static uint128_t add_128_128(uint128_t a, uint128_t b)
{
	uint128_t result;

	result.m_low = a.m_low + b.m_low;
	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);

	return result;
}

static void vli_mult(u64 *result, const u64 *left, const u64 *right)
{
	uint128_t r01 = { 0, 0 };
	u64 r2 = 0;
	unsigned int i, k;

	/* Compute each digit of result in sequence, maintaining the
	 * carries.
	 */
	for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
		unsigned int min;

		if (k < NUM_ECC_DIGITS)
			min = 0;
		else
			min = (k + 1) - NUM_ECC_DIGITS;

		for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) {
			uint128_t product;

			product = mul_64_64(left[i], right[k - i]);

			r01 = add_128_128(r01, product);
			r2 += (r01.m_high < product.m_high);
		}

		result[k] = r01.m_low;
		r01.m_low = r01.m_high;
		r01.m_high = r2;
		r2 = 0;
	}

	result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
}

static void vli_square(u64 *result, const u64 *left)
{
	uint128_t r01 = { 0, 0 };
	u64 r2 = 0;
	int i, k;

	for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
		unsigned int min;

		if (k < NUM_ECC_DIGITS)
			min = 0;
		else
			min = (k + 1) - NUM_ECC_DIGITS;

		for (i = min; i <= k && i <= k - i; i++) {
			uint128_t product;

			product = mul_64_64(left[i], left[k - i]);

			if (i < k - i) {
				r2 += product.m_high >> 63;
				product.m_high = (product.m_high << 1) |
						 (product.m_low >> 63);
				product.m_low <<= 1;
			}

			r01 = add_128_128(r01, product);
			r2 += (r01.m_high < product.m_high);
		}

		result[k] = r01.m_low;
		r01.m_low = r01.m_high;
		r01.m_high = r2;
		r2 = 0;
	}

	result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
}

/* Computes result = (left + right) % mod.
 * Assumes that left < mod and right < mod, result != mod.
 */
static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
			const u64 *mod)
{
	u64 carry;

	carry = vli_add(result, left, right);

	/* result > mod (result = mod + remainder), so subtract mod to
	 * get remainder.
	 */
	if (carry || vli_cmp(result, mod) >= 0)
		vli_sub(result, result, mod);
}

/* Computes result = (left - right) % mod.
 * Assumes that left < mod and right < mod, result != mod.
 */
static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
			const u64 *mod)
{
	u64 borrow = vli_sub(result, left, right);

	/* In this case, p_result == -diff == (max int) - diff.
	 * Since -x % d == d - x, we can get the correct result from
	 * result + mod (with overflow).
	 */
	if (borrow)
		vli_add(result, result, mod);
}

/* Computes result = product % curve_p
   from http://www.nsa.gov/ia/_files/nist-routines.pdf */
static void vli_mmod_fast(u64 *result, const u64 *product)
{
	u64 tmp[NUM_ECC_DIGITS];
	int carry;

	/* t */
	vli_set(result, product);

	/* s1 */
	tmp[0] = 0;
	tmp[1] = product[5] & 0xffffffff00000000ull;
	tmp[2] = product[6];
	tmp[3] = product[7];
	carry = vli_lshift(tmp, tmp, 1);
	carry += vli_add(result, result, tmp);

	/* s2 */
	tmp[1] = product[6] << 32;
	tmp[2] = (product[6] >> 32) | (product[7] << 32);
	tmp[3] = product[7] >> 32;
	carry += vli_lshift(tmp, tmp, 1);
	carry += vli_add(result, result, tmp);

	/* s3 */
	tmp[0] = product[4];
	tmp[1] = product[5] & 0xffffffff;
	tmp[2] = 0;
	tmp[3] = product[7];
	carry += vli_add(result, result, tmp);

	/* s4 */
	tmp[0] = (product[4] >> 32) | (product[5] << 32);
	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
	tmp[2] = product[7];
	tmp[3] = (product[6] >> 32) | (product[4] << 32);
	carry += vli_add(result, result, tmp);

	/* d1 */
	tmp[0] = (product[5] >> 32) | (product[6] << 32);
	tmp[1] = (product[6] >> 32);
	tmp[2] = 0;
	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
	carry -= vli_sub(result, result, tmp);

	/* d2 */
	tmp[0] = product[6];
	tmp[1] = product[7];
	tmp[2] = 0;
	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
	carry -= vli_sub(result, result, tmp);

	/* d3 */
	tmp[0] = (product[6] >> 32) | (product[7] << 32);
	tmp[1] = (product[7] >> 32) | (product[4] << 32);
	tmp[2] = (product[4] >> 32) | (product[5] << 32);
	tmp[3] = (product[6] << 32);
	carry -= vli_sub(result, result, tmp);

	/* d4 */
	tmp[0] = product[7];
	tmp[1] = product[4] & 0xffffffff00000000ull;
	tmp[2] = product[5];
	tmp[3] = product[6] & 0xffffffff00000000ull;
	carry -= vli_sub(result, result, tmp);

	if (carry < 0) {
		do {
			carry += vli_add(result, result, curve_p);
		} while (carry < 0);
	} else {
		while (carry || vli_cmp(curve_p, result) != 1)
			carry -= vli_sub(result, result, curve_p);
	}
}

/* Computes result = (left * right) % curve_p. */
static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right)
{
	u64 product[2 * NUM_ECC_DIGITS];

	vli_mult(product, left, right);
	vli_mmod_fast(result, product);
}

/* Computes result = left^2 % curve_p. */
static void vli_mod_square_fast(u64 *result, const u64 *left)
{
	u64 product[2 * NUM_ECC_DIGITS];

	vli_square(product, left);
	vli_mmod_fast(result, product);
}

#define EVEN(vli) (!(vli[0] & 1))
/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
 */
static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod)
{
	u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS];
	u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
	u64 carry;
	int cmp_result;

	if (vli_is_zero(input)) {
		vli_clear(result);
		return;
	}

	vli_set(a, input);
	vli_set(b, mod);
	vli_clear(u);
	u[0] = 1;
	vli_clear(v);

	while ((cmp_result = vli_cmp(a, b)) != 0) {
		carry = 0;

		if (EVEN(a)) {
			vli_rshift1(a);

			if (!EVEN(u))
				carry = vli_add(u, u, mod);

			vli_rshift1(u);
			if (carry)
				u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
		} else if (EVEN(b)) {
			vli_rshift1(b);

			if (!EVEN(v))
				carry = vli_add(v, v, mod);

			vli_rshift1(v);
			if (carry)
				v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
		} else if (cmp_result > 0) {
			vli_sub(a, a, b);
			vli_rshift1(a);

			if (vli_cmp(u, v) < 0)
				vli_add(u, u, mod);

			vli_sub(u, u, v);
			if (!EVEN(u))
				carry = vli_add(u, u, mod);

			vli_rshift1(u);
			if (carry)
				u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
		} else {
			vli_sub(b, b, a);
			vli_rshift1(b);

			if (vli_cmp(v, u) < 0)
				vli_add(v, v, mod);

			vli_sub(v, v, u);
			if (!EVEN(v))
				carry = vli_add(v, v, mod);

			vli_rshift1(v);
			if (carry)
				v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
		}
	}

	vli_set(result, u);
}

/* ------ Point operations ------ */

/* Returns true if p_point is the point at infinity, false otherwise. */
static bool ecc_point_is_zero(const struct ecc_point *point)
{
	return (vli_is_zero(point->x) && vli_is_zero(point->y));
}

/* Point multiplication algorithm using Montgomery's ladder with co-Z
 * coordinates. From http://eprint.iacr.org/2011/338.pdf
 */

/* Double in place */
static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1)
{
	/* t1 = x, t2 = y, t3 = z */
	u64 t4[NUM_ECC_DIGITS];
	u64 t5[NUM_ECC_DIGITS];

	if (vli_is_zero(z1))
		return;

	vli_mod_square_fast(t4, y1);   /* t4 = y1^2 */
	vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */
	vli_mod_square_fast(t4, t4);   /* t4 = y1^4 */
	vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */
	vli_mod_square_fast(z1, z1);   /* t3 = z1^2 */

	vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */
	vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */
	vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */
	vli_mod_mult_fast(x1, x1, z1);    /* t1 = x1^2 - z1^4 */

	vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
	vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
	if (vli_test_bit(x1, 0)) {
		u64 carry = vli_add(x1, x1, curve_p);
		vli_rshift1(x1);
		x1[NUM_ECC_DIGITS - 1] |= carry << 63;
	} else {
		vli_rshift1(x1);
	}
	/* t1 = 3/2*(x1^2 - z1^4) = B */

	vli_mod_square_fast(z1, x1);      /* t3 = B^2 */
	vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */
	vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
	vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */
	vli_mod_mult_fast(x1, x1, t5);    /* t1 = B * (A - x3) */
	vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */

	vli_set(x1, z1);
	vli_set(z1, y1);
	vli_set(y1, t4);
}

/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
static void apply_z(u64 *x1, u64 *y1, u64 *z)
{
	u64 t1[NUM_ECC_DIGITS];

	vli_mod_square_fast(t1, z);    /* z^2 */
	vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */
	vli_mod_mult_fast(t1, t1, z);  /* z^3 */
	vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */
}

/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
				u64 *p_initial_z)
{
	u64 z[NUM_ECC_DIGITS];

	vli_set(x2, x1);
	vli_set(y2, y1);

	vli_clear(z);
	z[0] = 1;

	if (p_initial_z)
		vli_set(z, p_initial_z);

	apply_z(x1, y1, z);

	ecc_point_double_jacobian(x1, y1, z);

	apply_z(x2, y2, z);
}

/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
 * or P => P', Q => P + Q
 */
static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
{
	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
	u64 t5[NUM_ECC_DIGITS];

	vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
	vli_mod_square_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
	vli_mod_mult_fast(x1, x1, t5);    /* t1 = x1*A = B */
	vli_mod_mult_fast(x2, x2, t5);    /* t3 = x2*A = C */
	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
	vli_mod_square_fast(t5, y2);      /* t5 = (y2 - y1)^2 = D */

	vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */
	vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */
	vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */
	vli_mod_mult_fast(y1, y1, x2);    /* t2 = y1*(C - B) */
	vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */
	vli_mod_mult_fast(y2, y2, x2);    /* t4 = (y2 - y1)*(B - x3) */
	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */

	vli_set(x2, t5);
}

/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
 * or P => P - Q, Q => P + Q
 */
static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
{
	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
	u64 t5[NUM_ECC_DIGITS];
	u64 t6[NUM_ECC_DIGITS];
	u64 t7[NUM_ECC_DIGITS];

	vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
	vli_mod_square_fast(t5, t5);      /* t5 = (x2 - x1)^2 = A */
	vli_mod_mult_fast(x1, x1, t5);    /* t1 = x1*A = B */
	vli_mod_mult_fast(x2, x2, t5);    /* t3 = x2*A = C */
	vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */
	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */

	vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */
	vli_mod_mult_fast(y1, y1, t6);    /* t2 = y1 * (C - B) */
	vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */
	vli_mod_square_fast(x2, y2);      /* t3 = (y2 - y1)^2 */
	vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */

	vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */
	vli_mod_mult_fast(y2, y2, t7);    /* t4 = (y2 - y1)*(B - x3) */
	vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */

	vli_mod_square_fast(t7, t5);      /* t7 = (y2 + y1)^2 = F */
	vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */
	vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */
	vli_mod_mult_fast(t6, t6, t5);    /* t6 = (y2 + y1)*(x3' - B) */
	vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */

	vli_set(x1, t7);
}

static void ecc_point_mult(struct ecc_point *result,
			   const struct ecc_point *point, u64 *scalar,
			   u64 *initial_z, int num_bits)
{
	/* R0 and R1 */
	u64 rx[2][NUM_ECC_DIGITS];
	u64 ry[2][NUM_ECC_DIGITS];
	u64 z[NUM_ECC_DIGITS];
	int i, nb;

	vli_set(rx[1], point->x);
	vli_set(ry[1], point->y);

	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z);

	for (i = num_bits - 2; i > 0; i--) {
		nb = !vli_test_bit(scalar, i);
		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
	}

	nb = !vli_test_bit(scalar, 0);
	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);

	/* Find final 1/Z value. */
	vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */
	vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */
	vli_mod_mult_fast(z, z, point->x);   /* xP * Yb * (X1 - X0) */
	vli_mod_inv(z, z, curve_p);          /* 1 / (xP * Yb * (X1 - X0)) */
	vli_mod_mult_fast(z, z, point->y);   /* yP / (xP * Yb * (X1 - X0)) */
	vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
	/* End 1/Z calculation */

	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);

	apply_z(rx[0], ry[0], z);

	vli_set(result->x, rx[0]);
	vli_set(result->y, ry[0]);
}

static void ecc_bytes2native(const u8 bytes[ECC_BYTES],
			     u64 native[NUM_ECC_DIGITS])
{
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++) {
		const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);

		native[NUM_ECC_DIGITS - 1 - i] =
				((u64) digit[0] << 0) |
				((u64) digit[1] << 8) |
				((u64) digit[2] << 16) |
				((u64) digit[3] << 24) |
				((u64) digit[4] << 32) |
				((u64) digit[5] << 40) |
				((u64) digit[6] << 48) |
				((u64) digit[7] << 56);
	}
}

static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS],
			     u8 bytes[ECC_BYTES])
{
	int i;

	for (i = 0; i < NUM_ECC_DIGITS; i++) {
		u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);

		digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0;
		digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8;
		digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16;
		digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24;
		digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32;
		digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40;
		digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48;
		digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56;
	}
}

bool ecc_make_key(u8 public_key[64], u8 private_key[32])
{
	struct ecc_point pk;
	u64 priv[NUM_ECC_DIGITS];
	unsigned int tries = 0;

	do {
		if (tries++ >= MAX_TRIES)
			return false;

		get_random_bytes(priv, ECC_BYTES);

		if (vli_is_zero(priv))
			continue;

		/* Make sure the private key is in the range [1, n-1]. */
		if (vli_cmp(curve_n, priv) != 1)
			continue;

		ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv));
	} while (ecc_point_is_zero(&pk));

	ecc_native2bytes(priv, private_key);
	ecc_native2bytes(pk.x, public_key);
	ecc_native2bytes(pk.y, &public_key[32]);

	return true;
}

bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
		        u8 secret[32])
{
	u64 priv[NUM_ECC_DIGITS];
	u64 rand[NUM_ECC_DIGITS];
	struct ecc_point product, pk;

	get_random_bytes(rand, ECC_BYTES);

	ecc_bytes2native(public_key, pk.x);
	ecc_bytes2native(&public_key[32], pk.y);
	ecc_bytes2native(private_key, priv);

	ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv));

	ecc_native2bytes(product.x, secret);

	return !ecc_point_is_zero(&product);
}