Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2018 Intel Corporation. */

/* 82571EB Gigabit Ethernet Controller
 * 82571EB Gigabit Ethernet Controller (Copper)
 * 82571EB Gigabit Ethernet Controller (Fiber)
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
 * 82574L Gigabit Network Connection
 * 82583V Gigabit Network Connection
 */

#include "e1000.h"

static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr = 1;
	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us = 100;

	phy->ops.power_up = e1000_power_up_phy_copper;
	phy->ops.power_down = e1000_power_down_phy_copper_82571;

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type = e1000_phy_m88;
		break;
	case e1000_82574:
	case e1000_82583:
		phy->type = e1000_phy_bm;
		phy->ops.acquire = e1000_get_hw_semaphore_82574;
		phy->ops.release = e1000_put_hw_semaphore_82574;
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
		break;
	default:
		return -E1000_ERR_PHY;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);
	if (ret_val) {
		e_dbg("Error getting PHY ID\n");
		return ret_val;
	}

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
			ret_val = -E1000_ERR_PHY;
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
			ret_val = -E1000_ERR_PHY;
		break;
	case e1000_82574:
	case e1000_82583:
		if (phy->id != BME1000_E_PHY_ID_R2)
			ret_val = -E1000_ERR_PHY;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);

	return ret_val;
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
			/* Autonomous Flash update bit must be cleared due
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
		nvm->type = e1000_nvm_eeprom_spi;
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
			     E1000_EECD_SIZE_EX_SHIFT);
		/* Added to a constant, "size" becomes the left-shift value
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
		nvm->word_size = BIT(size);
		break;
	}

	/* Function Pointers */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
		nvm->ops.release = e1000_put_hw_semaphore_82574;
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;

	/* Set media type and media-dependent function pointers */
	switch (hw->adapter->pdev->device) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
		hw->phy.media_type = e1000_media_type_fiber;
		mac->ops.setup_physical_interface =
		    e1000_setup_fiber_serdes_link_82571;
		mac->ops.check_for_link = e1000e_check_for_fiber_link;
		mac->ops.get_link_up_info =
		    e1000e_get_speed_and_duplex_fiber_serdes;
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
	case E1000_DEV_ID_82572EI_SERDES:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		mac->ops.setup_physical_interface =
		    e1000_setup_fiber_serdes_link_82571;
		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
		mac->ops.get_link_up_info =
		    e1000e_get_speed_and_duplex_fiber_serdes;
		break;
	default:
		hw->phy.media_type = e1000_media_type_copper;
		mac->ops.setup_physical_interface =
		    e1000_setup_copper_link_82571;
		mac->ops.check_for_link = e1000e_check_for_copper_link;
		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;

	/* MAC-specific function pointers */
	switch (hw->mac.type) {
	case e1000_82573:
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
		mac->ops.led_on = e1000e_led_on_generic;
		mac->ops.blink_led = e1000e_blink_led_generic;

		/* FWSM register */
		mac->has_fwsm = true;
		/* ARC supported; valid only if manageability features are
		 * enabled.
		 */
		mac->arc_subsystem_valid = !!(er32(FWSM) &
					      E1000_FWSM_MODE_MASK);
		break;
	case e1000_82574:
	case e1000_82583:
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
		mac->ops.led_on = e1000_led_on_82574;
		break;
	default:
		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
		mac->ops.led_on = e1000e_led_on_generic;
		mac->ops.blink_led = e1000e_blink_led_generic;

		/* FWSM register */
		mac->has_fwsm = true;
		break;
	}

	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
	 * first NVM or PHY access. This should be done for single-port
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
			force_clear_smbi = true;
		} else {
			force_clear_smbi = false;
		}
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
			e_dbg("Please update your 82571 Bootagent\n");
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/* Initialize device specific counter of SMBI acquisition timeouts. */
	hw->dev_spec.e82571.smb_counter = 0;

	return 0;
}

static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a;	/* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

	rc = e1000_init_mac_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
		break;
	case e1000_82573:
		if (pdev->device == E1000_DEV_ID_82573L) {
			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
			adapter->max_hw_frame_size = DEFAULT_JUMBO;
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_id = 0;

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		/* The 82571 firmware may still be configuring the PHY.
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
		 * PHY ID.
		 */
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
	case e1000_82574:
	case e1000_82583:
		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		usleep_range(20, 40);
		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
	default:
		return -E1000_ERR_PHY;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		usleep_range(50, 100);
		i++;
	}

	if (i == sw_timeout) {
		e_dbg("Driver can't access device - SMBI bit is set.\n");
		hw->dev_spec.e82571.smb_counter++;
	}
	/* Get the FW semaphore. */
	for (i = 0; i < fw_timeout; i++) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		usleep_range(50, 100);
	}

	if (i == fw_timeout) {
		/* Release semaphores */
		e1000_put_hw_semaphore_82571(hw);
		e_dbg("Driver can't access the NVM\n");
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
	ew32(SWSM, swsm);
}

/**
 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore during reset.
 *
 **/
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;
	s32 i = 0;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	do {
		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		extcnf_ctrl = er32(EXTCNF_CTRL);

		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
			break;

		usleep_range(2000, 4000);
		i++;
	} while (i < MDIO_OWNERSHIP_TIMEOUT);

	if (i == MDIO_OWNERSHIP_TIMEOUT) {
		/* Release semaphores */
		e1000_put_hw_semaphore_82573(hw);
		e_dbg("Driver can't access the PHY\n");
		return -E1000_ERR_PHY;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used during reset.
 *
 **/
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

static DEFINE_MUTEX(swflag_mutex);

/**
 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM.
 *
 **/
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
{
	s32 ret_val;

	mutex_lock(&swflag_mutex);
	ret_val = e1000_get_hw_semaphore_82573(hw);
	if (ret_val)
		mutex_unlock(&swflag_mutex);
	return ret_val;
}

/**
 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 *
 **/
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
{
	e1000_put_hw_semaphore_82573(hw);
	mutex_unlock(&swflag_mutex);
}

/**
 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.
 *  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u32 data = er32(POEMB);

	if (active)
		data |= E1000_PHY_CTRL_D0A_LPLU;
	else
		data &= ~E1000_PHY_CTRL_D0A_LPLU;

	ew32(POEMB, data);
	return 0;
}

/**
 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  when active is true, else clear lplu for D3. LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u32 data = er32(POEMB);

	if (!active) {
		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_PHY_CTRL_NOND0A_LPLU;
	}

	ew32(POEMB, data);
	return 0;
}

/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
		break;
	default:
		ret_val = e1000e_acquire_nvm(hw);
		break;
	}

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

	/* If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
	if (hw->nvm.type != e1000_nvm_flash_hw)
		return 0;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		usleep_range(1000, 2000);
		if (!(er32(EECD) & E1000_EECD_FLUPD))
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
		/* The enabling of and the actual reset must be done
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		usleep_range(1000, 2000);
		if (!(er32(EECD) & E1000_EECD_FLUPD))
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, eewr = 0;
	s32 ret_val = 0;

	/* A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
			E1000_NVM_RW_REG_START);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
			break;
		usleep_range(1000, 2000);
		timeout--;
	}
	if (!timeout) {
		e_dbg("MNG configuration cycle has not completed.\n");
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
	u32 ctrl, ctrl_ext, eecd, tctl;
	s32 ret_val;

	/* Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
		e_dbg("PCI-E Master disable polling has failed.\n");

	e_dbg("Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	e1e_flush();

	usleep_range(10000, 20000);

	/* Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
	switch (hw->mac.type) {
	case e1000_82573:
		ret_val = e1000_get_hw_semaphore_82573(hw);
		break;
	case e1000_82574:
	case e1000_82583:
		ret_val = e1000_get_hw_semaphore_82574(hw);
		break;
	default:
		break;
	}

	ctrl = er32(CTRL);

	e_dbg("Issuing a global reset to MAC\n");
	ew32(CTRL, ctrl | E1000_CTRL_RST);

	/* Must release MDIO ownership and mutex after MAC reset. */
	switch (hw->mac.type) {
	case e1000_82573:
		/* Release mutex only if the hw semaphore is acquired */
		if (!ret_val)
			e1000_put_hw_semaphore_82573(hw);
		break;
	case e1000_82574:
	case e1000_82583:
		/* Release mutex only if the hw semaphore is acquired */
		if (!ret_val)
			e1000_put_hw_semaphore_82574(hw);
		break;
	default:
		break;
	}

	if (hw->nvm.type == e1000_nvm_flash_hw) {
		usleep_range(10, 20);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		/* REQ and GNT bits need to be cleared when using AUTO_RD
		 * to access the EEPROM.
		 */
		eecd = er32(EECD);
		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
		ew32(EECD, eecd);
		break;
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		msleep(25);
		break;
	default:
		break;
	}

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	er32(ICR);

	if (hw->mac.type == e1000_82571) {
		/* Install any alternate MAC address into RAR0 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
			return ret_val;

		e1000e_set_laa_state_82571(hw, true);
	}

	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	/* An error is not fatal and we should not stop init due to this */
	if (ret_val)
		e_dbg("Error initializing identification LED\n");

	/* Disabling VLAN filtering */
	e_dbg("Initializing the IEEE VLAN\n");
	mac->ops.clear_vfta(hw);

	/* Setup the receive address.
	 * If, however, a locally administered address was assigned to the
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
	e_dbg("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/* Set the transmit descriptor write-back policy */
	reg_data = er32(TXDCTL(0));
	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
	ew32(TXDCTL(0), reg_data);

	/* ...for both queues. */
	switch (mac->type) {
	case e1000_82573:
		e1000e_enable_tx_pkt_filtering(hw);
		/* fall through */
	case e1000_82574:
	case e1000_82583:
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
		reg_data = er32(TXDCTL(1));
		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
			    E1000_TXDCTL_FULL_TX_DESC_WB |
			    E1000_TXDCTL_COUNT_DESC);
		ew32(TXDCTL(1), reg_data);
		break;
	}

	/* Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
	reg = er32(TXDCTL(0));
	reg |= BIT(22);
	ew32(TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = er32(TXDCTL(1));
	reg |= BIT(22);
	ew32(TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = er32(TARC(0));
	reg &= ~(0xF << 27);	/* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
		break;
	case e1000_82574:
	case e1000_82583:
		reg |= BIT(26);
		break;
	default:
		break;
	}
	ew32(TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = er32(TARC(1));
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~(BIT(29) | BIT(30));
		reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~BIT(28);
		else
			reg |= BIT(28);
		ew32(TARC(1), reg);
		break;
	default:
		break;
	}

	/* Device Control */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		reg = er32(CTRL);
		reg &= ~BIT(29);
		ew32(CTRL, reg);
		break;
	default:
		break;
	}

	/* Extended Device Control */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		reg = er32(CTRL_EXT);
		reg &= ~BIT(23);
		reg |= BIT(22);
		ew32(CTRL_EXT, reg);
		break;
	default:
		break;
	}

	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}

	/* Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */
	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
		reg = er32(CTRL_EXT);
		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
		ew32(CTRL_EXT, reg);
	}

	/* Disable IPv6 extension header parsing because some malformed
	 * IPv6 headers can hang the Rx.
	 */
	if (hw->mac.type <= e1000_82573) {
		reg = er32(RFCTL);
		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
		ew32(RFCTL, reg);
	}

	/* PCI-Ex Control Registers */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		reg = er32(GCR);
		reg |= BIT(22);
		ew32(GCR, reg);

		/* Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
		 * Without fix, issue can cause Tx timeouts.
		 */
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
		break;
	default:
		break;
	}
}

/**
 *  e1000_clear_vfta_82571 - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->mng_cookie.vlan_id != 0) {
			/* The VFTA is a 4096b bit-field, each identifying
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
			    E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg =
			    BIT(hw->mng_cookie.vlan_id &
				E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
		break;
	default:
		break;
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
		/* If the offset we want to clear is the same offset of the
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/* If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

/**
 *  e1000_check_phy_82574 - check 82574 phy hung state
 *  @hw: pointer to the HW structure
 *
 *  Returns whether phy is hung or not
 **/
bool e1000_check_phy_82574(struct e1000_hw *hw)
{
	u16 status_1kbt = 0;
	u16 receive_errors = 0;
	s32 ret_val;

	/* Read PHY Receive Error counter first, if its is max - all F's then
	 * read the Base1000T status register If both are max then PHY is hung.
	 */
	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
	if (ret_val)
		return false;
	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
		if (ret_val)
			return false;
		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
		    E1000_IDLE_ERROR_COUNT_MASK)
			return true;
	}

	return false;
}

/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
	/* 82573 does not have a word in the NVM to determine
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}

	return e1000e_setup_link_generic(hw);
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
	case e1000_phy_bm:
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		break;
	default:
		return -E1000_ERR_PHY;
	}

	if (ret_val)
		return ret_val;

	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		/* If SerDes loopback mode is entered, there is no form
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
		 * mode.  This prevents drivers from twiddling their thumbs
		 * if another tool failed to take it out of loopback mode.
		 */
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Reports the link state as up or down.
 *
 *  If autonegotiation is supported by the link partner, the link state is
 *  determined by the result of autonegotiation. This is the most likely case.
 *  If autonegotiation is not supported by the link partner, and the link
 *  has a valid signal, force the link up.
 *
 *  The link state is represented internally here by 4 states:
 *
 *  1) down
 *  2) autoneg_progress
 *  3) autoneg_complete (the link successfully autonegotiated)
 *  4) forced_up (the link has been forced up, it did not autonegotiate)
 *
 **/
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	u32 txcw;
	u32 i;
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	er32(RXCW);
	/* SYNCH bit and IV bit are sticky */
	usleep_range(10, 20);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/* We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				mac->serdes_has_link = false;
				e_dbg("AN_UP     -> AN_PROG\n");
			} else {
				mac->serdes_has_link = true;
			}
			break;

		case e1000_serdes_link_forced_up:
			/* If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
			 */
			if (rxcw & E1000_RXCW_C) {
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				mac->serdes_has_link = false;
				e_dbg("FORCED_UP -> AN_PROG\n");
			} else {
				mac->serdes_has_link = true;
			}
			break;

		case e1000_serdes_link_autoneg_progress:
			if (rxcw & E1000_RXCW_C) {
				/* We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit.
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					e_dbg("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed. */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("AN_PROG   -> DOWN\n");
				}
			} else {
				/* The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
				 */
				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
				ret_val = e1000e_config_fc_after_link_up(hw);
				if (ret_val) {
					e_dbg("Error config flow control\n");
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
				mac->serdes_has_link = true;
				e_dbg("AN_PROG   -> FORCED_UP\n");
			}
			break;

		case e1000_serdes_link_down:
		default:
			/* The link was down but the receiver has now gained
			 * valid sync, so lets see if we can bring the link
			 * up.
			 */
			ew32(TXCW, mac->txcw);
			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
			mac->serdes_has_link = false;
			e_dbg("DOWN      -> AN_PROG\n");
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
			e_dbg("ANYSTATE  -> DOWN\n");
		} else {
			/* Check several times, if SYNCH bit and CONFIG
			 * bit both are consistently 1 then simply ignore
			 * the IV bit and restart Autoneg
			 */
			for (i = 0; i < AN_RETRY_COUNT; i++) {
				usleep_range(10, 20);
				rxcw = er32(RXCW);
				if ((rxcw & E1000_RXCW_SYNCH) &&
				    (rxcw & E1000_RXCW_C))
					continue;

				if (rxcw & E1000_RXCW_IV) {
					mac->serdes_has_link = false;
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("ANYSTATE  -> DOWN\n");
					break;
				}
			}

			if (i == AN_RETRY_COUNT) {
				txcw = er32(TXCW);
				txcw |= E1000_TXCW_ANE;
				ew32(TXCW, txcw);
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				mac->serdes_has_link = false;
				e_dbg("ANYSTATE  -> AN_PROG\n");
			}
		}
	}

	return ret_val;
}

/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
 *  Retrieve and return the current locally administered address state.
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
		return false;

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
 *  Enable/Disable the current locally administered address state.
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
		/* Hold a copy of the LAA in RAR[14] This is done so that
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		hw->mac.ops.rar_set(hw, hw->mac.addr,
				    hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
		/* Read 0x23 and check bit 15.  This bit is a 1
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_read_mac_addr_82571 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
	if (hw->mac.type == e1000_82571) {
		s32 ret_val;

		/* If there's an alternate MAC address place it in RAR0
		 * so that it will override the Si installed default perm
		 * address.
		 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000_read_mac_addr_generic(hw);
}

/**
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

	if (!phy->ops.check_reset_block)
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
}

static const struct e1000_mac_operations e82571_mac_ops = {
	/* .check_mng_mode: mac type dependent */
	/* .check_for_link: media type dependent */
	.id_led_init		= e1000e_id_led_init_generic,
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
	/* .get_link_up_info: media type dependent */
	/* .led_on: mac type dependent */
	.led_off		= e1000e_led_off_generic,
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_82571,
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
	.setup_led		= e1000e_setup_led_generic,
	.config_collision_dist	= e1000e_config_collision_dist_generic,
	.read_mac_addr		= e1000_read_mac_addr_82571,
	.rar_set		= e1000e_rar_set_generic,
	.rar_get_count		= e1000e_rar_get_count_generic,
};

static const struct e1000_phy_operations e82_phy_ops_igp = {
	.acquire		= e1000_get_hw_semaphore_82571,
	.check_polarity		= e1000_check_polarity_igp,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit			= NULL,
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_reg		= e1000e_write_phy_reg_igp,
	.cfg_on_link_up		= NULL,
};

static const struct e1000_phy_operations e82_phy_ops_m88 = {
	.acquire		= e1000_get_hw_semaphore_82571,
	.check_polarity		= e1000_check_polarity_m88,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit			= e1000e_phy_sw_reset,
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done_generic,
	.get_cable_length	= e1000e_get_cable_length_m88,
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_reg		= e1000e_write_phy_reg_m88,
	.cfg_on_link_up		= NULL,
};

static const struct e1000_phy_operations e82_phy_ops_bm = {
	.acquire		= e1000_get_hw_semaphore_82571,
	.check_polarity		= e1000_check_polarity_m88,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit			= e1000e_phy_sw_reset,
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done_generic,
	.get_cable_length	= e1000e_get_cable_length_m88,
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_reg		= e1000e_write_phy_reg_bm2,
	.cfg_on_link_up		= NULL,
};

static const struct e1000_nvm_operations e82571_nvm_ops = {
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
	.reload			= e1000e_reload_nvm_generic,
	.update			= e1000_update_nvm_checksum_82571,
	.valid_led_default	= e1000_valid_led_default_82571,
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
};

const struct e1000_info e1000_82571_info = {
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
	.pba			= 38,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

const struct e1000_info e1000_82572_info = {
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
	.pba			= 38,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

const struct e1000_info e1000_82573_info = {
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_SWSM_ON_LOAD,
	.flags2			= FLAG2_DISABLE_ASPM_L1
				  | FLAG2_DISABLE_ASPM_L0S,
	.pba			= 20,
	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
	.nvm_ops		= &e82571_nvm_ops,
};

const struct e1000_info e1000_82574_info = {
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
	.flags2			 = FLAG2_CHECK_PHY_HANG
				  | FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_DISABLE_ASPM_L1
				  | FLAG2_NO_DISABLE_RX
				  | FLAG2_DMA_BURST
				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
	.pba			= 32,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

const struct e1000_info e1000_82583_info = {
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_HAS_HW_TIMESTAMP
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
	.flags2			= FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_DISABLE_ASPM_L1
				  | FLAG2_NO_DISABLE_RX
				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
	.pba			= 32,
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};