Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS MMU handling in the KVM module.
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */

#include <linux/highmem.h>
#include <linux/kvm_host.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>

/*
 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
 * for which pages need to be cached.
 */
#if defined(__PAGETABLE_PMD_FOLDED)
#define KVM_MMU_CACHE_MIN_PAGES 1
#else
#define KVM_MMU_CACHE_MIN_PAGES 2
#endif

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

/**
 * kvm_pgd_init() - Initialise KVM GPA page directory.
 * @page:	Pointer to page directory (PGD) for KVM GPA.
 *
 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
 * representing no mappings. This is similar to pgd_init(), however it
 * initialises all the page directory pointers, not just the ones corresponding
 * to the userland address space (since it is for the guest physical address
 * space rather than a virtual address space).
 */
static void kvm_pgd_init(void *page)
{
	unsigned long *p, *end;
	unsigned long entry;

#ifdef __PAGETABLE_PMD_FOLDED
	entry = (unsigned long)invalid_pte_table;
#else
	entry = (unsigned long)invalid_pmd_table;
#endif

	p = (unsigned long *)page;
	end = p + PTRS_PER_PGD;

	do {
		p[0] = entry;
		p[1] = entry;
		p[2] = entry;
		p[3] = entry;
		p[4] = entry;
		p += 8;
		p[-3] = entry;
		p[-2] = entry;
		p[-1] = entry;
	} while (p != end);
}

/**
 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
 *
 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
 * to host physical page mappings.
 *
 * Returns:	Pointer to new KVM GPA page directory.
 *		NULL on allocation failure.
 */
pgd_t *kvm_pgd_alloc(void)
{
	pgd_t *ret;

	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
	if (ret)
		kvm_pgd_init(ret);

	return ret;
}

/**
 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
 * @pgd:	Page directory pointer.
 * @addr:	Address to index page table using.
 * @cache:	MMU page cache to allocate new page tables from, or NULL.
 *
 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
 * address @addr. If page tables don't exist for @addr, they will be created
 * from the MMU cache if @cache is not NULL.
 *
 * Returns:	Pointer to pte_t corresponding to @addr.
 *		NULL if a page table doesn't exist for @addr and !@cache.
 *		NULL if a page table allocation failed.
 */
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
				unsigned long addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pgd += pgd_index(addr);
	if (pgd_none(*pgd)) {
		/* Not used on MIPS yet */
		BUG();
		return NULL;
	}
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		pmd_t *new_pmd;

		if (!cache)
			return NULL;
		new_pmd = mmu_memory_cache_alloc(cache);
		pmd_init((unsigned long)new_pmd,
			 (unsigned long)invalid_pte_table);
		pud_populate(NULL, pud, new_pmd);
	}
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
		pte_t *new_pte;

		if (!cache)
			return NULL;
		new_pte = mmu_memory_cache_alloc(cache);
		clear_page(new_pte);
		pmd_populate_kernel(NULL, pmd, new_pte);
	}
	return pte_offset(pmd, addr);
}

/* Caller must hold kvm->mm_lock */
static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
				   struct kvm_mmu_memory_cache *cache,
				   unsigned long addr)
{
	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
}

/*
 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
 * Flush a range of guest physical address space from the VM's GPA page tables.
 */

static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
				   unsigned long end_gpa)
{
	int i_min = __pte_offset(start_gpa);
	int i_max = __pte_offset(end_gpa);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
	int i;

	for (i = i_min; i <= i_max; ++i) {
		if (!pte_present(pte[i]))
			continue;

		set_pte(pte + i, __pte(0));
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
				   unsigned long end_gpa)
{
	pte_t *pte;
	unsigned long end = ~0ul;
	int i_min = __pmd_offset(start_gpa);
	int i_max = __pmd_offset(end_gpa);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
		if (!pmd_present(pmd[i]))
			continue;

		pte = pte_offset(pmd + i, 0);
		if (i == i_max)
			end = end_gpa;

		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
			pmd_clear(pmd + i);
			pte_free_kernel(NULL, pte);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
				   unsigned long end_gpa)
{
	pmd_t *pmd;
	unsigned long end = ~0ul;
	int i_min = __pud_offset(start_gpa);
	int i_max = __pud_offset(end_gpa);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
		if (!pud_present(pud[i]))
			continue;

		pmd = pmd_offset(pud + i, 0);
		if (i == i_max)
			end = end_gpa;

		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
			pud_clear(pud + i);
			pmd_free(NULL, pmd);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
				   unsigned long end_gpa)
{
	pud_t *pud;
	unsigned long end = ~0ul;
	int i_min = pgd_index(start_gpa);
	int i_max = pgd_index(end_gpa);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
		if (!pgd_present(pgd[i]))
			continue;

		pud = pud_offset(pgd + i, 0);
		if (i == i_max)
			end = end_gpa;

		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
			pgd_clear(pgd + i);
			pud_free(NULL, pud);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

/**
 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
 * @kvm:	KVM pointer.
 * @start_gfn:	Guest frame number of first page in GPA range to flush.
 * @end_gfn:	Guest frame number of last page in GPA range to flush.
 *
 * Flushes a range of GPA mappings from the GPA page tables.
 *
 * The caller must hold the @kvm->mmu_lock spinlock.
 *
 * Returns:	Whether its safe to remove the top level page directory because
 *		all lower levels have been removed.
 */
bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
{
	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
				      start_gfn << PAGE_SHIFT,
				      end_gfn << PAGE_SHIFT);
}

#define BUILD_PTE_RANGE_OP(name, op)					\
static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
				 unsigned long end)			\
{									\
	int ret = 0;							\
	int i_min = __pte_offset(start);				\
	int i_max = __pte_offset(end);					\
	int i;								\
	pte_t old, new;							\
									\
	for (i = i_min; i <= i_max; ++i) {				\
		if (!pte_present(pte[i]))				\
			continue;					\
									\
		old = pte[i];						\
		new = op(old);						\
		if (pte_val(new) == pte_val(old))			\
			continue;					\
		set_pte(pte + i, new);					\
		ret = 1;						\
	}								\
	return ret;							\
}									\
									\
/* returns true if anything was done */					\
static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
				 unsigned long end)			\
{									\
	int ret = 0;							\
	pte_t *pte;							\
	unsigned long cur_end = ~0ul;					\
	int i_min = __pmd_offset(start);				\
	int i_max = __pmd_offset(end);					\
	int i;								\
									\
	for (i = i_min; i <= i_max; ++i, start = 0) {			\
		if (!pmd_present(pmd[i]))				\
			continue;					\
									\
		pte = pte_offset(pmd + i, 0);				\
		if (i == i_max)						\
			cur_end = end;					\
									\
		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
	}								\
	return ret;							\
}									\
									\
static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
				 unsigned long end)			\
{									\
	int ret = 0;							\
	pmd_t *pmd;							\
	unsigned long cur_end = ~0ul;					\
	int i_min = __pud_offset(start);				\
	int i_max = __pud_offset(end);					\
	int i;								\
									\
	for (i = i_min; i <= i_max; ++i, start = 0) {			\
		if (!pud_present(pud[i]))				\
			continue;					\
									\
		pmd = pmd_offset(pud + i, 0);				\
		if (i == i_max)						\
			cur_end = end;					\
									\
		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
	}								\
	return ret;							\
}									\
									\
static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
				 unsigned long end)			\
{									\
	int ret = 0;							\
	pud_t *pud;							\
	unsigned long cur_end = ~0ul;					\
	int i_min = pgd_index(start);					\
	int i_max = pgd_index(end);					\
	int i;								\
									\
	for (i = i_min; i <= i_max; ++i, start = 0) {			\
		if (!pgd_present(pgd[i]))				\
			continue;					\
									\
		pud = pud_offset(pgd + i, 0);				\
		if (i == i_max)						\
			cur_end = end;					\
									\
		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
	}								\
	return ret;							\
}

/*
 * kvm_mips_mkclean_gpa_pt.
 * Mark a range of guest physical address space clean (writes fault) in the VM's
 * GPA page table to allow dirty page tracking.
 */

BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)

/**
 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
 * @kvm:	KVM pointer.
 * @start_gfn:	Guest frame number of first page in GPA range to flush.
 * @end_gfn:	Guest frame number of last page in GPA range to flush.
 *
 * Make a range of GPA mappings clean so that guest writes will fault and
 * trigger dirty page logging.
 *
 * The caller must hold the @kvm->mmu_lock spinlock.
 *
 * Returns:	Whether any GPA mappings were modified, which would require
 *		derived mappings (GVA page tables & TLB enties) to be
 *		invalidated.
 */
int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
{
	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
				    start_gfn << PAGE_SHIFT,
				    end_gfn << PAGE_SHIFT);
}

/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire @kvm->mmu_lock.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	gfn_t base_gfn = slot->base_gfn + gfn_offset;
	gfn_t start = base_gfn +  __ffs(mask);
	gfn_t end = base_gfn + __fls(mask);

	kvm_mips_mkclean_gpa_pt(kvm, start, end);
}

/*
 * kvm_mips_mkold_gpa_pt.
 * Mark a range of guest physical address space old (all accesses fault) in the
 * VM's GPA page table to allow detection of commonly used pages.
 */

BUILD_PTE_RANGE_OP(mkold, pte_mkold)

static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
				 gfn_t end_gfn)
{
	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
				  start_gfn << PAGE_SHIFT,
				  end_gfn << PAGE_SHIFT);
}

static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm, gfn_t gfn,
					    gpa_t gfn_end,
					    struct kvm_memory_slot *memslot,
					    void *data),
			     void *data)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int ret = 0;

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		ret |= handler(kvm, gfn, gfn_end, memslot, data);
	}

	return ret;
}


static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
				 struct kvm_memory_slot *memslot, void *data)
{
	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
	return 1;
}

int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);

	kvm_mips_callbacks->flush_shadow_all(kvm);
	return 0;
}

static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
				struct kvm_memory_slot *memslot, void *data)
{
	gpa_t gpa = gfn << PAGE_SHIFT;
	pte_t hva_pte = *(pte_t *)data;
	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
	pte_t old_pte;

	if (!gpa_pte)
		return 0;

	/* Mapping may need adjusting depending on memslot flags */
	old_pte = *gpa_pte;
	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
		hva_pte = pte_mkclean(hva_pte);
	else if (memslot->flags & KVM_MEM_READONLY)
		hva_pte = pte_wrprotect(hva_pte);

	set_pte(gpa_pte, hva_pte);

	/* Replacing an absent or old page doesn't need flushes */
	if (!pte_present(old_pte) || !pte_young(old_pte))
		return 0;

	/* Pages swapped, aged, moved, or cleaned require flushes */
	return !pte_present(hva_pte) ||
	       !pte_young(hva_pte) ||
	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
}

void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	int ret;

	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
	if (ret)
		kvm_mips_callbacks->flush_shadow_all(kvm);
}

static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
			       struct kvm_memory_slot *memslot, void *data)
{
	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
}

static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
				    struct kvm_memory_slot *memslot, void *data)
{
	gpa_t gpa = gfn << PAGE_SHIFT;
	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);

	if (!gpa_pte)
		return 0;
	return pte_young(*gpa_pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

/**
 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
 * @vcpu:		VCPU pointer.
 * @gpa:		Guest physical address of fault.
 * @write_fault:	Whether the fault was due to a write.
 * @out_entry:		New PTE for @gpa (written on success unless NULL).
 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
 *			NULL).
 *
 * Perform fast path GPA fault handling, doing all that can be done without
 * calling into KVM. This handles marking old pages young (for idle page
 * tracking), and dirtying of clean pages (for dirty page logging).
 *
 * Returns:	0 on success, in which case we can update derived mappings and
 *		resume guest execution.
 *		-EFAULT on failure due to absent GPA mapping or write to
 *		read-only page, in which case KVM must be consulted.
 */
static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
				   bool write_fault,
				   pte_t *out_entry, pte_t *out_buddy)
{
	struct kvm *kvm = vcpu->kvm;
	gfn_t gfn = gpa >> PAGE_SHIFT;
	pte_t *ptep;
	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
	bool pfn_valid = false;
	int ret = 0;

	spin_lock(&kvm->mmu_lock);

	/* Fast path - just check GPA page table for an existing entry */
	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
	if (!ptep || !pte_present(*ptep)) {
		ret = -EFAULT;
		goto out;
	}

	/* Track access to pages marked old */
	if (!pte_young(*ptep)) {
		set_pte(ptep, pte_mkyoung(*ptep));
		pfn = pte_pfn(*ptep);
		pfn_valid = true;
		/* call kvm_set_pfn_accessed() after unlock */
	}
	if (write_fault && !pte_dirty(*ptep)) {
		if (!pte_write(*ptep)) {
			ret = -EFAULT;
			goto out;
		}

		/* Track dirtying of writeable pages */
		set_pte(ptep, pte_mkdirty(*ptep));
		pfn = pte_pfn(*ptep);
		mark_page_dirty(kvm, gfn);
		kvm_set_pfn_dirty(pfn);
	}

	if (out_entry)
		*out_entry = *ptep;
	if (out_buddy)
		*out_buddy = *ptep_buddy(ptep);

out:
	spin_unlock(&kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
	return ret;
}

/**
 * kvm_mips_map_page() - Map a guest physical page.
 * @vcpu:		VCPU pointer.
 * @gpa:		Guest physical address of fault.
 * @write_fault:	Whether the fault was due to a write.
 * @out_entry:		New PTE for @gpa (written on success unless NULL).
 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
 *			NULL).
 *
 * Handle GPA faults by creating a new GPA mapping (or updating an existing
 * one).
 *
 * This takes care of marking pages young or dirty (idle/dirty page tracking),
 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
 * caller.
 *
 * Returns:	0 on success, in which case the caller may use the @out_entry
 *		and @out_buddy PTEs to update derived mappings and resume guest
 *		execution.
 *		-EFAULT if there is no memory region at @gpa or a write was
 *		attempted to a read-only memory region. This is usually handled
 *		as an MMIO access.
 */
static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
			     bool write_fault,
			     pte_t *out_entry, pte_t *out_buddy)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int srcu_idx, err;
	kvm_pfn_t pfn;
	pte_t *ptep, entry, old_pte;
	bool writeable;
	unsigned long prot_bits;
	unsigned long mmu_seq;

	/* Try the fast path to handle old / clean pages */
	srcu_idx = srcu_read_lock(&kvm->srcu);
	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
				      out_buddy);
	if (!err)
		goto out;

	/* We need a minimum of cached pages ready for page table creation */
	err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
	if (err)
		goto out;

retry:
	/*
	 * Used to check for invalidations in progress, of the pfn that is
	 * returned by pfn_to_pfn_prot below.
	 */
	mmu_seq = kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
	 * risk the page we get a reference to getting unmapped before we have a
	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
	 *
	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
	 * of the pte_unmap_unlock() after the PTE is zapped, and the
	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
	 * mmu_notifier_seq is incremented.
	 */
	smp_rmb();

	/* Slow path - ask KVM core whether we can access this GPA */
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
	if (is_error_noslot_pfn(pfn)) {
		err = -EFAULT;
		goto out;
	}

	spin_lock(&kvm->mmu_lock);
	/* Check if an invalidation has taken place since we got pfn */
	if (mmu_notifier_retry(kvm, mmu_seq)) {
		/*
		 * This can happen when mappings are changed asynchronously, but
		 * also synchronously if a COW is triggered by
		 * gfn_to_pfn_prot().
		 */
		spin_unlock(&kvm->mmu_lock);
		kvm_release_pfn_clean(pfn);
		goto retry;
	}

	/* Ensure page tables are allocated */
	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);

	/* Set up the PTE */
	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
	if (writeable) {
		prot_bits |= _PAGE_WRITE;
		if (write_fault) {
			prot_bits |= __WRITEABLE;
			mark_page_dirty(kvm, gfn);
			kvm_set_pfn_dirty(pfn);
		}
	}
	entry = pfn_pte(pfn, __pgprot(prot_bits));

	/* Write the PTE */
	old_pte = *ptep;
	set_pte(ptep, entry);

	err = 0;
	if (out_entry)
		*out_entry = *ptep;
	if (out_buddy)
		*out_buddy = *ptep_buddy(ptep);

	spin_unlock(&kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	kvm_set_pfn_accessed(pfn);
out:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return err;
}

static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
					unsigned long addr)
{
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
	pgd_t *pgdp;
	int ret;

	/* We need a minimum of cached pages ready for page table creation */
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
	if (ret)
		return NULL;

	if (KVM_GUEST_KERNEL_MODE(vcpu))
		pgdp = vcpu->arch.guest_kernel_mm.pgd;
	else
		pgdp = vcpu->arch.guest_user_mm.pgd;

	return kvm_mips_walk_pgd(pgdp, memcache, addr);
}

void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
				  bool user)
{
	pgd_t *pgdp;
	pte_t *ptep;

	addr &= PAGE_MASK << 1;

	pgdp = vcpu->arch.guest_kernel_mm.pgd;
	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
	if (ptep) {
		ptep[0] = pfn_pte(0, __pgprot(0));
		ptep[1] = pfn_pte(0, __pgprot(0));
	}

	if (user) {
		pgdp = vcpu->arch.guest_user_mm.pgd;
		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
		if (ptep) {
			ptep[0] = pfn_pte(0, __pgprot(0));
			ptep[1] = pfn_pte(0, __pgprot(0));
		}
	}
}

/*
 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 * Flush a range of guest physical address space from the VM's GPA page tables.
 */

static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
				   unsigned long end_gva)
{
	int i_min = __pte_offset(start_gva);
	int i_max = __pte_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
	int i;

	/*
	 * There's no freeing to do, so there's no point clearing individual
	 * entries unless only part of the last level page table needs flushing.
	 */
	if (safe_to_remove)
		return true;

	for (i = i_min; i <= i_max; ++i) {
		if (!pte_present(pte[i]))
			continue;

		set_pte(pte + i, __pte(0));
	}
	return false;
}

static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
				   unsigned long end_gva)
{
	pte_t *pte;
	unsigned long end = ~0ul;
	int i_min = __pmd_offset(start_gva);
	int i_max = __pmd_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pmd_present(pmd[i]))
			continue;

		pte = pte_offset(pmd + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
			pmd_clear(pmd + i);
			pte_free_kernel(NULL, pte);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
				   unsigned long end_gva)
{
	pmd_t *pmd;
	unsigned long end = ~0ul;
	int i_min = __pud_offset(start_gva);
	int i_max = __pud_offset(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pud_present(pud[i]))
			continue;

		pmd = pmd_offset(pud + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
			pud_clear(pud + i);
			pmd_free(NULL, pmd);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
				   unsigned long end_gva)
{
	pud_t *pud;
	unsigned long end = ~0ul;
	int i_min = pgd_index(start_gva);
	int i_max = pgd_index(end_gva);
	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
	int i;

	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
		if (!pgd_present(pgd[i]))
			continue;

		pud = pud_offset(pgd + i, 0);
		if (i == i_max)
			end = end_gva;

		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
			pgd_clear(pgd + i);
			pud_free(NULL, pud);
		} else {
			safe_to_remove = false;
		}
	}
	return safe_to_remove;
}

void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
{
	if (flags & KMF_GPA) {
		/* all of guest virtual address space could be affected */
		if (flags & KMF_KERN)
			/* useg, kseg0, seg2/3 */
			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
		else
			/* useg */
			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
	} else {
		/* useg */
		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);

		/* kseg2/3 */
		if (flags & KMF_KERN)
			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
	}
}

static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
{
	/*
	 * Don't leak writeable but clean entries from GPA page tables. We don't
	 * want the normal Linux tlbmod handler to handle dirtying when KVM
	 * accesses guest memory.
	 */
	if (!pte_dirty(pte))
		pte = pte_wrprotect(pte);

	return pte;
}

static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
{
	/* Guest EntryLo overrides host EntryLo */
	if (!(entrylo & ENTRYLO_D))
		pte = pte_mkclean(pte);

	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
}

#ifdef CONFIG_KVM_MIPS_VZ
int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
				      struct kvm_vcpu *vcpu,
				      bool write_fault)
{
	int ret;

	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
	if (ret)
		return ret;

	/* Invalidate this entry in the TLB */
	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
}
#endif

/* XXXKYMA: Must be called with interrupts disabled */
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
				    struct kvm_vcpu *vcpu,
				    bool write_fault)
{
	unsigned long gpa;
	pte_t pte_gpa[2], *ptep_gva;
	int idx;

	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
		kvm_mips_dump_host_tlbs();
		return -1;
	}

	/* Get the GPA page table entry */
	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
	idx = (badvaddr >> PAGE_SHIFT) & 1;
	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
			      &pte_gpa[!idx]) < 0)
		return -1;

	/* Get the GVA page table entry */
	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
	if (!ptep_gva) {
		kvm_err("No ptep for gva %lx\n", badvaddr);
		return -1;
	}

	/* Copy a pair of entries from GPA page table to GVA page table */
	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);

	/* Invalidate this entry in the TLB, guest kernel ASID only */
	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
	return 0;
}

int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
					 struct kvm_mips_tlb *tlb,
					 unsigned long gva,
					 bool write_fault)
{
	struct kvm *kvm = vcpu->kvm;
	long tlb_lo[2];
	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
	unsigned int idx = TLB_LO_IDX(*tlb, gva);
	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);

	tlb_lo[0] = tlb->tlb_lo[0];
	tlb_lo[1] = tlb->tlb_lo[1];

	/*
	 * The commpage address must not be mapped to anything else if the guest
	 * TLB contains entries nearby, or commpage accesses will break.
	 */
	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;

	/* Get the GPA page table entry */
	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
			      write_fault, &pte_gpa[idx], NULL) < 0)
		return -1;

	/* And its GVA buddy's GPA page table entry if it also exists */
	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
	if (tlb_lo[!idx] & ENTRYLO_V) {
		spin_lock(&kvm->mmu_lock);
		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
		if (ptep_buddy)
			pte_gpa[!idx] = *ptep_buddy;
		spin_unlock(&kvm->mmu_lock);
	}

	/* Get the GVA page table entry pair */
	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
	if (!ptep_gva) {
		kvm_err("No ptep for gva %lx\n", gva);
		return -1;
	}

	/* Copy a pair of entries from GPA page table to GVA page table */
	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);

	/* Invalidate this entry in the TLB, current guest mode ASID only */
	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);

	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
		  tlb->tlb_lo[0], tlb->tlb_lo[1]);

	return 0;
}

int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
				       struct kvm_vcpu *vcpu)
{
	kvm_pfn_t pfn;
	pte_t *ptep;

	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
	if (!ptep) {
		kvm_err("No ptep for commpage %lx\n", badvaddr);
		return -1;
	}

	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
	/* Also set valid and dirty, so refill handler doesn't have to */
	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));

	/* Invalidate this entry in the TLB, guest kernel ASID only */
	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
	return 0;
}

/**
 * kvm_mips_migrate_count() - Migrate timer.
 * @vcpu:	Virtual CPU.
 *
 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
 * if it was running prior to being cancelled.
 *
 * Must be called when the VCPU is migrated to a different CPU to ensure that
 * timer expiry during guest execution interrupts the guest and causes the
 * interrupt to be delivered in a timely manner.
 */
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
{
	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
		hrtimer_restart(&vcpu->arch.comparecount_timer);
}

/* Restore ASID once we are scheduled back after preemption */
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	unsigned long flags;

	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);

	local_irq_save(flags);

	vcpu->cpu = cpu;
	if (vcpu->arch.last_sched_cpu != cpu) {
		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
		/*
		 * Migrate the timer interrupt to the current CPU so that it
		 * always interrupts the guest and synchronously triggers a
		 * guest timer interrupt.
		 */
		kvm_mips_migrate_count(vcpu);
	}

	/* restore guest state to registers */
	kvm_mips_callbacks->vcpu_load(vcpu, cpu);

	local_irq_restore(flags);
}

/* ASID can change if another task is scheduled during preemption */
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	vcpu->arch.last_sched_cpu = cpu;
	vcpu->cpu = -1;

	/* save guest state in registers */
	kvm_mips_callbacks->vcpu_put(vcpu, cpu);

	local_irq_restore(flags);
}

/**
 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
 * @vcpu:	Virtual CPU.
 * @gva:	Guest virtual address to be accessed.
 * @write:	True if write attempted (must be dirtied and made writable).
 *
 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
 * dirtying the page if @write so that guest instructions can be modified.
 *
 * Returns:	KVM_MIPS_MAPPED on success.
 *		KVM_MIPS_GVA if bad guest virtual address.
 *		KVM_MIPS_GPA if bad guest physical address.
 *		KVM_MIPS_TLB if guest TLB not present.
 *		KVM_MIPS_TLBINV if guest TLB present but not valid.
 *		KVM_MIPS_TLBMOD if guest TLB read only.
 */
enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
						   unsigned long gva,
						   bool write)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_mips_tlb *tlb;
	int index;

	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
			return KVM_MIPS_GPA;
	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
		/* Address should be in the guest TLB */
		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
		if (index < 0)
			return KVM_MIPS_TLB;
		tlb = &vcpu->arch.guest_tlb[index];

		/* Entry should be valid, and dirty for writes */
		if (!TLB_IS_VALID(*tlb, gva))
			return KVM_MIPS_TLBINV;
		if (write && !TLB_IS_DIRTY(*tlb, gva))
			return KVM_MIPS_TLBMOD;

		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
			return KVM_MIPS_GPA;
	} else {
		return KVM_MIPS_GVA;
	}

	return KVM_MIPS_MAPPED;
}

int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
{
	int err;

	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
		return -EINVAL;

retry:
	kvm_trap_emul_gva_lockless_begin(vcpu);
	err = get_user(*out, opc);
	kvm_trap_emul_gva_lockless_end(vcpu);

	if (unlikely(err)) {
		/*
		 * Try to handle the fault, maybe we just raced with a GVA
		 * invalidation.
		 */
		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
					      false);
		if (unlikely(err)) {
			kvm_err("%s: illegal address: %p\n",
				__func__, opc);
			return -EFAULT;
		}

		/* Hopefully it'll work now */
		goto retry;
	}
	return 0;
}