New training

Linux graphics course

New training

Linux graphics course

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*
 * CPU-agnostic ARM page table allocator.
 *
 * ARMv7 Short-descriptor format, supporting
 * - Basic memory attributes
 * - Simplified access permissions (AP[2:1] model)
 * - Backwards-compatible TEX remap
 * - Large pages/supersections (if indicated by the caller)
 *
 * Not supporting:
 * - Legacy access permissions (AP[2:0] model)
 *
 * Almost certainly never supporting:
 * - PXN
 * - Domains
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (C) 2014-2015 ARM Limited
 * Copyright (c) 2014-2015 MediaTek Inc.
 */

#define pr_fmt(fmt)	"arm-v7s io-pgtable: " fmt

#include <linux/atomic.h>
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/iommu.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>

#include <asm/barrier.h>

#include "io-pgtable.h"

/* Struct accessors */
#define io_pgtable_to_data(x)						\
	container_of((x), struct arm_v7s_io_pgtable, iop)

#define io_pgtable_ops_to_data(x)					\
	io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))

/*
 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
 * and 12 bits in a page. With some carefully-chosen coefficients we can
 * hide the ugly inconsistencies behind these macros and at least let the
 * rest of the code pretend to be somewhat sane.
 */
#define ARM_V7S_ADDR_BITS		32
#define _ARM_V7S_LVL_BITS(lvl)		(16 - (lvl) * 4)
#define ARM_V7S_LVL_SHIFT(lvl)		(ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
#define ARM_V7S_TABLE_SHIFT		10

#define ARM_V7S_PTES_PER_LVL(lvl)	(1 << _ARM_V7S_LVL_BITS(lvl))
#define ARM_V7S_TABLE_SIZE(lvl)						\
	(ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))

#define ARM_V7S_BLOCK_SIZE(lvl)		(1UL << ARM_V7S_LVL_SHIFT(lvl))
#define ARM_V7S_LVL_MASK(lvl)		((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
#define ARM_V7S_TABLE_MASK		((u32)(~0U << ARM_V7S_TABLE_SHIFT))
#define _ARM_V7S_IDX_MASK(lvl)		(ARM_V7S_PTES_PER_LVL(lvl) - 1)
#define ARM_V7S_LVL_IDX(addr, lvl)	({				\
	int _l = lvl;							\
	((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
})

/*
 * Large page/supersection entries are effectively a block of 16 page/section
 * entries, along the lines of the LPAE contiguous hint, but all with the
 * same output address. For want of a better common name we'll call them
 * "contiguous" versions of their respective page/section entries here, but
 * noting the distinction (WRT to TLB maintenance) that they represent *one*
 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
 */
#define ARM_V7S_CONT_PAGES		16

/* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
#define ARM_V7S_PTE_TYPE_TABLE		0x1
#define ARM_V7S_PTE_TYPE_PAGE		0x2
#define ARM_V7S_PTE_TYPE_CONT_PAGE	0x1

#define ARM_V7S_PTE_IS_VALID(pte)	(((pte) & 0x3) != 0)
#define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
	((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))

/* Page table bits */
#define ARM_V7S_ATTR_XN(lvl)		BIT(4 * (2 - (lvl)))
#define ARM_V7S_ATTR_B			BIT(2)
#define ARM_V7S_ATTR_C			BIT(3)
#define ARM_V7S_ATTR_NS_TABLE		BIT(3)
#define ARM_V7S_ATTR_NS_SECTION		BIT(19)

#define ARM_V7S_CONT_SECTION		BIT(18)
#define ARM_V7S_CONT_PAGE_XN_SHIFT	15

/*
 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
 */
#define ARM_V7S_ATTR_SHIFT(lvl)		(16 - (lvl) * 6)

#define ARM_V7S_ATTR_MASK		0xff
#define ARM_V7S_ATTR_AP0		BIT(0)
#define ARM_V7S_ATTR_AP1		BIT(1)
#define ARM_V7S_ATTR_AP2		BIT(5)
#define ARM_V7S_ATTR_S			BIT(6)
#define ARM_V7S_ATTR_NG			BIT(7)
#define ARM_V7S_TEX_SHIFT		2
#define ARM_V7S_TEX_MASK		0x7
#define ARM_V7S_ATTR_TEX(val)		(((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)

#define ARM_V7S_ATTR_MTK_4GB		BIT(9) /* MTK extend it for 4GB mode */

/* *well, except for TEX on level 2 large pages, of course :( */
#define ARM_V7S_CONT_PAGE_TEX_SHIFT	6
#define ARM_V7S_CONT_PAGE_TEX_MASK	(ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)

/* Simplified access permissions */
#define ARM_V7S_PTE_AF			ARM_V7S_ATTR_AP0
#define ARM_V7S_PTE_AP_UNPRIV		ARM_V7S_ATTR_AP1
#define ARM_V7S_PTE_AP_RDONLY		ARM_V7S_ATTR_AP2

/* Register bits */
#define ARM_V7S_RGN_NC			0
#define ARM_V7S_RGN_WBWA		1
#define ARM_V7S_RGN_WT			2
#define ARM_V7S_RGN_WB			3

#define ARM_V7S_PRRR_TYPE_DEVICE	1
#define ARM_V7S_PRRR_TYPE_NORMAL	2
#define ARM_V7S_PRRR_TR(n, type)	(((type) & 0x3) << ((n) * 2))
#define ARM_V7S_PRRR_DS0		BIT(16)
#define ARM_V7S_PRRR_DS1		BIT(17)
#define ARM_V7S_PRRR_NS0		BIT(18)
#define ARM_V7S_PRRR_NS1		BIT(19)
#define ARM_V7S_PRRR_NOS(n)		BIT((n) + 24)

#define ARM_V7S_NMRR_IR(n, attr)	(((attr) & 0x3) << ((n) * 2))
#define ARM_V7S_NMRR_OR(n, attr)	(((attr) & 0x3) << ((n) * 2 + 16))

#define ARM_V7S_TTBR_S			BIT(1)
#define ARM_V7S_TTBR_NOS		BIT(5)
#define ARM_V7S_TTBR_ORGN_ATTR(attr)	(((attr) & 0x3) << 3)
#define ARM_V7S_TTBR_IRGN_ATTR(attr)					\
	((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))

#define ARM_V7S_TCR_PD1			BIT(5)

typedef u32 arm_v7s_iopte;

static bool selftest_running;

struct arm_v7s_io_pgtable {
	struct io_pgtable	iop;

	arm_v7s_iopte		*pgd;
	struct kmem_cache	*l2_tables;
	spinlock_t		split_lock;
};

static dma_addr_t __arm_v7s_dma_addr(void *pages)
{
	return (dma_addr_t)virt_to_phys(pages);
}

static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl)
{
	if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
		pte &= ARM_V7S_TABLE_MASK;
	else
		pte &= ARM_V7S_LVL_MASK(lvl);
	return phys_to_virt(pte);
}

static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
				   struct arm_v7s_io_pgtable *data)
{
	struct io_pgtable_cfg *cfg = &data->iop.cfg;
	struct device *dev = cfg->iommu_dev;
	dma_addr_t dma;
	size_t size = ARM_V7S_TABLE_SIZE(lvl);
	void *table = NULL;

	if (lvl == 1)
		table = (void *)__get_dma_pages(__GFP_ZERO, get_order(size));
	else if (lvl == 2)
		table = kmem_cache_zalloc(data->l2_tables, gfp | GFP_DMA);
	if (table && !(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)) {
		dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, dma))
			goto out_free;
		/*
		 * We depend on the IOMMU being able to work with any physical
		 * address directly, so if the DMA layer suggests otherwise by
		 * translating or truncating them, that bodes very badly...
		 */
		if (dma != virt_to_phys(table))
			goto out_unmap;
	}
	kmemleak_ignore(table);
	return table;

out_unmap:
	dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
	dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
out_free:
	if (lvl == 1)
		free_pages((unsigned long)table, get_order(size));
	else
		kmem_cache_free(data->l2_tables, table);
	return NULL;
}

static void __arm_v7s_free_table(void *table, int lvl,
				 struct arm_v7s_io_pgtable *data)
{
	struct io_pgtable_cfg *cfg = &data->iop.cfg;
	struct device *dev = cfg->iommu_dev;
	size_t size = ARM_V7S_TABLE_SIZE(lvl);

	if (!(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA))
		dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
				 DMA_TO_DEVICE);
	if (lvl == 1)
		free_pages((unsigned long)table, get_order(size));
	else
		kmem_cache_free(data->l2_tables, table);
}

static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
			       struct io_pgtable_cfg *cfg)
{
	if (cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)
		return;

	dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
				   num_entries * sizeof(*ptep), DMA_TO_DEVICE);
}
static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
			      int num_entries, struct io_pgtable_cfg *cfg)
{
	int i;

	for (i = 0; i < num_entries; i++)
		ptep[i] = pte;

	__arm_v7s_pte_sync(ptep, num_entries, cfg);
}

static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
					 struct io_pgtable_cfg *cfg)
{
	bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
	arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;

	if (!(prot & IOMMU_MMIO))
		pte |= ARM_V7S_ATTR_TEX(1);
	if (ap) {
		pte |= ARM_V7S_PTE_AF;
		if (!(prot & IOMMU_PRIV))
			pte |= ARM_V7S_PTE_AP_UNPRIV;
		if (!(prot & IOMMU_WRITE))
			pte |= ARM_V7S_PTE_AP_RDONLY;
	}
	pte <<= ARM_V7S_ATTR_SHIFT(lvl);

	if ((prot & IOMMU_NOEXEC) && ap)
		pte |= ARM_V7S_ATTR_XN(lvl);
	if (prot & IOMMU_MMIO)
		pte |= ARM_V7S_ATTR_B;
	else if (prot & IOMMU_CACHE)
		pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;

	pte |= ARM_V7S_PTE_TYPE_PAGE;
	if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
		pte |= ARM_V7S_ATTR_NS_SECTION;

	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB)
		pte |= ARM_V7S_ATTR_MTK_4GB;

	return pte;
}

static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
{
	int prot = IOMMU_READ;
	arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);

	if (!(attr & ARM_V7S_PTE_AP_RDONLY))
		prot |= IOMMU_WRITE;
	if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
		prot |= IOMMU_PRIV;
	if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
		prot |= IOMMU_MMIO;
	else if (pte & ARM_V7S_ATTR_C)
		prot |= IOMMU_CACHE;
	if (pte & ARM_V7S_ATTR_XN(lvl))
		prot |= IOMMU_NOEXEC;

	return prot;
}

static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
{
	if (lvl == 1) {
		pte |= ARM_V7S_CONT_SECTION;
	} else if (lvl == 2) {
		arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
		arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;

		pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
		pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
		       (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
		       ARM_V7S_PTE_TYPE_CONT_PAGE;
	}
	return pte;
}

static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
{
	if (lvl == 1) {
		pte &= ~ARM_V7S_CONT_SECTION;
	} else if (lvl == 2) {
		arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
		arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
					   ARM_V7S_CONT_PAGE_TEX_SHIFT);

		pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
		pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
		       (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
		       ARM_V7S_PTE_TYPE_PAGE;
	}
	return pte;
}

static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
{
	if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
		return pte & ARM_V7S_CONT_SECTION;
	else if (lvl == 2)
		return !(pte & ARM_V7S_PTE_TYPE_PAGE);
	return false;
}

static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *, unsigned long,
			      size_t, int, arm_v7s_iopte *);

static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
			    unsigned long iova, phys_addr_t paddr, int prot,
			    int lvl, int num_entries, arm_v7s_iopte *ptep)
{
	struct io_pgtable_cfg *cfg = &data->iop.cfg;
	arm_v7s_iopte pte;
	int i;

	for (i = 0; i < num_entries; i++)
		if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
			/*
			 * We need to unmap and free the old table before
			 * overwriting it with a block entry.
			 */
			arm_v7s_iopte *tblp;
			size_t sz = ARM_V7S_BLOCK_SIZE(lvl);

			tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
			if (WARN_ON(__arm_v7s_unmap(data, iova + i * sz,
						    sz, lvl, tblp) != sz))
				return -EINVAL;
		} else if (ptep[i]) {
			/* We require an unmap first */
			WARN_ON(!selftest_running);
			return -EEXIST;
		}

	pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
	if (num_entries > 1)
		pte = arm_v7s_pte_to_cont(pte, lvl);

	pte |= paddr & ARM_V7S_LVL_MASK(lvl);

	__arm_v7s_set_pte(ptep, pte, num_entries, cfg);
	return 0;
}

static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
					   arm_v7s_iopte *ptep,
					   arm_v7s_iopte curr,
					   struct io_pgtable_cfg *cfg)
{
	arm_v7s_iopte old, new;

	new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
		new |= ARM_V7S_ATTR_NS_TABLE;

	/*
	 * Ensure the table itself is visible before its PTE can be.
	 * Whilst we could get away with cmpxchg64_release below, this
	 * doesn't have any ordering semantics when !CONFIG_SMP.
	 */
	dma_wmb();

	old = cmpxchg_relaxed(ptep, curr, new);
	__arm_v7s_pte_sync(ptep, 1, cfg);

	return old;
}

static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
			 phys_addr_t paddr, size_t size, int prot,
			 int lvl, arm_v7s_iopte *ptep)
{
	struct io_pgtable_cfg *cfg = &data->iop.cfg;
	arm_v7s_iopte pte, *cptep;
	int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);

	/* Find our entry at the current level */
	ptep += ARM_V7S_LVL_IDX(iova, lvl);

	/* If we can install a leaf entry at this level, then do so */
	if (num_entries)
		return arm_v7s_init_pte(data, iova, paddr, prot,
					lvl, num_entries, ptep);

	/* We can't allocate tables at the final level */
	if (WARN_ON(lvl == 2))
		return -EINVAL;

	/* Grab a pointer to the next level */
	pte = READ_ONCE(*ptep);
	if (!pte) {
		cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
		if (!cptep)
			return -ENOMEM;

		pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
		if (pte)
			__arm_v7s_free_table(cptep, lvl + 1, data);
	} else {
		/* We've no easy way of knowing if it's synced yet, so... */
		__arm_v7s_pte_sync(ptep, 1, cfg);
	}

	if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
		cptep = iopte_deref(pte, lvl);
	} else if (pte) {
		/* We require an unmap first */
		WARN_ON(!selftest_running);
		return -EEXIST;
	}

	/* Rinse, repeat */
	return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
}

static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
	struct io_pgtable *iop = &data->iop;
	int ret;

	/* If no access, then nothing to do */
	if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
		return 0;

	if (WARN_ON(upper_32_bits(iova) || upper_32_bits(paddr)))
		return -ERANGE;

	ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
	/*
	 * Synchronise all PTE updates for the new mapping before there's
	 * a chance for anything to kick off a table walk for the new iova.
	 */
	if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
		io_pgtable_tlb_add_flush(iop, iova, size,
					 ARM_V7S_BLOCK_SIZE(2), false);
		io_pgtable_tlb_sync(iop);
	} else {
		wmb();
	}

	return ret;
}

static void arm_v7s_free_pgtable(struct io_pgtable *iop)
{
	struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
	int i;

	for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
		arm_v7s_iopte pte = data->pgd[i];

		if (ARM_V7S_PTE_IS_TABLE(pte, 1))
			__arm_v7s_free_table(iopte_deref(pte, 1), 2, data);
	}
	__arm_v7s_free_table(data->pgd, 1, data);
	kmem_cache_destroy(data->l2_tables);
	kfree(data);
}

static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
					unsigned long iova, int idx, int lvl,
					arm_v7s_iopte *ptep)
{
	struct io_pgtable *iop = &data->iop;
	arm_v7s_iopte pte;
	size_t size = ARM_V7S_BLOCK_SIZE(lvl);
	int i;

	/* Check that we didn't lose a race to get the lock */
	pte = *ptep;
	if (!arm_v7s_pte_is_cont(pte, lvl))
		return pte;

	ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
	pte = arm_v7s_cont_to_pte(pte, lvl);
	for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
		ptep[i] = pte + i * size;

	__arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);

	size *= ARM_V7S_CONT_PAGES;
	io_pgtable_tlb_add_flush(iop, iova, size, size, true);
	io_pgtable_tlb_sync(iop);
	return pte;
}

static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
				      unsigned long iova, size_t size,
				      arm_v7s_iopte blk_pte,
				      arm_v7s_iopte *ptep)
{
	struct io_pgtable_cfg *cfg = &data->iop.cfg;
	arm_v7s_iopte pte, *tablep;
	int i, unmap_idx, num_entries, num_ptes;

	tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
	if (!tablep)
		return 0; /* Bytes unmapped */

	num_ptes = ARM_V7S_PTES_PER_LVL(2);
	num_entries = size >> ARM_V7S_LVL_SHIFT(2);
	unmap_idx = ARM_V7S_LVL_IDX(iova, 2);

	pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
	if (num_entries > 1)
		pte = arm_v7s_pte_to_cont(pte, 2);

	for (i = 0; i < num_ptes; i += num_entries, pte += size) {
		/* Unmap! */
		if (i == unmap_idx)
			continue;

		__arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
	}

	pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
	if (pte != blk_pte) {
		__arm_v7s_free_table(tablep, 2, data);

		if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
			return 0;

		tablep = iopte_deref(pte, 1);
		return __arm_v7s_unmap(data, iova, size, 2, tablep);
	}

	io_pgtable_tlb_add_flush(&data->iop, iova, size, size, true);
	return size;
}

static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
			      unsigned long iova, size_t size, int lvl,
			      arm_v7s_iopte *ptep)
{
	arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
	struct io_pgtable *iop = &data->iop;
	int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);

	/* Something went horribly wrong and we ran out of page table */
	if (WARN_ON(lvl > 2))
		return 0;

	idx = ARM_V7S_LVL_IDX(iova, lvl);
	ptep += idx;
	do {
		pte[i] = READ_ONCE(ptep[i]);
		if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
			return 0;
	} while (++i < num_entries);

	/*
	 * If we've hit a contiguous 'large page' entry at this level, it
	 * needs splitting first, unless we're unmapping the whole lot.
	 *
	 * For splitting, we can't rewrite 16 PTEs atomically, and since we
	 * can't necessarily assume TEX remap we don't have a software bit to
	 * mark live entries being split. In practice (i.e. DMA API code), we
	 * will never be splitting large pages anyway, so just wrap this edge
	 * case in a lock for the sake of correctness and be done with it.
	 */
	if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
		unsigned long flags;

		spin_lock_irqsave(&data->split_lock, flags);
		pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
		spin_unlock_irqrestore(&data->split_lock, flags);
	}

	/* If the size matches this level, we're in the right place */
	if (num_entries) {
		size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);

		__arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);

		for (i = 0; i < num_entries; i++) {
			if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
				/* Also flush any partial walks */
				io_pgtable_tlb_add_flush(iop, iova, blk_size,
					ARM_V7S_BLOCK_SIZE(lvl + 1), false);
				io_pgtable_tlb_sync(iop);
				ptep = iopte_deref(pte[i], lvl);
				__arm_v7s_free_table(ptep, lvl + 1, data);
			} else {
				io_pgtable_tlb_add_flush(iop, iova, blk_size,
							 blk_size, true);
			}
			iova += blk_size;
		}
		return size;
	} else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
		/*
		 * Insert a table at the next level to map the old region,
		 * minus the part we want to unmap
		 */
		return arm_v7s_split_blk_unmap(data, iova, size, pte[0], ptep);
	}

	/* Keep on walkin' */
	ptep = iopte_deref(pte[0], lvl);
	return __arm_v7s_unmap(data, iova, size, lvl + 1, ptep);
}

static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
			    size_t size)
{
	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);

	if (WARN_ON(upper_32_bits(iova)))
		return 0;

	return __arm_v7s_unmap(data, iova, size, 1, data->pgd);
}

static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
					unsigned long iova)
{
	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
	arm_v7s_iopte *ptep = data->pgd, pte;
	int lvl = 0;
	u32 mask;

	do {
		ptep += ARM_V7S_LVL_IDX(iova, ++lvl);
		pte = READ_ONCE(*ptep);
		ptep = iopte_deref(pte, lvl);
	} while (ARM_V7S_PTE_IS_TABLE(pte, lvl));

	if (!ARM_V7S_PTE_IS_VALID(pte))
		return 0;

	mask = ARM_V7S_LVL_MASK(lvl);
	if (arm_v7s_pte_is_cont(pte, lvl))
		mask *= ARM_V7S_CONT_PAGES;
	return (pte & mask) | (iova & ~mask);
}

static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
						void *cookie)
{
	struct arm_v7s_io_pgtable *data;

#ifdef PHYS_OFFSET
	if (upper_32_bits(PHYS_OFFSET))
		return NULL;
#endif
	if (cfg->ias > ARM_V7S_ADDR_BITS || cfg->oas > ARM_V7S_ADDR_BITS)
		return NULL;

	if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
			    IO_PGTABLE_QUIRK_NO_PERMS |
			    IO_PGTABLE_QUIRK_TLBI_ON_MAP |
			    IO_PGTABLE_QUIRK_ARM_MTK_4GB |
			    IO_PGTABLE_QUIRK_NO_DMA))
		return NULL;

	/* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB &&
	    !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
			return NULL;

	data = kmalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return NULL;

	spin_lock_init(&data->split_lock);
	data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
					    ARM_V7S_TABLE_SIZE(2),
					    ARM_V7S_TABLE_SIZE(2),
					    SLAB_CACHE_DMA, NULL);
	if (!data->l2_tables)
		goto out_free_data;

	data->iop.ops = (struct io_pgtable_ops) {
		.map		= arm_v7s_map,
		.unmap		= arm_v7s_unmap,
		.iova_to_phys	= arm_v7s_iova_to_phys,
	};

	/* We have to do this early for __arm_v7s_alloc_table to work... */
	data->iop.cfg = *cfg;

	/*
	 * Unless the IOMMU driver indicates supersection support by
	 * having SZ_16M set in the initial bitmap, they won't be used.
	 */
	cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;

	/* TCR: T0SZ=0, disable TTBR1 */
	cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;

	/*
	 * TEX remap: the indices used map to the closest equivalent types
	 * under the non-TEX-remap interpretation of those attribute bits,
	 * excepting various implementation-defined aspects of shareability.
	 */
	cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
				ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
				ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
				ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
				ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
	cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
				ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);

	/* Looking good; allocate a pgd */
	data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
	if (!data->pgd)
		goto out_free_data;

	/* Ensure the empty pgd is visible before any actual TTBR write */
	wmb();

	/* TTBRs */
	cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
				   ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
				   ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
				   ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA);
	cfg->arm_v7s_cfg.ttbr[1] = 0;
	return &data->iop;

out_free_data:
	kmem_cache_destroy(data->l2_tables);
	kfree(data);
	return NULL;
}

struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
	.alloc	= arm_v7s_alloc_pgtable,
	.free	= arm_v7s_free_pgtable,
};

#ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST

static struct io_pgtable_cfg *cfg_cookie;

static void dummy_tlb_flush_all(void *cookie)
{
	WARN_ON(cookie != cfg_cookie);
}

static void dummy_tlb_add_flush(unsigned long iova, size_t size,
				size_t granule, bool leaf, void *cookie)
{
	WARN_ON(cookie != cfg_cookie);
	WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
}

static void dummy_tlb_sync(void *cookie)
{
	WARN_ON(cookie != cfg_cookie);
}

static const struct iommu_gather_ops dummy_tlb_ops = {
	.tlb_flush_all	= dummy_tlb_flush_all,
	.tlb_add_flush	= dummy_tlb_add_flush,
	.tlb_sync	= dummy_tlb_sync,
};

#define __FAIL(ops)	({				\
		WARN(1, "selftest: test failed\n");	\
		selftest_running = false;		\
		-EFAULT;				\
})

static int __init arm_v7s_do_selftests(void)
{
	struct io_pgtable_ops *ops;
	struct io_pgtable_cfg cfg = {
		.tlb = &dummy_tlb_ops,
		.oas = 32,
		.ias = 32,
		.quirks = IO_PGTABLE_QUIRK_ARM_NS | IO_PGTABLE_QUIRK_NO_DMA,
		.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
	};
	unsigned int iova, size, iova_start;
	unsigned int i, loopnr = 0;

	selftest_running = true;

	cfg_cookie = &cfg;

	ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
	if (!ops) {
		pr_err("selftest: failed to allocate io pgtable ops\n");
		return -EINVAL;
	}

	/*
	 * Initial sanity checks.
	 * Empty page tables shouldn't provide any translations.
	 */
	if (ops->iova_to_phys(ops, 42))
		return __FAIL(ops);

	if (ops->iova_to_phys(ops, SZ_1G + 42))
		return __FAIL(ops);

	if (ops->iova_to_phys(ops, SZ_2G + 42))
		return __FAIL(ops);

	/*
	 * Distinct mappings of different granule sizes.
	 */
	iova = 0;
	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
		size = 1UL << i;
		if (ops->map(ops, iova, iova, size, IOMMU_READ |
						    IOMMU_WRITE |
						    IOMMU_NOEXEC |
						    IOMMU_CACHE))
			return __FAIL(ops);

		/* Overlapping mappings */
		if (!ops->map(ops, iova, iova + size, size,
			      IOMMU_READ | IOMMU_NOEXEC))
			return __FAIL(ops);

		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
			return __FAIL(ops);

		iova += SZ_16M;
		loopnr++;
	}

	/* Partial unmap */
	i = 1;
	size = 1UL << __ffs(cfg.pgsize_bitmap);
	while (i < loopnr) {
		iova_start = i * SZ_16M;
		if (ops->unmap(ops, iova_start + size, size) != size)
			return __FAIL(ops);

		/* Remap of partial unmap */
		if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
			return __FAIL(ops);

		if (ops->iova_to_phys(ops, iova_start + size + 42)
		    != (size + 42))
			return __FAIL(ops);
		i++;
	}

	/* Full unmap */
	iova = 0;
	i = find_first_bit(&cfg.pgsize_bitmap, BITS_PER_LONG);
	while (i != BITS_PER_LONG) {
		size = 1UL << i;

		if (ops->unmap(ops, iova, size) != size)
			return __FAIL(ops);

		if (ops->iova_to_phys(ops, iova + 42))
			return __FAIL(ops);

		/* Remap full block */
		if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
			return __FAIL(ops);

		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
			return __FAIL(ops);

		iova += SZ_16M;
		i++;
		i = find_next_bit(&cfg.pgsize_bitmap, BITS_PER_LONG, i);
	}

	free_io_pgtable_ops(ops);

	selftest_running = false;

	pr_info("self test ok\n");
	return 0;
}
subsys_initcall(arm_v7s_do_selftests);
#endif