Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_trans_priv.h"
#include "xfs_error.h"
#include "xfs_trace.h"

/*
 * Check to see if a buffer matching the given parameters is already
 * a part of the given transaction.
 */
STATIC struct xfs_buf *
xfs_trans_buf_item_match(
	struct xfs_trans	*tp,
	struct xfs_buftarg	*target,
	struct xfs_buf_map	*map,
	int			nmaps)
{
	struct xfs_log_item	*lip;
	struct xfs_buf_log_item	*blip;
	int			len = 0;
	int			i;

	for (i = 0; i < nmaps; i++)
		len += map[i].bm_len;

	list_for_each_entry(lip, &tp->t_items, li_trans) {
		blip = (struct xfs_buf_log_item *)lip;
		if (blip->bli_item.li_type == XFS_LI_BUF &&
		    blip->bli_buf->b_target == target &&
		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
		    blip->bli_buf->b_length == len) {
			ASSERT(blip->bli_buf->b_map_count == nmaps);
			return blip->bli_buf;
		}
	}

	return NULL;
}

/*
 * Add the locked buffer to the transaction.
 *
 * The buffer must be locked, and it cannot be associated with any
 * transaction.
 *
 * If the buffer does not yet have a buf log item associated with it,
 * then allocate one for it.  Then add the buf item to the transaction.
 */
STATIC void
_xfs_trans_bjoin(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp,
	int			reset_recur)
{
	struct xfs_buf_log_item	*bip;

	ASSERT(bp->b_transp == NULL);

	/*
	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
	 * it doesn't have one yet, then allocate one and initialize it.
	 * The checks to see if one is there are in xfs_buf_item_init().
	 */
	xfs_buf_item_init(bp, tp->t_mountp);
	bip = bp->b_log_item;
	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
	if (reset_recur)
		bip->bli_recur = 0;

	/*
	 * Take a reference for this transaction on the buf item.
	 */
	atomic_inc(&bip->bli_refcount);

	/*
	 * Attach the item to the transaction so we can find it in
	 * xfs_trans_get_buf() and friends.
	 */
	xfs_trans_add_item(tp, &bip->bli_item);
	bp->b_transp = tp;

}

void
xfs_trans_bjoin(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp)
{
	_xfs_trans_bjoin(tp, bp, 0);
	trace_xfs_trans_bjoin(bp->b_log_item);
}

/*
 * Get and lock the buffer for the caller if it is not already
 * locked within the given transaction.  If it is already locked
 * within the transaction, just increment its lock recursion count
 * and return a pointer to it.
 *
 * If the transaction pointer is NULL, make this just a normal
 * get_buf() call.
 */
struct xfs_buf *
xfs_trans_get_buf_map(
	struct xfs_trans	*tp,
	struct xfs_buftarg	*target,
	struct xfs_buf_map	*map,
	int			nmaps,
	xfs_buf_flags_t		flags)
{
	xfs_buf_t		*bp;
	struct xfs_buf_log_item	*bip;

	if (!tp)
		return xfs_buf_get_map(target, map, nmaps, flags);

	/*
	 * If we find the buffer in the cache with this transaction
	 * pointer in its b_fsprivate2 field, then we know we already
	 * have it locked.  In this case we just increment the lock
	 * recursion count and return the buffer to the caller.
	 */
	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
	if (bp != NULL) {
		ASSERT(xfs_buf_islocked(bp));
		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
			xfs_buf_stale(bp);
			bp->b_flags |= XBF_DONE;
		}

		ASSERT(bp->b_transp == tp);
		bip = bp->b_log_item;
		ASSERT(bip != NULL);
		ASSERT(atomic_read(&bip->bli_refcount) > 0);
		bip->bli_recur++;
		trace_xfs_trans_get_buf_recur(bip);
		return bp;
	}

	bp = xfs_buf_get_map(target, map, nmaps, flags);
	if (bp == NULL) {
		return NULL;
	}

	ASSERT(!bp->b_error);

	_xfs_trans_bjoin(tp, bp, 1);
	trace_xfs_trans_get_buf(bp->b_log_item);
	return bp;
}

/*
 * Get and lock the superblock buffer of this file system for the
 * given transaction.
 *
 * We don't need to use incore_match() here, because the superblock
 * buffer is a private buffer which we keep a pointer to in the
 * mount structure.
 */
xfs_buf_t *
xfs_trans_getsb(
	xfs_trans_t		*tp,
	struct xfs_mount	*mp,
	int			flags)
{
	xfs_buf_t		*bp;
	struct xfs_buf_log_item	*bip;

	/*
	 * Default to just trying to lock the superblock buffer
	 * if tp is NULL.
	 */
	if (tp == NULL)
		return xfs_getsb(mp, flags);

	/*
	 * If the superblock buffer already has this transaction
	 * pointer in its b_fsprivate2 field, then we know we already
	 * have it locked.  In this case we just increment the lock
	 * recursion count and return the buffer to the caller.
	 */
	bp = mp->m_sb_bp;
	if (bp->b_transp == tp) {
		bip = bp->b_log_item;
		ASSERT(bip != NULL);
		ASSERT(atomic_read(&bip->bli_refcount) > 0);
		bip->bli_recur++;
		trace_xfs_trans_getsb_recur(bip);
		return bp;
	}

	bp = xfs_getsb(mp, flags);
	if (bp == NULL)
		return NULL;

	_xfs_trans_bjoin(tp, bp, 1);
	trace_xfs_trans_getsb(bp->b_log_item);
	return bp;
}

/*
 * Get and lock the buffer for the caller if it is not already
 * locked within the given transaction.  If it has not yet been
 * read in, read it from disk. If it is already locked
 * within the transaction and already read in, just increment its
 * lock recursion count and return a pointer to it.
 *
 * If the transaction pointer is NULL, make this just a normal
 * read_buf() call.
 */
int
xfs_trans_read_buf_map(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	struct xfs_buftarg	*target,
	struct xfs_buf_map	*map,
	int			nmaps,
	xfs_buf_flags_t		flags,
	struct xfs_buf		**bpp,
	const struct xfs_buf_ops *ops)
{
	struct xfs_buf		*bp = NULL;
	struct xfs_buf_log_item	*bip;
	int			error;

	*bpp = NULL;
	/*
	 * If we find the buffer in the cache with this transaction
	 * pointer in its b_fsprivate2 field, then we know we already
	 * have it locked.  If it is already read in we just increment
	 * the lock recursion count and return the buffer to the caller.
	 * If the buffer is not yet read in, then we read it in, increment
	 * the lock recursion count, and return it to the caller.
	 */
	if (tp)
		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
	if (bp) {
		ASSERT(xfs_buf_islocked(bp));
		ASSERT(bp->b_transp == tp);
		ASSERT(bp->b_log_item != NULL);
		ASSERT(!bp->b_error);
		ASSERT(bp->b_flags & XBF_DONE);

		/*
		 * We never locked this buf ourselves, so we shouldn't
		 * brelse it either. Just get out.
		 */
		if (XFS_FORCED_SHUTDOWN(mp)) {
			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
			return -EIO;
		}

		/*
		 * Check if the caller is trying to read a buffer that is
		 * already attached to the transaction yet has no buffer ops
		 * assigned.  Ops are usually attached when the buffer is
		 * attached to the transaction, or by the read caller if
		 * special circumstances.  That didn't happen, which is not
		 * how this is supposed to go.
		 *
		 * If the buffer passes verification we'll let this go, but if
		 * not we have to shut down.  Let the transaction cleanup code
		 * release this buffer when it kills the tranaction.
		 */
		ASSERT(bp->b_ops != NULL);
		error = xfs_buf_ensure_ops(bp, ops);
		if (error) {
			xfs_buf_ioerror_alert(bp, __func__);

			if (tp->t_flags & XFS_TRANS_DIRTY)
				xfs_force_shutdown(tp->t_mountp,
						SHUTDOWN_META_IO_ERROR);

			/* bad CRC means corrupted metadata */
			if (error == -EFSBADCRC)
				error = -EFSCORRUPTED;
			return error;
		}

		bip = bp->b_log_item;
		bip->bli_recur++;

		ASSERT(atomic_read(&bip->bli_refcount) > 0);
		trace_xfs_trans_read_buf_recur(bip);
		ASSERT(bp->b_ops != NULL || ops == NULL);
		*bpp = bp;
		return 0;
	}

	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
	if (!bp) {
		if (!(flags & XBF_TRYLOCK))
			return -ENOMEM;
		return tp ? 0 : -EAGAIN;
	}

	/*
	 * If we've had a read error, then the contents of the buffer are
	 * invalid and should not be used. To ensure that a followup read tries
	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
	 * mark the buffer stale. This ensures that anyone who has a current
	 * reference to the buffer will interpret it's contents correctly and
	 * future cache lookups will also treat it as an empty, uninitialised
	 * buffer.
	 */
	if (bp->b_error) {
		error = bp->b_error;
		if (!XFS_FORCED_SHUTDOWN(mp))
			xfs_buf_ioerror_alert(bp, __func__);
		bp->b_flags &= ~XBF_DONE;
		xfs_buf_stale(bp);

		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
		xfs_buf_relse(bp);

		/* bad CRC means corrupted metadata */
		if (error == -EFSBADCRC)
			error = -EFSCORRUPTED;
		return error;
	}

	if (XFS_FORCED_SHUTDOWN(mp)) {
		xfs_buf_relse(bp);
		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
		return -EIO;
	}

	if (tp) {
		_xfs_trans_bjoin(tp, bp, 1);
		trace_xfs_trans_read_buf(bp->b_log_item);
	}
	ASSERT(bp->b_ops != NULL || ops == NULL);
	*bpp = bp;
	return 0;

}

/* Has this buffer been dirtied by anyone? */
bool
xfs_trans_buf_is_dirty(
	struct xfs_buf		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	if (!bip)
		return false;
	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
}

/*
 * Release a buffer previously joined to the transaction. If the buffer is
 * modified within this transaction, decrement the recursion count but do not
 * release the buffer even if the count goes to 0. If the buffer is not modified
 * within the transaction, decrement the recursion count and release the buffer
 * if the recursion count goes to 0.
 *
 * If the buffer is to be released and it was not already dirty before this
 * transaction began, then also free the buf_log_item associated with it.
 *
 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
 */
void
xfs_trans_brelse(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);

	if (!tp) {
		xfs_buf_relse(bp);
		return;
	}

	trace_xfs_trans_brelse(bip);
	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	/*
	 * If the release is for a recursive lookup, then decrement the count
	 * and return.
	 */
	if (bip->bli_recur > 0) {
		bip->bli_recur--;
		return;
	}

	/*
	 * If the buffer is invalidated or dirty in this transaction, we can't
	 * release it until we commit.
	 */
	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
		return;
	if (bip->bli_flags & XFS_BLI_STALE)
		return;

	/*
	 * Unlink the log item from the transaction and clear the hold flag, if
	 * set. We wouldn't want the next user of the buffer to get confused.
	 */
	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
	xfs_trans_del_item(&bip->bli_item);
	bip->bli_flags &= ~XFS_BLI_HOLD;

	/* drop the reference to the bli */
	xfs_buf_item_put(bip);

	bp->b_transp = NULL;
	xfs_buf_relse(bp);
}

/*
 * Mark the buffer as not needing to be unlocked when the buf item's
 * iop_unlock() routine is called.  The buffer must already be locked
 * and associated with the given transaction.
 */
/* ARGSUSED */
void
xfs_trans_bhold(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	bip->bli_flags |= XFS_BLI_HOLD;
	trace_xfs_trans_bhold(bip);
}

/*
 * Cancel the previous buffer hold request made on this buffer
 * for this transaction.
 */
void
xfs_trans_bhold_release(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
	ASSERT(atomic_read(&bip->bli_refcount) > 0);
	ASSERT(bip->bli_flags & XFS_BLI_HOLD);

	bip->bli_flags &= ~XFS_BLI_HOLD;
	trace_xfs_trans_bhold_release(bip);
}

/*
 * Mark a buffer dirty in the transaction.
 */
void
xfs_trans_dirty_buf(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(bp->b_iodone == NULL ||
	       bp->b_iodone == xfs_buf_iodone_callbacks);

	/*
	 * Mark the buffer as needing to be written out eventually,
	 * and set its iodone function to remove the buffer's buf log
	 * item from the AIL and free it when the buffer is flushed
	 * to disk.  See xfs_buf_attach_iodone() for more details
	 * on li_cb and xfs_buf_iodone_callbacks().
	 * If we end up aborting this transaction, we trap this buffer
	 * inside the b_bdstrat callback so that this won't get written to
	 * disk.
	 */
	bp->b_flags |= XBF_DONE;

	ASSERT(atomic_read(&bip->bli_refcount) > 0);
	bp->b_iodone = xfs_buf_iodone_callbacks;
	bip->bli_item.li_cb = xfs_buf_iodone;

	/*
	 * If we invalidated the buffer within this transaction, then
	 * cancel the invalidation now that we're dirtying the buffer
	 * again.  There are no races with the code in xfs_buf_item_unpin(),
	 * because we have a reference to the buffer this entire time.
	 */
	if (bip->bli_flags & XFS_BLI_STALE) {
		bip->bli_flags &= ~XFS_BLI_STALE;
		ASSERT(bp->b_flags & XBF_STALE);
		bp->b_flags &= ~XBF_STALE;
		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
	}
	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;

	tp->t_flags |= XFS_TRANS_DIRTY;
	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
}

/*
 * This is called to mark bytes first through last inclusive of the given
 * buffer as needing to be logged when the transaction is committed.
 * The buffer must already be associated with the given transaction.
 *
 * First and last are numbers relative to the beginning of this buffer,
 * so the first byte in the buffer is numbered 0 regardless of the
 * value of b_blkno.
 */
void
xfs_trans_log_buf(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp,
	uint			first,
	uint			last)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(first <= last && last < BBTOB(bp->b_length));
	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));

	xfs_trans_dirty_buf(tp, bp);

	trace_xfs_trans_log_buf(bip);
	xfs_buf_item_log(bip, first, last);
}


/*
 * Invalidate a buffer that is being used within a transaction.
 *
 * Typically this is because the blocks in the buffer are being freed, so we
 * need to prevent it from being written out when we're done.  Allowing it
 * to be written again might overwrite data in the free blocks if they are
 * reallocated to a file.
 *
 * We prevent the buffer from being written out by marking it stale.  We can't
 * get rid of the buf log item at this point because the buffer may still be
 * pinned by another transaction.  If that is the case, then we'll wait until
 * the buffer is committed to disk for the last time (we can tell by the ref
 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
 * keep the buffer locked so that the buffer and buf log item are not reused.
 *
 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
 * the buf item.  This will be used at recovery time to determine that copies
 * of the buffer in the log before this should not be replayed.
 *
 * We mark the item descriptor and the transaction dirty so that we'll hold
 * the buffer until after the commit.
 *
 * Since we're invalidating the buffer, we also clear the state about which
 * parts of the buffer have been logged.  We also clear the flag indicating
 * that this is an inode buffer since the data in the buffer will no longer
 * be valid.
 *
 * We set the stale bit in the buffer as well since we're getting rid of it.
 */
void
xfs_trans_binval(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;
	int			i;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	trace_xfs_trans_binval(bip);

	if (bip->bli_flags & XFS_BLI_STALE) {
		/*
		 * If the buffer is already invalidated, then
		 * just return.
		 */
		ASSERT(bp->b_flags & XBF_STALE);
		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
		return;
	}

	xfs_buf_stale(bp);

	bip->bli_flags |= XFS_BLI_STALE;
	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
	for (i = 0; i < bip->bli_format_count; i++) {
		memset(bip->bli_formats[i].blf_data_map, 0,
		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
	}
	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
	tp->t_flags |= XFS_TRANS_DIRTY;
}

/*
 * This call is used to indicate that the buffer contains on-disk inodes which
 * must be handled specially during recovery.  They require special handling
 * because only the di_next_unlinked from the inodes in the buffer should be
 * recovered.  The rest of the data in the buffer is logged via the inodes
 * themselves.
 *
 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
 * transferred to the buffer's log format structure so that we'll know what to
 * do at recovery time.
 */
void
xfs_trans_inode_buf(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	bip->bli_flags |= XFS_BLI_INODE_BUF;
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
}

/*
 * This call is used to indicate that the buffer is going to
 * be staled and was an inode buffer. This means it gets
 * special processing during unpin - where any inodes
 * associated with the buffer should be removed from ail.
 * There is also special processing during recovery,
 * any replay of the inodes in the buffer needs to be
 * prevented as the buffer may have been reused.
 */
void
xfs_trans_stale_inode_buf(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	bip->bli_flags |= XFS_BLI_STALE_INODE;
	bip->bli_item.li_cb = xfs_buf_iodone;
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
}

/*
 * Mark the buffer as being one which contains newly allocated
 * inodes.  We need to make sure that even if this buffer is
 * relogged as an 'inode buf' we still recover all of the inode
 * images in the face of a crash.  This works in coordination with
 * xfs_buf_item_committed() to ensure that the buffer remains in the
 * AIL at its original location even after it has been relogged.
 */
/* ARGSUSED */
void
xfs_trans_inode_alloc_buf(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
}

/*
 * Mark the buffer as ordered for this transaction. This means that the contents
 * of the buffer are not recorded in the transaction but it is tracked in the
 * AIL as though it was. This allows us to record logical changes in
 * transactions rather than the physical changes we make to the buffer without
 * changing writeback ordering constraints of metadata buffers.
 */
bool
xfs_trans_ordered_buf(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	if (xfs_buf_item_dirty_format(bip))
		return false;

	bip->bli_flags |= XFS_BLI_ORDERED;
	trace_xfs_buf_item_ordered(bip);

	/*
	 * We don't log a dirty range of an ordered buffer but it still needs
	 * to be marked dirty and that it has been logged.
	 */
	xfs_trans_dirty_buf(tp, bp);
	return true;
}

/*
 * Set the type of the buffer for log recovery so that it can correctly identify
 * and hence attach the correct buffer ops to the buffer after replay.
 */
void
xfs_trans_buf_set_type(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp,
	enum xfs_blft		type)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	if (!tp)
		return;

	ASSERT(bp->b_transp == tp);
	ASSERT(bip != NULL);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);

	xfs_blft_to_flags(&bip->__bli_format, type);
}

void
xfs_trans_buf_copy_type(
	struct xfs_buf		*dst_bp,
	struct xfs_buf		*src_bp)
{
	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
	enum xfs_blft		type;

	type = xfs_blft_from_flags(&sbip->__bli_format);
	xfs_blft_to_flags(&dbip->__bli_format, type);
}

/*
 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
 * dquots. However, unlike in inode buffer recovery, dquot buffers get
 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
 * The only thing that makes dquot buffers different from regular
 * buffers is that we must not replay dquot bufs when recovering
 * if a _corresponding_ quotaoff has happened. We also have to distinguish
 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
 * can be turned off independently.
 */
/* ARGSUSED */
void
xfs_trans_dquot_buf(
	xfs_trans_t		*tp,
	xfs_buf_t		*bp,
	uint			type)
{
	struct xfs_buf_log_item	*bip = bp->b_log_item;

	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
	       type == XFS_BLF_PDQUOT_BUF ||
	       type == XFS_BLF_GDQUOT_BUF);

	bip->__bli_format.blf_flags |= type;

	switch (type) {
	case XFS_BLF_UDQUOT_BUF:
		type = XFS_BLFT_UDQUOT_BUF;
		break;
	case XFS_BLF_PDQUOT_BUF:
		type = XFS_BLFT_PDQUOT_BUF;
		break;
	case XFS_BLF_GDQUOT_BUF:
		type = XFS_BLFT_GDQUOT_BUF;
		break;
	default:
		type = XFS_BLFT_UNKNOWN_BUF;
		break;
	}

	xfs_trans_buf_set_type(tp, bp, type);
}