Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
 * Copyright (C) 2015 Broadcom Corporation
 */

#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/mbus.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_pci.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>

#include "pcie-iproc.h"

#define EP_PERST_SOURCE_SELECT_SHIFT	2
#define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
#define EP_MODE_SURVIVE_PERST_SHIFT	1
#define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
#define RC_PCIE_RST_OUTPUT_SHIFT	0
#define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
#define PAXC_RESET_MASK			0x7f

#define GIC_V3_CFG_SHIFT		0
#define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)

#define MSI_ENABLE_CFG_SHIFT		0
#define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)

#define CFG_IND_ADDR_MASK		0x00001ffc

#define CFG_ADDR_BUS_NUM_SHIFT		20
#define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
#define CFG_ADDR_DEV_NUM_SHIFT		15
#define CFG_ADDR_DEV_NUM_MASK		0x000f8000
#define CFG_ADDR_FUNC_NUM_SHIFT		12
#define CFG_ADDR_FUNC_NUM_MASK		0x00007000
#define CFG_ADDR_REG_NUM_SHIFT		2
#define CFG_ADDR_REG_NUM_MASK		0x00000ffc
#define CFG_ADDR_CFG_TYPE_SHIFT		0
#define CFG_ADDR_CFG_TYPE_MASK		0x00000003

#define SYS_RC_INTX_MASK		0xf

#define PCIE_PHYLINKUP_SHIFT		3
#define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
#define PCIE_DL_ACTIVE_SHIFT		2
#define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)

#define APB_ERR_EN_SHIFT		0
#define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)

#define CFG_RETRY_STATUS		0xffff0001
#define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */

/* derive the enum index of the outbound/inbound mapping registers */
#define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)

/*
 * Maximum number of outbound mapping window sizes that can be supported by any
 * OARR/OMAP mapping pair
 */
#define MAX_NUM_OB_WINDOW_SIZES		4

#define OARR_VALID_SHIFT		0
#define OARR_VALID			BIT(OARR_VALID_SHIFT)
#define OARR_SIZE_CFG_SHIFT		1

/*
 * Maximum number of inbound mapping region sizes that can be supported by an
 * IARR
 */
#define MAX_NUM_IB_REGION_SIZES		9

#define IMAP_VALID_SHIFT		0
#define IMAP_VALID			BIT(IMAP_VALID_SHIFT)

#define IPROC_PCI_EXP_CAP		0xac

#define IPROC_PCIE_REG_INVALID		0xffff

/**
 * iProc PCIe outbound mapping controller specific parameters
 *
 * @window_sizes: list of supported outbound mapping window sizes in MB
 * @nr_sizes: number of supported outbound mapping window sizes
 */
struct iproc_pcie_ob_map {
	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
	unsigned int nr_sizes;
};

static const struct iproc_pcie_ob_map paxb_ob_map[] = {
	{
		/* OARR0/OMAP0 */
		.window_sizes = { 128, 256 },
		.nr_sizes = 2,
	},
	{
		/* OARR1/OMAP1 */
		.window_sizes = { 128, 256 },
		.nr_sizes = 2,
	},
};

static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
	{
		/* OARR0/OMAP0 */
		.window_sizes = { 128, 256 },
		.nr_sizes = 2,
	},
	{
		/* OARR1/OMAP1 */
		.window_sizes = { 128, 256 },
		.nr_sizes = 2,
	},
	{
		/* OARR2/OMAP2 */
		.window_sizes = { 128, 256, 512, 1024 },
		.nr_sizes = 4,
	},
	{
		/* OARR3/OMAP3 */
		.window_sizes = { 128, 256, 512, 1024 },
		.nr_sizes = 4,
	},
};

/**
 * iProc PCIe inbound mapping type
 */
enum iproc_pcie_ib_map_type {
	/* for DDR memory */
	IPROC_PCIE_IB_MAP_MEM = 0,

	/* for device I/O memory */
	IPROC_PCIE_IB_MAP_IO,

	/* invalid or unused */
	IPROC_PCIE_IB_MAP_INVALID
};

/**
 * iProc PCIe inbound mapping controller specific parameters
 *
 * @type: inbound mapping region type
 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
 * SZ_1G
 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
 * GB, depedning on the size unit
 * @nr_sizes: number of supported inbound mapping region sizes
 * @nr_windows: number of supported inbound mapping windows for the region
 * @imap_addr_offset: register offset between the upper and lower 32-bit
 * IMAP address registers
 * @imap_window_offset: register offset between each IMAP window
 */
struct iproc_pcie_ib_map {
	enum iproc_pcie_ib_map_type type;
	unsigned int size_unit;
	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
	unsigned int nr_sizes;
	unsigned int nr_windows;
	u16 imap_addr_offset;
	u16 imap_window_offset;
};

static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
	{
		/* IARR0/IMAP0 */
		.type = IPROC_PCIE_IB_MAP_IO,
		.size_unit = SZ_1K,
		.region_sizes = { 32 },
		.nr_sizes = 1,
		.nr_windows = 8,
		.imap_addr_offset = 0x40,
		.imap_window_offset = 0x4,
	},
	{
		/* IARR1/IMAP1 (currently unused) */
		.type = IPROC_PCIE_IB_MAP_INVALID,
	},
	{
		/* IARR2/IMAP2 */
		.type = IPROC_PCIE_IB_MAP_MEM,
		.size_unit = SZ_1M,
		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
				  16384 },
		.nr_sizes = 9,
		.nr_windows = 1,
		.imap_addr_offset = 0x4,
		.imap_window_offset = 0x8,
	},
	{
		/* IARR3/IMAP3 */
		.type = IPROC_PCIE_IB_MAP_MEM,
		.size_unit = SZ_1G,
		.region_sizes = { 1, 2, 4, 8, 16, 32 },
		.nr_sizes = 6,
		.nr_windows = 8,
		.imap_addr_offset = 0x4,
		.imap_window_offset = 0x8,
	},
	{
		/* IARR4/IMAP4 */
		.type = IPROC_PCIE_IB_MAP_MEM,
		.size_unit = SZ_1G,
		.region_sizes = { 32, 64, 128, 256, 512 },
		.nr_sizes = 5,
		.nr_windows = 8,
		.imap_addr_offset = 0x4,
		.imap_window_offset = 0x8,
	},
};

/*
 * iProc PCIe host registers
 */
enum iproc_pcie_reg {
	/* clock/reset signal control */
	IPROC_PCIE_CLK_CTRL = 0,

	/*
	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
	 * GICv3 ITS)
	 */
	IPROC_PCIE_MSI_GIC_MODE,

	/*
	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
	 * window where the MSI posted writes are written, for the writes to be
	 * interpreted as MSI writes.
	 */
	IPROC_PCIE_MSI_BASE_ADDR,
	IPROC_PCIE_MSI_WINDOW_SIZE,

	/*
	 * To hold the address of the register where the MSI writes are
	 * programed.  When ARM GICv3 ITS is used, this should be programmed
	 * with the address of the GITS_TRANSLATER register.
	 */
	IPROC_PCIE_MSI_ADDR_LO,
	IPROC_PCIE_MSI_ADDR_HI,

	/* enable MSI */
	IPROC_PCIE_MSI_EN_CFG,

	/* allow access to root complex configuration space */
	IPROC_PCIE_CFG_IND_ADDR,
	IPROC_PCIE_CFG_IND_DATA,

	/* allow access to device configuration space */
	IPROC_PCIE_CFG_ADDR,
	IPROC_PCIE_CFG_DATA,

	/* enable INTx */
	IPROC_PCIE_INTX_EN,

	/* outbound address mapping */
	IPROC_PCIE_OARR0,
	IPROC_PCIE_OMAP0,
	IPROC_PCIE_OARR1,
	IPROC_PCIE_OMAP1,
	IPROC_PCIE_OARR2,
	IPROC_PCIE_OMAP2,
	IPROC_PCIE_OARR3,
	IPROC_PCIE_OMAP3,

	/* inbound address mapping */
	IPROC_PCIE_IARR0,
	IPROC_PCIE_IMAP0,
	IPROC_PCIE_IARR1,
	IPROC_PCIE_IMAP1,
	IPROC_PCIE_IARR2,
	IPROC_PCIE_IMAP2,
	IPROC_PCIE_IARR3,
	IPROC_PCIE_IMAP3,
	IPROC_PCIE_IARR4,
	IPROC_PCIE_IMAP4,

	/* link status */
	IPROC_PCIE_LINK_STATUS,

	/* enable APB error for unsupported requests */
	IPROC_PCIE_APB_ERR_EN,

	/* total number of core registers */
	IPROC_PCIE_MAX_NUM_REG,
};

/* iProc PCIe PAXB BCMA registers */
static const u16 iproc_pcie_reg_paxb_bcma[] = {
	[IPROC_PCIE_CLK_CTRL]		= 0x000,
	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
	[IPROC_PCIE_INTX_EN]		= 0x330,
	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
};

/* iProc PCIe PAXB registers */
static const u16 iproc_pcie_reg_paxb[] = {
	[IPROC_PCIE_CLK_CTRL]		= 0x000,
	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
	[IPROC_PCIE_INTX_EN]		= 0x330,
	[IPROC_PCIE_OARR0]		= 0xd20,
	[IPROC_PCIE_OMAP0]		= 0xd40,
	[IPROC_PCIE_OARR1]		= 0xd28,
	[IPROC_PCIE_OMAP1]		= 0xd48,
	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
};

/* iProc PCIe PAXB v2 registers */
static const u16 iproc_pcie_reg_paxb_v2[] = {
	[IPROC_PCIE_CLK_CTRL]		= 0x000,
	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
	[IPROC_PCIE_INTX_EN]		= 0x330,
	[IPROC_PCIE_OARR0]		= 0xd20,
	[IPROC_PCIE_OMAP0]		= 0xd40,
	[IPROC_PCIE_OARR1]		= 0xd28,
	[IPROC_PCIE_OMAP1]		= 0xd48,
	[IPROC_PCIE_OARR2]		= 0xd60,
	[IPROC_PCIE_OMAP2]		= 0xd68,
	[IPROC_PCIE_OARR3]		= 0xdf0,
	[IPROC_PCIE_OMAP3]		= 0xdf8,
	[IPROC_PCIE_IARR0]		= 0xd00,
	[IPROC_PCIE_IMAP0]		= 0xc00,
	[IPROC_PCIE_IARR2]		= 0xd10,
	[IPROC_PCIE_IMAP2]		= 0xcc0,
	[IPROC_PCIE_IARR3]		= 0xe00,
	[IPROC_PCIE_IMAP3]		= 0xe08,
	[IPROC_PCIE_IARR4]		= 0xe68,
	[IPROC_PCIE_IMAP4]		= 0xe70,
	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
};

/* iProc PCIe PAXC v1 registers */
static const u16 iproc_pcie_reg_paxc[] = {
	[IPROC_PCIE_CLK_CTRL]		= 0x000,
	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
};

/* iProc PCIe PAXC v2 registers */
static const u16 iproc_pcie_reg_paxc_v2[] = {
	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
};

static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
{
	struct iproc_pcie *pcie = bus->sysdata;
	return pcie;
}

static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
{
	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
}

static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
					enum iproc_pcie_reg reg)
{
	return pcie->reg_offsets[reg];
}

static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
				      enum iproc_pcie_reg reg)
{
	u16 offset = iproc_pcie_reg_offset(pcie, reg);

	if (iproc_pcie_reg_is_invalid(offset))
		return 0;

	return readl(pcie->base + offset);
}

static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
					enum iproc_pcie_reg reg, u32 val)
{
	u16 offset = iproc_pcie_reg_offset(pcie, reg);

	if (iproc_pcie_reg_is_invalid(offset))
		return;

	writel(val, pcie->base + offset);
}

/**
 * APB error forwarding can be disabled during access of configuration
 * registers of the endpoint device, to prevent unsupported requests
 * (typically seen during enumeration with multi-function devices) from
 * triggering a system exception.
 */
static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
					      bool disable)
{
	struct iproc_pcie *pcie = iproc_data(bus);
	u32 val;

	if (bus->number && pcie->has_apb_err_disable) {
		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
		if (disable)
			val &= ~APB_ERR_EN;
		else
			val |= APB_ERR_EN;
		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
	}
}

static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
					       unsigned int busno,
					       unsigned int slot,
					       unsigned int fn,
					       int where)
{
	u16 offset;
	u32 val;

	/* EP device access */
	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
		(where & CFG_ADDR_REG_NUM_MASK) |
		(1 & CFG_ADDR_CFG_TYPE_MASK);

	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);

	if (iproc_pcie_reg_is_invalid(offset))
		return NULL;

	return (pcie->base + offset);
}

static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p)
{
	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
	unsigned int data;

	/*
	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
	 * affects config reads of the Vendor ID.  For config writes or any
	 * other config reads, the Root may automatically reissue the
	 * configuration request again as a new request.
	 *
	 * For config reads, this hardware returns CFG_RETRY_STATUS data
	 * when it receives a CRS completion, regardless of the address of
	 * the read or the CRS Software Visibility Enable bit.  As a
	 * partial workaround for this, we retry in software any read that
	 * returns CFG_RETRY_STATUS.
	 *
	 * Note that a non-Vendor ID config register may have a value of
	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
	 * a CRS completion, so we will incorrectly retry the read and
	 * eventually return the wrong data (0xffffffff).
	 */
	data = readl(cfg_data_p);
	while (data == CFG_RETRY_STATUS && timeout--) {
		udelay(1);
		data = readl(cfg_data_p);
	}

	if (data == CFG_RETRY_STATUS)
		data = 0xffffffff;

	return data;
}

static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
				  int where, int size, u32 *val)
{
	struct iproc_pcie *pcie = iproc_data(bus);
	unsigned int slot = PCI_SLOT(devfn);
	unsigned int fn = PCI_FUNC(devfn);
	unsigned int busno = bus->number;
	void __iomem *cfg_data_p;
	unsigned int data;
	int ret;

	/* root complex access */
	if (busno == 0) {
		ret = pci_generic_config_read32(bus, devfn, where, size, val);
		if (ret != PCIBIOS_SUCCESSFUL)
			return ret;

		/* Don't advertise CRS SV support */
		if ((where & ~0x3) == IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL)
			*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
		return PCIBIOS_SUCCESSFUL;
	}

	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);

	if (!cfg_data_p)
		return PCIBIOS_DEVICE_NOT_FOUND;

	data = iproc_pcie_cfg_retry(cfg_data_p);

	*val = data;
	if (size <= 2)
		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);

	return PCIBIOS_SUCCESSFUL;
}

/**
 * Note access to the configuration registers are protected at the higher layer
 * by 'pci_lock' in drivers/pci/access.c
 */
static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
					    int busno, unsigned int devfn,
					    int where)
{
	unsigned slot = PCI_SLOT(devfn);
	unsigned fn = PCI_FUNC(devfn);
	u16 offset;

	/* root complex access */
	if (busno == 0) {
		if (slot > 0 || fn > 0)
			return NULL;

		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
				     where & CFG_IND_ADDR_MASK);
		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
		if (iproc_pcie_reg_is_invalid(offset))
			return NULL;
		else
			return (pcie->base + offset);
	}

	/*
	 * PAXC is connected to an internally emulated EP within the SoC.  It
	 * allows only one device.
	 */
	if (pcie->ep_is_internal)
		if (slot > 0)
			return NULL;

	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
}

static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
						unsigned int devfn,
						int where)
{
	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
				      where);
}

static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
				       unsigned int devfn, int where,
				       int size, u32 *val)
{
	void __iomem *addr;

	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
	if (!addr) {
		*val = ~0;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	*val = readl(addr);

	if (size <= 2)
		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);

	return PCIBIOS_SUCCESSFUL;
}

static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
					unsigned int devfn, int where,
					int size, u32 val)
{
	void __iomem *addr;
	u32 mask, tmp;

	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
	if (!addr)
		return PCIBIOS_DEVICE_NOT_FOUND;

	if (size == 4) {
		writel(val, addr);
		return PCIBIOS_SUCCESSFUL;
	}

	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
	tmp = readl(addr) & mask;
	tmp |= val << ((where & 0x3) * 8);
	writel(tmp, addr);

	return PCIBIOS_SUCCESSFUL;
}

static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
				    int where, int size, u32 *val)
{
	int ret;
	struct iproc_pcie *pcie = iproc_data(bus);

	iproc_pcie_apb_err_disable(bus, true);
	if (pcie->type == IPROC_PCIE_PAXB_V2)
		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
	else
		ret = pci_generic_config_read32(bus, devfn, where, size, val);
	iproc_pcie_apb_err_disable(bus, false);

	return ret;
}

static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
				     int where, int size, u32 val)
{
	int ret;

	iproc_pcie_apb_err_disable(bus, true);
	ret = pci_generic_config_write32(bus, devfn, where, size, val);
	iproc_pcie_apb_err_disable(bus, false);

	return ret;
}

static struct pci_ops iproc_pcie_ops = {
	.map_bus = iproc_pcie_bus_map_cfg_bus,
	.read = iproc_pcie_config_read32,
	.write = iproc_pcie_config_write32,
};

static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
{
	u32 val;

	/*
	 * PAXC and the internal emulated endpoint device downstream should not
	 * be reset.  If firmware has been loaded on the endpoint device at an
	 * earlier boot stage, reset here causes issues.
	 */
	if (pcie->ep_is_internal)
		return;

	if (assert) {
		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
			~RC_PCIE_RST_OUTPUT;
		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
		udelay(250);
	} else {
		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
		val |= RC_PCIE_RST_OUTPUT;
		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
		msleep(100);
	}
}

int iproc_pcie_shutdown(struct iproc_pcie *pcie)
{
	iproc_pcie_perst_ctrl(pcie, true);
	msleep(500);

	return 0;
}
EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);

static int iproc_pcie_check_link(struct iproc_pcie *pcie)
{
	struct device *dev = pcie->dev;
	u32 hdr_type, link_ctrl, link_status, class, val;
	bool link_is_active = false;

	/*
	 * PAXC connects to emulated endpoint devices directly and does not
	 * have a Serdes.  Therefore skip the link detection logic here.
	 */
	if (pcie->ep_is_internal)
		return 0;

	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
		dev_err(dev, "PHY or data link is INACTIVE!\n");
		return -ENODEV;
	}

	/* make sure we are not in EP mode */
	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
		return -EFAULT;
	}

	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
#define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
#define PCI_CLASS_BRIDGE_MASK		0xffff00
#define PCI_CLASS_BRIDGE_SHIFT		8
	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
				    4, &class);
	class &= ~PCI_CLASS_BRIDGE_MASK;
	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
				     4, class);

	/* check link status to see if link is active */
	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
				    2, &link_status);
	if (link_status & PCI_EXP_LNKSTA_NLW)
		link_is_active = true;

	if (!link_is_active) {
		/* try GEN 1 link speed */
#define PCI_TARGET_LINK_SPEED_MASK	0xf
#define PCI_TARGET_LINK_SPEED_GEN2	0x2
#define PCI_TARGET_LINK_SPEED_GEN1	0x1
		iproc_pci_raw_config_read32(pcie, 0,
					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
					    4, &link_ctrl);
		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
		    PCI_TARGET_LINK_SPEED_GEN2) {
			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
			iproc_pci_raw_config_write32(pcie, 0,
					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
					4, link_ctrl);
			msleep(100);

			iproc_pci_raw_config_read32(pcie, 0,
					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
					2, &link_status);
			if (link_status & PCI_EXP_LNKSTA_NLW)
				link_is_active = true;
		}
	}

	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");

	return link_is_active ? 0 : -ENODEV;
}

static void iproc_pcie_enable(struct iproc_pcie *pcie)
{
	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
}

static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
					  int window_idx)
{
	u32 val;

	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));

	return !!(val & OARR_VALID);
}

static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
				      int size_idx, u64 axi_addr, u64 pci_addr)
{
	struct device *dev = pcie->dev;
	u16 oarr_offset, omap_offset;

	/*
	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
	 * on window index.
	 */
	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
							  window_idx));
	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
							  window_idx));
	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
	    iproc_pcie_reg_is_invalid(omap_offset))
		return -EINVAL;

	/*
	 * Program the OARR registers.  The upper 32-bit OARR register is
	 * always right after the lower 32-bit OARR register.
	 */
	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
	       OARR_VALID, pcie->base + oarr_offset);
	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);

	/* now program the OMAP registers */
	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);

	dev_info(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
		 window_idx, oarr_offset, &axi_addr, &pci_addr);
	dev_info(dev, "oarr lo 0x%x oarr hi 0x%x\n",
		 readl(pcie->base + oarr_offset),
		 readl(pcie->base + oarr_offset + 4));
	dev_info(dev, "omap lo 0x%x omap hi 0x%x\n",
		 readl(pcie->base + omap_offset),
		 readl(pcie->base + omap_offset + 4));

	return 0;
}

/**
 * Some iProc SoCs require the SW to configure the outbound address mapping
 *
 * Outbound address translation:
 *
 * iproc_pcie_address = axi_address - axi_offset
 * OARR = iproc_pcie_address
 * OMAP = pci_addr
 *
 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
 */
static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
			       u64 pci_addr, resource_size_t size)
{
	struct iproc_pcie_ob *ob = &pcie->ob;
	struct device *dev = pcie->dev;
	int ret = -EINVAL, window_idx, size_idx;

	if (axi_addr < ob->axi_offset) {
		dev_err(dev, "axi address %pap less than offset %pap\n",
			&axi_addr, &ob->axi_offset);
		return -EINVAL;
	}

	/*
	 * Translate the AXI address to the internal address used by the iProc
	 * PCIe core before programming the OARR
	 */
	axi_addr -= ob->axi_offset;

	/* iterate through all OARR/OMAP mapping windows */
	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
		const struct iproc_pcie_ob_map *ob_map =
			&pcie->ob_map[window_idx];

		/*
		 * If current outbound window is already in use, move on to the
		 * next one.
		 */
		if (iproc_pcie_ob_is_valid(pcie, window_idx))
			continue;

		/*
		 * Iterate through all supported window sizes within the
		 * OARR/OMAP pair to find a match.  Go through the window sizes
		 * in a descending order.
		 */
		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
		     size_idx--) {
			resource_size_t window_size =
				ob_map->window_sizes[size_idx] * SZ_1M;

			if (size < window_size)
				continue;

			if (!IS_ALIGNED(axi_addr, window_size) ||
			    !IS_ALIGNED(pci_addr, window_size)) {
				dev_err(dev,
					"axi %pap or pci %pap not aligned\n",
					&axi_addr, &pci_addr);
				return -EINVAL;
			}

			/*
			 * Match found!  Program both OARR and OMAP and mark
			 * them as a valid entry.
			 */
			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
						  axi_addr, pci_addr);
			if (ret)
				goto err_ob;

			size -= window_size;
			if (size == 0)
				return 0;

			/*
			 * If we are here, we are done with the current window,
			 * but not yet finished all mappings.  Need to move on
			 * to the next window.
			 */
			axi_addr += window_size;
			pci_addr += window_size;
			break;
		}
	}

err_ob:
	dev_err(dev, "unable to configure outbound mapping\n");
	dev_err(dev,
		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
		&axi_addr, &ob->axi_offset, &pci_addr, &size);

	return ret;
}

static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
				 struct list_head *resources)
{
	struct device *dev = pcie->dev;
	struct resource_entry *window;
	int ret;

	resource_list_for_each_entry(window, resources) {
		struct resource *res = window->res;
		u64 res_type = resource_type(res);

		switch (res_type) {
		case IORESOURCE_IO:
		case IORESOURCE_BUS:
			break;
		case IORESOURCE_MEM:
			ret = iproc_pcie_setup_ob(pcie, res->start,
						  res->start - window->offset,
						  resource_size(res));
			if (ret)
				return ret;
			break;
		default:
			dev_err(dev, "invalid resource %pR\n", res);
			return -EINVAL;
		}
	}

	return 0;
}

static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
					   int region_idx)
{
	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
	u32 val;

	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));

	return !!(val & (BIT(ib_map->nr_sizes) - 1));
}

static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
					    enum iproc_pcie_ib_map_type type)
{
	return !!(ib_map->type == type);
}

static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
			       int size_idx, int nr_windows, u64 axi_addr,
			       u64 pci_addr, resource_size_t size)
{
	struct device *dev = pcie->dev;
	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
	u16 iarr_offset, imap_offset;
	u32 val;
	int window_idx;

	iarr_offset = iproc_pcie_reg_offset(pcie,
				MAP_REG(IPROC_PCIE_IARR0, region_idx));
	imap_offset = iproc_pcie_reg_offset(pcie,
				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
	    iproc_pcie_reg_is_invalid(imap_offset))
		return -EINVAL;

	dev_info(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
		 region_idx, iarr_offset, &axi_addr, &pci_addr);

	/*
	 * Program the IARR registers.  The upper 32-bit IARR register is
	 * always right after the lower 32-bit IARR register.
	 */
	writel(lower_32_bits(pci_addr) | BIT(size_idx),
	       pcie->base + iarr_offset);
	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);

	dev_info(dev, "iarr lo 0x%x iarr hi 0x%x\n",
		 readl(pcie->base + iarr_offset),
		 readl(pcie->base + iarr_offset + 4));

	/*
	 * Now program the IMAP registers.  Each IARR region may have one or
	 * more IMAP windows.
	 */
	size >>= ilog2(nr_windows);
	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
		val = readl(pcie->base + imap_offset);
		val |= lower_32_bits(axi_addr) | IMAP_VALID;
		writel(val, pcie->base + imap_offset);
		writel(upper_32_bits(axi_addr),
		       pcie->base + imap_offset + ib_map->imap_addr_offset);

		dev_info(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
			 window_idx, readl(pcie->base + imap_offset),
			 readl(pcie->base + imap_offset +
			       ib_map->imap_addr_offset));

		imap_offset += ib_map->imap_window_offset;
		axi_addr += size;
	}

	return 0;
}

static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
			       struct of_pci_range *range,
			       enum iproc_pcie_ib_map_type type)
{
	struct device *dev = pcie->dev;
	struct iproc_pcie_ib *ib = &pcie->ib;
	int ret;
	unsigned int region_idx, size_idx;
	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
	resource_size_t size = range->size;

	/* iterate through all IARR mapping regions */
	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
		const struct iproc_pcie_ib_map *ib_map =
			&pcie->ib_map[region_idx];

		/*
		 * If current inbound region is already in use or not a
		 * compatible type, move on to the next.
		 */
		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
		    !iproc_pcie_ib_check_type(ib_map, type))
			continue;

		/* iterate through all supported region sizes to find a match */
		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
			resource_size_t region_size =
			ib_map->region_sizes[size_idx] * ib_map->size_unit;

			if (size != region_size)
				continue;

			if (!IS_ALIGNED(axi_addr, region_size) ||
			    !IS_ALIGNED(pci_addr, region_size)) {
				dev_err(dev,
					"axi %pap or pci %pap not aligned\n",
					&axi_addr, &pci_addr);
				return -EINVAL;
			}

			/* Match found!  Program IARR and all IMAP windows. */
			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
						  ib_map->nr_windows, axi_addr,
						  pci_addr, size);
			if (ret)
				goto err_ib;
			else
				return 0;

		}
	}
	ret = -EINVAL;

err_ib:
	dev_err(dev, "unable to configure inbound mapping\n");
	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
		&axi_addr, &pci_addr, &size);

	return ret;
}

static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
{
	struct of_pci_range range;
	struct of_pci_range_parser parser;
	int ret;

	/* Get the dma-ranges from DT */
	ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
	if (ret)
		return ret;

	for_each_of_pci_range(&parser, &range) {
		/* Each range entry corresponds to an inbound mapping region */
		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
		if (ret)
			return ret;
	}

	return 0;
}

static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
			       struct device_node *msi_node,
			       u64 *msi_addr)
{
	struct device *dev = pcie->dev;
	int ret;
	struct resource res;

	/*
	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
	 * supported external MSI controller that requires steering.
	 */
	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
		dev_err(dev, "unable to find compatible MSI controller\n");
		return -ENODEV;
	}

	/* derive GITS_TRANSLATER address from GICv3 */
	ret = of_address_to_resource(msi_node, 0, &res);
	if (ret < 0) {
		dev_err(dev, "unable to obtain MSI controller resources\n");
		return ret;
	}

	*msi_addr = res.start + GITS_TRANSLATER;
	return 0;
}

static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
{
	int ret;
	struct of_pci_range range;

	memset(&range, 0, sizeof(range));
	range.size = SZ_32K;
	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);

	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
	return ret;
}

static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
{
	u32 val;

	/*
	 * Program bits [43:13] of address of GITS_TRANSLATER register into
	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
	 * based SoCs, all I/O register bases are well below the 32-bit
	 * boundary, so we can safely assume bits [43:32] are always zeros.
	 */
	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
			     (u32)(msi_addr >> 13));

	/* use a default 8K window size */
	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);

	/* steering MSI to GICv3 ITS */
	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
	val |= GIC_V3_CFG;
	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);

	/*
	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
	 * iProc MSI address registers.
	 */
	msi_addr >>= 2;
	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
			     upper_32_bits(msi_addr));
	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
			     lower_32_bits(msi_addr));

	/* enable MSI */
	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
	val |= MSI_ENABLE_CFG;
	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
}

static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
				struct device_node *msi_node)
{
	struct device *dev = pcie->dev;
	int ret;
	u64 msi_addr;

	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
	if (ret < 0) {
		dev_err(dev, "msi steering failed\n");
		return ret;
	}

	switch (pcie->type) {
	case IPROC_PCIE_PAXB_V2:
		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
		if (ret)
			return ret;
		break;
	case IPROC_PCIE_PAXC_V2:
		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
{
	struct device_node *msi_node;
	int ret;

	/*
	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
	 * for us to obtain the MSI node.
	 */

	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
	if (!msi_node) {
		const __be32 *msi_map = NULL;
		int len;
		u32 phandle;

		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
		if (!msi_map)
			return -ENODEV;

		phandle = be32_to_cpup(msi_map + 1);
		msi_node = of_find_node_by_phandle(phandle);
		if (!msi_node)
			return -ENODEV;
	}

	/*
	 * Certain revisions of the iProc PCIe controller require additional
	 * configurations to steer the MSI writes towards an external MSI
	 * controller.
	 */
	if (pcie->need_msi_steer) {
		ret = iproc_pcie_msi_steer(pcie, msi_node);
		if (ret)
			return ret;
	}

	/*
	 * If another MSI controller is being used, the call below should fail
	 * but that is okay
	 */
	return iproc_msi_init(pcie, msi_node);
}

static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
{
	iproc_msi_exit(pcie);
}

static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
{
	struct device *dev = pcie->dev;
	unsigned int reg_idx;
	const u16 *regs;

	switch (pcie->type) {
	case IPROC_PCIE_PAXB_BCMA:
		regs = iproc_pcie_reg_paxb_bcma;
		break;
	case IPROC_PCIE_PAXB:
		regs = iproc_pcie_reg_paxb;
		pcie->has_apb_err_disable = true;
		if (pcie->need_ob_cfg) {
			pcie->ob_map = paxb_ob_map;
			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
		}
		break;
	case IPROC_PCIE_PAXB_V2:
		regs = iproc_pcie_reg_paxb_v2;
		pcie->has_apb_err_disable = true;
		if (pcie->need_ob_cfg) {
			pcie->ob_map = paxb_v2_ob_map;
			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
		}
		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
		pcie->ib_map = paxb_v2_ib_map;
		pcie->need_msi_steer = true;
		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
			 CFG_RETRY_STATUS);
		break;
	case IPROC_PCIE_PAXC:
		regs = iproc_pcie_reg_paxc;
		pcie->ep_is_internal = true;
		break;
	case IPROC_PCIE_PAXC_V2:
		regs = iproc_pcie_reg_paxc_v2;
		pcie->ep_is_internal = true;
		pcie->need_msi_steer = true;
		break;
	default:
		dev_err(dev, "incompatible iProc PCIe interface\n");
		return -EINVAL;
	}

	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
					 sizeof(*pcie->reg_offsets),
					 GFP_KERNEL);
	if (!pcie->reg_offsets)
		return -ENOMEM;

	/* go through the register table and populate all valid registers */
	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
		IPROC_PCIE_REG_INVALID : regs[0];
	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
			regs[reg_idx] : IPROC_PCIE_REG_INVALID;

	return 0;
}

int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
{
	struct device *dev;
	int ret;
	struct pci_bus *child;
	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);

	dev = pcie->dev;

	ret = iproc_pcie_rev_init(pcie);
	if (ret) {
		dev_err(dev, "unable to initialize controller parameters\n");
		return ret;
	}

	ret = devm_request_pci_bus_resources(dev, res);
	if (ret)
		return ret;

	ret = phy_init(pcie->phy);
	if (ret) {
		dev_err(dev, "unable to initialize PCIe PHY\n");
		return ret;
	}

	ret = phy_power_on(pcie->phy);
	if (ret) {
		dev_err(dev, "unable to power on PCIe PHY\n");
		goto err_exit_phy;
	}

	iproc_pcie_perst_ctrl(pcie, true);
	iproc_pcie_perst_ctrl(pcie, false);

	if (pcie->need_ob_cfg) {
		ret = iproc_pcie_map_ranges(pcie, res);
		if (ret) {
			dev_err(dev, "map failed\n");
			goto err_power_off_phy;
		}
	}

	if (pcie->need_ib_cfg) {
		ret = iproc_pcie_map_dma_ranges(pcie);
		if (ret && ret != -ENOENT)
			goto err_power_off_phy;
	}

	ret = iproc_pcie_check_link(pcie);
	if (ret) {
		dev_err(dev, "no PCIe EP device detected\n");
		goto err_power_off_phy;
	}

	iproc_pcie_enable(pcie);

	if (IS_ENABLED(CONFIG_PCI_MSI))
		if (iproc_pcie_msi_enable(pcie))
			dev_info(dev, "not using iProc MSI\n");

	list_splice_init(res, &host->windows);
	host->busnr = 0;
	host->dev.parent = dev;
	host->ops = &iproc_pcie_ops;
	host->sysdata = pcie;
	host->map_irq = pcie->map_irq;
	host->swizzle_irq = pci_common_swizzle;

	ret = pci_scan_root_bus_bridge(host);
	if (ret < 0) {
		dev_err(dev, "failed to scan host: %d\n", ret);
		goto err_power_off_phy;
	}

	pci_assign_unassigned_bus_resources(host->bus);

	pcie->root_bus = host->bus;

	list_for_each_entry(child, &host->bus->children, node)
		pcie_bus_configure_settings(child);

	pci_bus_add_devices(host->bus);

	return 0;

err_power_off_phy:
	phy_power_off(pcie->phy);
err_exit_phy:
	phy_exit(pcie->phy);
	return ret;
}
EXPORT_SYMBOL(iproc_pcie_setup);

int iproc_pcie_remove(struct iproc_pcie *pcie)
{
	pci_stop_root_bus(pcie->root_bus);
	pci_remove_root_bus(pcie->root_bus);

	iproc_pcie_msi_disable(pcie);

	phy_power_off(pcie->phy);
	phy_exit(pcie->phy);

	return 0;
}
EXPORT_SYMBOL(iproc_pcie_remove);

MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
MODULE_LICENSE("GPL v2");