Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
 *
 * Copyright (c) 2016, Intel Corporation.
 *
 * This file is subject to the terms and conditions of version 2 of
 * the GNU General Public License.  See the file COPYING in the main
 * directory of this archive for more details.
 *
 * IIO core driver for BMI160, with support for I2C/SPI busses
 *
 * TODO: magnetometer, interrupts, hardware FIFO
 */
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/acpi.h>
#include <linux/delay.h>

#include <linux/iio/iio.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>

#include "bmi160.h"

#define BMI160_REG_CHIP_ID	0x00
#define BMI160_CHIP_ID_VAL	0xD1

#define BMI160_REG_PMU_STATUS	0x03

/* X axis data low byte address, the rest can be obtained using axis offset */
#define BMI160_REG_DATA_MAGN_XOUT_L	0x04
#define BMI160_REG_DATA_GYRO_XOUT_L	0x0C
#define BMI160_REG_DATA_ACCEL_XOUT_L	0x12

#define BMI160_REG_ACCEL_CONFIG		0x40
#define BMI160_ACCEL_CONFIG_ODR_MASK	GENMASK(3, 0)
#define BMI160_ACCEL_CONFIG_BWP_MASK	GENMASK(6, 4)

#define BMI160_REG_ACCEL_RANGE		0x41
#define BMI160_ACCEL_RANGE_2G		0x03
#define BMI160_ACCEL_RANGE_4G		0x05
#define BMI160_ACCEL_RANGE_8G		0x08
#define BMI160_ACCEL_RANGE_16G		0x0C

#define BMI160_REG_GYRO_CONFIG		0x42
#define BMI160_GYRO_CONFIG_ODR_MASK	GENMASK(3, 0)
#define BMI160_GYRO_CONFIG_BWP_MASK	GENMASK(5, 4)

#define BMI160_REG_GYRO_RANGE		0x43
#define BMI160_GYRO_RANGE_2000DPS	0x00
#define BMI160_GYRO_RANGE_1000DPS	0x01
#define BMI160_GYRO_RANGE_500DPS	0x02
#define BMI160_GYRO_RANGE_250DPS	0x03
#define BMI160_GYRO_RANGE_125DPS	0x04

#define BMI160_REG_CMD			0x7E
#define BMI160_CMD_ACCEL_PM_SUSPEND	0x10
#define BMI160_CMD_ACCEL_PM_NORMAL	0x11
#define BMI160_CMD_ACCEL_PM_LOW_POWER	0x12
#define BMI160_CMD_GYRO_PM_SUSPEND	0x14
#define BMI160_CMD_GYRO_PM_NORMAL	0x15
#define BMI160_CMD_GYRO_PM_FAST_STARTUP	0x17
#define BMI160_CMD_SOFTRESET		0xB6

#define BMI160_REG_DUMMY		0x7F

#define BMI160_ACCEL_PMU_MIN_USLEEP	3800
#define BMI160_GYRO_PMU_MIN_USLEEP	80000
#define BMI160_SOFTRESET_USLEEP		1000

#define BMI160_CHANNEL(_type, _axis, _index) {			\
	.type = _type,						\
	.modified = 1,						\
	.channel2 = IIO_MOD_##_axis,				\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
		BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
	.scan_index = _index,					\
	.scan_type = {						\
		.sign = 's',					\
		.realbits = 16,					\
		.storagebits = 16,				\
		.endianness = IIO_LE,				\
	},							\
}

/* scan indexes follow DATA register order */
enum bmi160_scan_axis {
	BMI160_SCAN_EXT_MAGN_X = 0,
	BMI160_SCAN_EXT_MAGN_Y,
	BMI160_SCAN_EXT_MAGN_Z,
	BMI160_SCAN_RHALL,
	BMI160_SCAN_GYRO_X,
	BMI160_SCAN_GYRO_Y,
	BMI160_SCAN_GYRO_Z,
	BMI160_SCAN_ACCEL_X,
	BMI160_SCAN_ACCEL_Y,
	BMI160_SCAN_ACCEL_Z,
	BMI160_SCAN_TIMESTAMP,
};

enum bmi160_sensor_type {
	BMI160_ACCEL	= 0,
	BMI160_GYRO,
	BMI160_EXT_MAGN,
	BMI160_NUM_SENSORS /* must be last */
};

struct bmi160_data {
	struct regmap *regmap;
};

const struct regmap_config bmi160_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
};
EXPORT_SYMBOL(bmi160_regmap_config);

struct bmi160_regs {
	u8 data; /* LSB byte register for X-axis */
	u8 config;
	u8 config_odr_mask;
	u8 config_bwp_mask;
	u8 range;
	u8 pmu_cmd_normal;
	u8 pmu_cmd_suspend;
};

static struct bmi160_regs bmi160_regs[] = {
	[BMI160_ACCEL] = {
		.data	= BMI160_REG_DATA_ACCEL_XOUT_L,
		.config	= BMI160_REG_ACCEL_CONFIG,
		.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
		.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
		.range	= BMI160_REG_ACCEL_RANGE,
		.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
		.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
	},
	[BMI160_GYRO] = {
		.data	= BMI160_REG_DATA_GYRO_XOUT_L,
		.config	= BMI160_REG_GYRO_CONFIG,
		.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
		.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
		.range	= BMI160_REG_GYRO_RANGE,
		.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
		.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
	},
};

static unsigned long bmi160_pmu_time[] = {
	[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
	[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
};

struct bmi160_scale {
	u8 bits;
	int uscale;
};

struct bmi160_odr {
	u8 bits;
	int odr;
	int uodr;
};

static const struct bmi160_scale bmi160_accel_scale[] = {
	{ BMI160_ACCEL_RANGE_2G, 598},
	{ BMI160_ACCEL_RANGE_4G, 1197},
	{ BMI160_ACCEL_RANGE_8G, 2394},
	{ BMI160_ACCEL_RANGE_16G, 4788},
};

static const struct bmi160_scale bmi160_gyro_scale[] = {
	{ BMI160_GYRO_RANGE_2000DPS, 1065},
	{ BMI160_GYRO_RANGE_1000DPS, 532},
	{ BMI160_GYRO_RANGE_500DPS, 266},
	{ BMI160_GYRO_RANGE_250DPS, 133},
	{ BMI160_GYRO_RANGE_125DPS, 66},
};

struct bmi160_scale_item {
	const struct bmi160_scale *tbl;
	int num;
};

static const struct  bmi160_scale_item bmi160_scale_table[] = {
	[BMI160_ACCEL] = {
		.tbl	= bmi160_accel_scale,
		.num	= ARRAY_SIZE(bmi160_accel_scale),
	},
	[BMI160_GYRO] = {
		.tbl	= bmi160_gyro_scale,
		.num	= ARRAY_SIZE(bmi160_gyro_scale),
	},
};

static const struct bmi160_odr bmi160_accel_odr[] = {
	{0x01, 0, 781250},
	{0x02, 1, 562500},
	{0x03, 3, 125000},
	{0x04, 6, 250000},
	{0x05, 12, 500000},
	{0x06, 25, 0},
	{0x07, 50, 0},
	{0x08, 100, 0},
	{0x09, 200, 0},
	{0x0A, 400, 0},
	{0x0B, 800, 0},
	{0x0C, 1600, 0},
};

static const struct bmi160_odr bmi160_gyro_odr[] = {
	{0x06, 25, 0},
	{0x07, 50, 0},
	{0x08, 100, 0},
	{0x09, 200, 0},
	{0x0A, 400, 0},
	{0x0B, 800, 0},
	{0x0C, 1600, 0},
	{0x0D, 3200, 0},
};

struct bmi160_odr_item {
	const struct bmi160_odr *tbl;
	int num;
};

static const struct  bmi160_odr_item bmi160_odr_table[] = {
	[BMI160_ACCEL] = {
		.tbl	= bmi160_accel_odr,
		.num	= ARRAY_SIZE(bmi160_accel_odr),
	},
	[BMI160_GYRO] = {
		.tbl	= bmi160_gyro_odr,
		.num	= ARRAY_SIZE(bmi160_gyro_odr),
	},
};

static const struct iio_chan_spec bmi160_channels[] = {
	BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
	BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
	BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
	BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
	BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
	BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
	IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
};

static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
{
	switch (iio_type) {
	case IIO_ACCEL:
		return BMI160_ACCEL;
	case IIO_ANGL_VEL:
		return BMI160_GYRO;
	default:
		return -EINVAL;
	}
}

static
int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
		    bool mode)
{
	int ret;
	u8 cmd;

	if (mode)
		cmd = bmi160_regs[t].pmu_cmd_normal;
	else
		cmd = bmi160_regs[t].pmu_cmd_suspend;

	ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
	if (ret < 0)
		return ret;

	usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);

	return 0;
}

static
int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
		     int uscale)
{
	int i;

	for (i = 0; i < bmi160_scale_table[t].num; i++)
		if (bmi160_scale_table[t].tbl[i].uscale == uscale)
			break;

	if (i == bmi160_scale_table[t].num)
		return -EINVAL;

	return regmap_write(data->regmap, bmi160_regs[t].range,
			    bmi160_scale_table[t].tbl[i].bits);
}

static
int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
		     int *uscale)
{
	int i, ret, val;

	ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
	if (ret < 0)
		return ret;

	for (i = 0; i < bmi160_scale_table[t].num; i++)
		if (bmi160_scale_table[t].tbl[i].bits == val) {
			*uscale = bmi160_scale_table[t].tbl[i].uscale;
			return 0;
		}

	return -EINVAL;
}

static int bmi160_get_data(struct bmi160_data *data, int chan_type,
			   int axis, int *val)
{
	u8 reg;
	int ret;
	__le16 sample;
	enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);

	reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);

	ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
	if (ret < 0)
		return ret;

	*val = sign_extend32(le16_to_cpu(sample), 15);

	return 0;
}

static
int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
		   int odr, int uodr)
{
	int i;

	for (i = 0; i < bmi160_odr_table[t].num; i++)
		if (bmi160_odr_table[t].tbl[i].odr == odr &&
		    bmi160_odr_table[t].tbl[i].uodr == uodr)
			break;

	if (i >= bmi160_odr_table[t].num)
		return -EINVAL;

	return regmap_update_bits(data->regmap,
				  bmi160_regs[t].config,
				  bmi160_regs[t].config_odr_mask,
				  bmi160_odr_table[t].tbl[i].bits);
}

static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
			  int *odr, int *uodr)
{
	int i, val, ret;

	ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
	if (ret < 0)
		return ret;

	val &= bmi160_regs[t].config_odr_mask;

	for (i = 0; i < bmi160_odr_table[t].num; i++)
		if (val == bmi160_odr_table[t].tbl[i].bits)
			break;

	if (i >= bmi160_odr_table[t].num)
		return -EINVAL;

	*odr = bmi160_odr_table[t].tbl[i].odr;
	*uodr = bmi160_odr_table[t].tbl[i].uodr;

	return 0;
}

static irqreturn_t bmi160_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmi160_data *data = iio_priv(indio_dev);
	__le16 buf[16];
	/* 3 sens x 3 axis x __le16 + 3 x __le16 pad + 4 x __le16 tstamp */
	int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
	__le16 sample;

	for_each_set_bit(i, indio_dev->active_scan_mask,
			 indio_dev->masklength) {
		ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
				       &sample, sizeof(sample));
		if (ret < 0)
			goto done;
		buf[j++] = sample;
	}

	iio_push_to_buffers_with_timestamp(indio_dev, buf,
					   iio_get_time_ns(indio_dev));
done:
	iio_trigger_notify_done(indio_dev->trig);
	return IRQ_HANDLED;
}

static int bmi160_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2, long mask)
{
	int ret;
	struct bmi160_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = bmi160_get_data(data, chan->type, chan->channel2, val);
		if (ret < 0)
			return ret;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		ret = bmi160_get_scale(data,
				       bmi160_to_sensor(chan->type), val2);
		return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_SAMP_FREQ:
		ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
				     val, val2);
		return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmi160_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val, int val2, long mask)
{
	struct bmi160_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		return bmi160_set_scale(data,
					bmi160_to_sensor(chan->type), val2);
		break;
	case IIO_CHAN_INFO_SAMP_FREQ:
		return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
				      val, val2);
	default:
		return -EINVAL;
	}

	return 0;
}

static
IIO_CONST_ATTR(in_accel_sampling_frequency_available,
	       "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
static
IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
	       "25 50 100 200 400 800 1600 3200");
static
IIO_CONST_ATTR(in_accel_scale_available,
	       "0.000598 0.001197 0.002394 0.004788");
static
IIO_CONST_ATTR(in_anglvel_scale_available,
	       "0.001065 0.000532 0.000266 0.000133 0.000066");

static struct attribute *bmi160_attrs[] = {
	&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
	&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmi160_attrs_group = {
	.attrs = bmi160_attrs,
};

static const struct iio_info bmi160_info = {
	.read_raw = bmi160_read_raw,
	.write_raw = bmi160_write_raw,
	.attrs = &bmi160_attrs_group,
};

static const char *bmi160_match_acpi_device(struct device *dev)
{
	const struct acpi_device_id *id;

	id = acpi_match_device(dev->driver->acpi_match_table, dev);
	if (!id)
		return NULL;

	return dev_name(dev);
}

static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
{
	int ret;
	unsigned int val;
	struct device *dev = regmap_get_device(data->regmap);

	ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
	if (ret < 0)
		return ret;

	usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);

	/*
	 * CS rising edge is needed before starting SPI, so do a dummy read
	 * See Section 3.2.1, page 86 of the datasheet
	 */
	if (use_spi) {
		ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
		if (ret < 0)
			return ret;
	}

	ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
	if (ret < 0) {
		dev_err(dev, "Error reading chip id\n");
		return ret;
	}
	if (val != BMI160_CHIP_ID_VAL) {
		dev_err(dev, "Wrong chip id, got %x expected %x\n",
			val, BMI160_CHIP_ID_VAL);
		return -ENODEV;
	}

	ret = bmi160_set_mode(data, BMI160_ACCEL, true);
	if (ret < 0)
		return ret;

	ret = bmi160_set_mode(data, BMI160_GYRO, true);
	if (ret < 0)
		return ret;

	return 0;
}

static void bmi160_chip_uninit(struct bmi160_data *data)
{
	bmi160_set_mode(data, BMI160_GYRO, false);
	bmi160_set_mode(data, BMI160_ACCEL, false);
}

int bmi160_core_probe(struct device *dev, struct regmap *regmap,
		      const char *name, bool use_spi)
{
	struct iio_dev *indio_dev;
	struct bmi160_data *data;
	int ret;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
	dev_set_drvdata(dev, indio_dev);
	data->regmap = regmap;

	ret = bmi160_chip_init(data, use_spi);
	if (ret < 0)
		return ret;

	if (!name && ACPI_HANDLE(dev))
		name = bmi160_match_acpi_device(dev);

	indio_dev->dev.parent = dev;
	indio_dev->channels = bmi160_channels;
	indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
	indio_dev->name = name;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmi160_info;

	ret = iio_triggered_buffer_setup(indio_dev, NULL,
					 bmi160_trigger_handler, NULL);
	if (ret < 0)
		goto uninit;

	ret = iio_device_register(indio_dev);
	if (ret < 0)
		goto buffer_cleanup;

	return 0;
buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
uninit:
	bmi160_chip_uninit(data);
	return ret;
}
EXPORT_SYMBOL_GPL(bmi160_core_probe);

void bmi160_core_remove(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct bmi160_data *data = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);
	bmi160_chip_uninit(data);
}
EXPORT_SYMBOL_GPL(bmi160_core_remove);

MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com");
MODULE_DESCRIPTION("Bosch BMI160 driver");
MODULE_LICENSE("GPL v2");