Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
/*
 * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <subdev/clk.h>
#include <subdev/volt.h>
#include <subdev/timer.h>
#include <core/device.h>
#include <core/tegra.h>

#include "priv.h"
#include "gk20a.h"

#define GPCPLL_CFG_SYNC_MODE	BIT(2)

#define BYPASSCTRL_SYS	(SYS_GPCPLL_CFG_BASE + 0x340)
#define BYPASSCTRL_SYS_GPCPLL_SHIFT	0
#define BYPASSCTRL_SYS_GPCPLL_WIDTH	1

#define GPCPLL_CFG2_SDM_DIN_SHIFT	0
#define GPCPLL_CFG2_SDM_DIN_WIDTH	8
#define GPCPLL_CFG2_SDM_DIN_MASK	\
	(MASK(GPCPLL_CFG2_SDM_DIN_WIDTH) << GPCPLL_CFG2_SDM_DIN_SHIFT)
#define GPCPLL_CFG2_SDM_DIN_NEW_SHIFT	8
#define GPCPLL_CFG2_SDM_DIN_NEW_WIDTH	15
#define GPCPLL_CFG2_SDM_DIN_NEW_MASK	\
	(MASK(GPCPLL_CFG2_SDM_DIN_NEW_WIDTH) << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT)
#define GPCPLL_CFG2_SETUP2_SHIFT	16
#define GPCPLL_CFG2_PLL_STEPA_SHIFT	24

#define GPCPLL_DVFS0	(SYS_GPCPLL_CFG_BASE + 0x10)
#define GPCPLL_DVFS0_DFS_COEFF_SHIFT	0
#define GPCPLL_DVFS0_DFS_COEFF_WIDTH	7
#define GPCPLL_DVFS0_DFS_COEFF_MASK	\
	(MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH) << GPCPLL_DVFS0_DFS_COEFF_SHIFT)
#define GPCPLL_DVFS0_DFS_DET_MAX_SHIFT	8
#define GPCPLL_DVFS0_DFS_DET_MAX_WIDTH	7
#define GPCPLL_DVFS0_DFS_DET_MAX_MASK	\
	(MASK(GPCPLL_DVFS0_DFS_DET_MAX_WIDTH) << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT)

#define GPCPLL_DVFS1		(SYS_GPCPLL_CFG_BASE + 0x14)
#define GPCPLL_DVFS1_DFS_EXT_DET_SHIFT		0
#define GPCPLL_DVFS1_DFS_EXT_DET_WIDTH		7
#define GPCPLL_DVFS1_DFS_EXT_STRB_SHIFT		7
#define GPCPLL_DVFS1_DFS_EXT_STRB_WIDTH		1
#define GPCPLL_DVFS1_DFS_EXT_CAL_SHIFT		8
#define GPCPLL_DVFS1_DFS_EXT_CAL_WIDTH		7
#define GPCPLL_DVFS1_DFS_EXT_SEL_SHIFT		15
#define GPCPLL_DVFS1_DFS_EXT_SEL_WIDTH		1
#define GPCPLL_DVFS1_DFS_CTRL_SHIFT		16
#define GPCPLL_DVFS1_DFS_CTRL_WIDTH		12
#define GPCPLL_DVFS1_EN_SDM_SHIFT		28
#define GPCPLL_DVFS1_EN_SDM_WIDTH		1
#define GPCPLL_DVFS1_EN_SDM_BIT			BIT(28)
#define GPCPLL_DVFS1_EN_DFS_SHIFT		29
#define GPCPLL_DVFS1_EN_DFS_WIDTH		1
#define GPCPLL_DVFS1_EN_DFS_BIT			BIT(29)
#define GPCPLL_DVFS1_EN_DFS_CAL_SHIFT		30
#define GPCPLL_DVFS1_EN_DFS_CAL_WIDTH		1
#define GPCPLL_DVFS1_EN_DFS_CAL_BIT		BIT(30)
#define GPCPLL_DVFS1_DFS_CAL_DONE_SHIFT		31
#define GPCPLL_DVFS1_DFS_CAL_DONE_WIDTH		1
#define GPCPLL_DVFS1_DFS_CAL_DONE_BIT		BIT(31)

#define GPC_BCAST_GPCPLL_DVFS2	(GPC_BCAST_GPCPLL_CFG_BASE + 0x20)
#define GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT	BIT(16)

#define GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT	24
#define GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH	7

#define DFS_DET_RANGE	6	/* -2^6 ... 2^6-1 */
#define SDM_DIN_RANGE	12	/* -2^12 ... 2^12-1 */

struct gm20b_clk_dvfs_params {
	s32 coeff_slope;
	s32 coeff_offs;
	u32 vco_ctrl;
};

static const struct gm20b_clk_dvfs_params gm20b_dvfs_params = {
	.coeff_slope = -165230,
	.coeff_offs = 214007,
	.vco_ctrl = 0x7 << 3,
};

/*
 * base.n is now the *integer* part of the N factor.
 * sdm_din contains n's decimal part.
 */
struct gm20b_pll {
	struct gk20a_pll base;
	u32 sdm_din;
};

struct gm20b_clk_dvfs {
	u32 dfs_coeff;
	s32 dfs_det_max;
	s32 dfs_ext_cal;
};

struct gm20b_clk {
	/* currently applied parameters */
	struct gk20a_clk base;
	struct gm20b_clk_dvfs dvfs;
	u32 uv;

	/* new parameters to apply */
	struct gk20a_pll new_pll;
	struct gm20b_clk_dvfs new_dvfs;
	u32 new_uv;

	const struct gm20b_clk_dvfs_params *dvfs_params;

	/* fused parameters */
	s32 uvdet_slope;
	s32 uvdet_offs;

	/* safe frequency we can use at minimum voltage */
	u32 safe_fmax_vmin;
};
#define gm20b_clk(p) container_of((gk20a_clk(p)), struct gm20b_clk, base)

static u32 pl_to_div(u32 pl)
{
	return pl;
}

static u32 div_to_pl(u32 div)
{
	return div;
}

static const struct gk20a_clk_pllg_params gm20b_pllg_params = {
	.min_vco = 1300000, .max_vco = 2600000,
	.min_u = 12000, .max_u = 38400,
	.min_m = 1, .max_m = 255,
	.min_n = 8, .max_n = 255,
	.min_pl = 1, .max_pl = 31,
};

static void
gm20b_pllg_read_mnp(struct gm20b_clk *clk, struct gm20b_pll *pll)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 val;

	gk20a_pllg_read_mnp(&clk->base, &pll->base);
	val = nvkm_rd32(device, GPCPLL_CFG2);
	pll->sdm_din = (val >> GPCPLL_CFG2_SDM_DIN_SHIFT) &
		       MASK(GPCPLL_CFG2_SDM_DIN_WIDTH);
}

static void
gm20b_pllg_write_mnp(struct gm20b_clk *clk, const struct gm20b_pll *pll)
{
	struct nvkm_device *device = clk->base.base.subdev.device;

	nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK,
		  pll->sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT);
	gk20a_pllg_write_mnp(&clk->base, &pll->base);
}

/*
 * Determine DFS_COEFF for the requested voltage. Always select external
 * calibration override equal to the voltage, and set maximum detection
 * limit "0" (to make sure that PLL output remains under F/V curve when
 * voltage increases).
 */
static void
gm20b_dvfs_calc_det_coeff(struct gm20b_clk *clk, s32 uv,
			  struct gm20b_clk_dvfs *dvfs)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	const struct gm20b_clk_dvfs_params *p = clk->dvfs_params;
	u32 coeff;
	/* Work with mv as uv would likely trigger an overflow */
	s32 mv = DIV_ROUND_CLOSEST(uv, 1000);

	/* coeff = slope * voltage + offset */
	coeff = DIV_ROUND_CLOSEST(mv * p->coeff_slope, 1000) + p->coeff_offs;
	coeff = DIV_ROUND_CLOSEST(coeff, 1000);
	dvfs->dfs_coeff = min_t(u32, coeff, MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH));

	dvfs->dfs_ext_cal = DIV_ROUND_CLOSEST(uv - clk->uvdet_offs,
					     clk->uvdet_slope);
	/* should never happen */
	if (abs(dvfs->dfs_ext_cal) >= BIT(DFS_DET_RANGE))
		nvkm_error(subdev, "dfs_ext_cal overflow!\n");

	dvfs->dfs_det_max = 0;

	nvkm_debug(subdev, "%s uv: %d coeff: %x, ext_cal: %d, det_max: %d\n",
		   __func__, uv, dvfs->dfs_coeff, dvfs->dfs_ext_cal,
		   dvfs->dfs_det_max);
}

/*
 * Solve equation for integer and fractional part of the effective NDIV:
 *
 * n_eff = n_int + 1/2 + (SDM_DIN / 2^(SDM_DIN_RANGE + 1)) +
 *         (DVFS_COEFF * DVFS_DET_DELTA) / 2^DFS_DET_RANGE
 *
 * The SDM_DIN LSB is finally shifted out, since it is not accessible by sw.
 */
static void
gm20b_dvfs_calc_ndiv(struct gm20b_clk *clk, u32 n_eff, u32 *n_int, u32 *sdm_din)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	const struct gk20a_clk_pllg_params *p = clk->base.params;
	u32 n;
	s32 det_delta;
	u32 rem, rem_range;

	/* calculate current ext_cal and subtract previous one */
	det_delta = DIV_ROUND_CLOSEST(((s32)clk->uv) - clk->uvdet_offs,
				      clk->uvdet_slope);
	det_delta -= clk->dvfs.dfs_ext_cal;
	det_delta = min(det_delta, clk->dvfs.dfs_det_max);
	det_delta *= clk->dvfs.dfs_coeff;

	/* integer part of n */
	n = (n_eff << DFS_DET_RANGE) - det_delta;
	/* should never happen! */
	if (n <= 0) {
		nvkm_error(subdev, "ndiv <= 0 - setting to 1...\n");
		n = 1 << DFS_DET_RANGE;
	}
	if (n >> DFS_DET_RANGE > p->max_n) {
		nvkm_error(subdev, "ndiv > max_n - setting to max_n...\n");
		n = p->max_n << DFS_DET_RANGE;
	}
	*n_int = n >> DFS_DET_RANGE;

	/* fractional part of n */
	rem = ((u32)n) & MASK(DFS_DET_RANGE);
	rem_range = SDM_DIN_RANGE + 1 - DFS_DET_RANGE;
	/* subtract 2^SDM_DIN_RANGE to account for the 1/2 of the equation */
	rem = (rem << rem_range) - BIT(SDM_DIN_RANGE);
	/* lose 8 LSB and clip - sdm_din only keeps the most significant byte */
	*sdm_din = (rem >> BITS_PER_BYTE) & MASK(GPCPLL_CFG2_SDM_DIN_WIDTH);

	nvkm_debug(subdev, "%s n_eff: %d, n_int: %d, sdm_din: %d\n", __func__,
		   n_eff, *n_int, *sdm_din);
}

static int
gm20b_pllg_slide(struct gm20b_clk *clk, u32 n)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	struct nvkm_device *device = subdev->device;
	struct gm20b_pll pll;
	u32 n_int, sdm_din;
	int ret = 0;

	/* calculate the new n_int/sdm_din for this n/uv */
	gm20b_dvfs_calc_ndiv(clk, n, &n_int, &sdm_din);

	/* get old coefficients */
	gm20b_pllg_read_mnp(clk, &pll);
	/* do nothing if NDIV is the same */
	if (n_int == pll.base.n && sdm_din == pll.sdm_din)
		return 0;

	/* pll slowdown mode */
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));

	/* new ndiv ready for ramp */
	/* in DVFS mode SDM is updated via "new" field */
	nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_NEW_MASK,
		  sdm_din << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT);
	pll.base.n = n_int;
	udelay(1);
	gk20a_pllg_write_mnp(&clk->base, &pll.base);

	/* dynamic ramp to new ndiv */
	udelay(1);
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));

	/* wait for ramping to complete */
	if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
		ret = -ETIMEDOUT;

	/* in DVFS mode complete SDM update */
	nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK,
		  sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT);

	/* exit slowdown mode */
	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);

	return ret;
}

static int
gm20b_pllg_enable(struct gm20b_clk *clk)
{
	struct nvkm_device *device = clk->base.base.subdev.device;

	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
	nvkm_rd32(device, GPCPLL_CFG);

	/* In DVFS mode lock cannot be used - so just delay */
	udelay(40);

	/* set SYNC_MODE for glitchless switch out of bypass */
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE,
		       GPCPLL_CFG_SYNC_MODE);
	nvkm_rd32(device, GPCPLL_CFG);

	/* switch to VCO mode */
	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
		  BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));

	return 0;
}

static void
gm20b_pllg_disable(struct gm20b_clk *clk)
{
	struct nvkm_device *device = clk->base.base.subdev.device;

	/* put PLL in bypass before disabling it */
	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);

	/* clear SYNC_MODE before disabling PLL */
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE, 0);

	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
	nvkm_rd32(device, GPCPLL_CFG);
}

static int
gm20b_pllg_program_mnp(struct gm20b_clk *clk, const struct gk20a_pll *pll)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	struct nvkm_device *device = subdev->device;
	struct gm20b_pll cur_pll;
	u32 n_int, sdm_din;
	/* if we only change pdiv, we can do a glitchless transition */
	bool pdiv_only;
	int ret;

	gm20b_dvfs_calc_ndiv(clk, pll->n, &n_int, &sdm_din);
	gm20b_pllg_read_mnp(clk, &cur_pll);
	pdiv_only = cur_pll.base.n == n_int && cur_pll.sdm_din == sdm_din &&
		    cur_pll.base.m == pll->m;

	/* need full sequence if clock not enabled yet */
	if (!gk20a_pllg_is_enabled(&clk->base))
		pdiv_only = false;

	/* split VCO-to-bypass jump in half by setting out divider 1:2 */
	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
	/* Intentional 2nd write to assure linear divider operation */
	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
	nvkm_rd32(device, GPC2CLK_OUT);
	udelay(2);

	if (pdiv_only) {
		u32 old = cur_pll.base.pl;
		u32 new = pll->pl;

		/*
		 * we can do a glitchless transition only if the old and new PL
		 * parameters share at least one bit set to 1. If this is not
		 * the case, calculate and program an interim PL that will allow
		 * us to respect that rule.
		 */
		if ((old & new) == 0) {
			cur_pll.base.pl = min(old | BIT(ffs(new) - 1),
					      new | BIT(ffs(old) - 1));
			gk20a_pllg_write_mnp(&clk->base, &cur_pll.base);
		}

		cur_pll.base.pl = new;
		gk20a_pllg_write_mnp(&clk->base, &cur_pll.base);
	} else {
		/* disable before programming if more than pdiv changes */
		gm20b_pllg_disable(clk);

		cur_pll.base = *pll;
		cur_pll.base.n = n_int;
		cur_pll.sdm_din = sdm_din;
		gm20b_pllg_write_mnp(clk, &cur_pll);

		ret = gm20b_pllg_enable(clk);
		if (ret)
			return ret;
	}

	/* restore out divider 1:1 */
	udelay(2);
	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
	/* Intentional 2nd write to assure linear divider operation */
	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
	nvkm_rd32(device, GPC2CLK_OUT);

	return 0;
}

static int
gm20b_pllg_program_mnp_slide(struct gm20b_clk *clk, const struct gk20a_pll *pll)
{
	struct gk20a_pll cur_pll;
	int ret;

	if (gk20a_pllg_is_enabled(&clk->base)) {
		gk20a_pllg_read_mnp(&clk->base, &cur_pll);

		/* just do NDIV slide if there is no change to M and PL */
		if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
			return gm20b_pllg_slide(clk, pll->n);

		/* slide down to current NDIV_LO */
		cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll);
		ret = gm20b_pllg_slide(clk, cur_pll.n);
		if (ret)
			return ret;
	}

	/* program MNP with the new clock parameters and new NDIV_LO */
	cur_pll = *pll;
	cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll);
	ret = gm20b_pllg_program_mnp(clk, &cur_pll);
	if (ret)
		return ret;

	/* slide up to new NDIV */
	return gm20b_pllg_slide(clk, pll->n);
}

static int
gm20b_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	struct nvkm_subdev *subdev = &base->subdev;
	struct nvkm_volt *volt = base->subdev.device->volt;
	int ret;

	ret = gk20a_pllg_calc_mnp(&clk->base, cstate->domain[nv_clk_src_gpc] *
					     GK20A_CLK_GPC_MDIV, &clk->new_pll);
	if (ret)
		return ret;

	clk->new_uv = volt->vid[cstate->voltage].uv;
	gm20b_dvfs_calc_det_coeff(clk, clk->new_uv, &clk->new_dvfs);

	nvkm_debug(subdev, "%s uv: %d uv\n", __func__, clk->new_uv);

	return 0;
}

/*
 * Compute PLL parameters that are always safe for the current voltage
 */
static void
gm20b_dvfs_calc_safe_pll(struct gm20b_clk *clk, struct gk20a_pll *pll)
{
	u32 rate = gk20a_pllg_calc_rate(&clk->base, pll) / KHZ;
	u32 parent_rate = clk->base.parent_rate / KHZ;
	u32 nmin, nsafe;

	/* remove a safe margin of 10% */
	if (rate > clk->safe_fmax_vmin)
		rate = rate * (100 - 10) / 100;

	/* gpc2clk */
	rate *= 2;

	nmin = DIV_ROUND_UP(pll->m * clk->base.params->min_vco, parent_rate);
	nsafe = pll->m * rate / (clk->base.parent_rate);

	if (nsafe < nmin) {
		pll->pl = DIV_ROUND_UP(nmin * parent_rate, pll->m * rate);
		nsafe = nmin;
	}

	pll->n = nsafe;
}

static void
gm20b_dvfs_program_coeff(struct gm20b_clk *clk, u32 coeff)
{
	struct nvkm_device *device = clk->base.base.subdev.device;

	/* strobe to read external DFS coefficient */
	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
		  GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT,
		  GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT);

	nvkm_mask(device, GPCPLL_DVFS0, GPCPLL_DVFS0_DFS_COEFF_MASK,
		  coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT);

	udelay(1);
	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
		  GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0);
}

static void
gm20b_dvfs_program_ext_cal(struct gm20b_clk *clk, u32 dfs_det_cal)
{
	struct nvkm_device *device = clk->base.base.subdev.device;
	u32 val;

	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, MASK(DFS_DET_RANGE + 1),
		  dfs_det_cal);
	udelay(1);

	val = nvkm_rd32(device, GPCPLL_DVFS1);
	if (!(val & BIT(25))) {
		/* Use external value to overwrite calibration value */
		val |= BIT(25) | BIT(16);
		nvkm_wr32(device, GPCPLL_DVFS1, val);
	}
}

static void
gm20b_dvfs_program_dfs_detection(struct gm20b_clk *clk,
				 struct gm20b_clk_dvfs *dvfs)
{
	struct nvkm_device *device = clk->base.base.subdev.device;

	/* strobe to read external DFS coefficient */
	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
		  GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT,
		  GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT);

	nvkm_mask(device, GPCPLL_DVFS0,
		  GPCPLL_DVFS0_DFS_COEFF_MASK | GPCPLL_DVFS0_DFS_DET_MAX_MASK,
		  dvfs->dfs_coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT |
		  dvfs->dfs_det_max << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT);

	udelay(1);
	nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
		  GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0);

	gm20b_dvfs_program_ext_cal(clk, dvfs->dfs_ext_cal);
}

static int
gm20b_clk_prog(struct nvkm_clk *base)
{
	struct gm20b_clk *clk = gm20b_clk(base);
	u32 cur_freq;
	int ret;

	/* No change in DVFS settings? */
	if (clk->uv == clk->new_uv)
		goto prog;

	/*
	 * Interim step for changing DVFS detection settings: low enough
	 * frequency to be safe at at DVFS coeff = 0.
	 *
	 * 1. If voltage is increasing:
	 * - safe frequency target matches the lowest - old - frequency
	 * - DVFS settings are still old
	 * - Voltage already increased to new level by volt, but maximum
	 *   detection limit assures PLL output remains under F/V curve
	 *
	 * 2. If voltage is decreasing:
	 * - safe frequency target matches the lowest - new - frequency
	 * - DVFS settings are still old
	 * - Voltage is also old, it will be lowered by volt afterwards
	 *
	 * Interim step can be skipped if old frequency is below safe minimum,
	 * i.e., it is low enough to be safe at any voltage in operating range
	 * with zero DVFS coefficient.
	 */
	cur_freq = nvkm_clk_read(&clk->base.base, nv_clk_src_gpc);
	if (cur_freq > clk->safe_fmax_vmin) {
		struct gk20a_pll pll_safe;

		if (clk->uv < clk->new_uv)
			/* voltage will raise: safe frequency is current one */
			pll_safe = clk->base.pll;
		else
			/* voltage will drop: safe frequency is new one */
			pll_safe = clk->new_pll;

		gm20b_dvfs_calc_safe_pll(clk, &pll_safe);
		ret = gm20b_pllg_program_mnp_slide(clk, &pll_safe);
		if (ret)
			return ret;
	}

	/*
	 * DVFS detection settings transition:
	 * - Set DVFS coefficient zero
	 * - Set calibration level to new voltage
	 * - Set DVFS coefficient to match new voltage
	 */
	gm20b_dvfs_program_coeff(clk, 0);
	gm20b_dvfs_program_ext_cal(clk, clk->new_dvfs.dfs_ext_cal);
	gm20b_dvfs_program_coeff(clk, clk->new_dvfs.dfs_coeff);
	gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs);

prog:
	clk->uv = clk->new_uv;
	clk->dvfs = clk->new_dvfs;
	clk->base.pll = clk->new_pll;

	return gm20b_pllg_program_mnp_slide(clk, &clk->base.pll);
}

static struct nvkm_pstate
gm20b_pstates[] = {
	{
		.base = {
			.domain[nv_clk_src_gpc] = 76800,
			.voltage = 0,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 153600,
			.voltage = 1,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 230400,
			.voltage = 2,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 307200,
			.voltage = 3,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 384000,
			.voltage = 4,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 460800,
			.voltage = 5,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 537600,
			.voltage = 6,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 614400,
			.voltage = 7,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 691200,
			.voltage = 8,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 768000,
			.voltage = 9,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 844800,
			.voltage = 10,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 921600,
			.voltage = 11,
		},
	},
	{
		.base = {
			.domain[nv_clk_src_gpc] = 998400,
			.voltage = 12,
		},
	},
};

static void
gm20b_clk_fini(struct nvkm_clk *base)
{
	struct nvkm_device *device = base->subdev.device;
	struct gm20b_clk *clk = gm20b_clk(base);

	/* slide to VCO min */
	if (gk20a_pllg_is_enabled(&clk->base)) {
		struct gk20a_pll pll;
		u32 n_lo;

		gk20a_pllg_read_mnp(&clk->base, &pll);
		n_lo = gk20a_pllg_n_lo(&clk->base, &pll);
		gm20b_pllg_slide(clk, n_lo);
	}

	gm20b_pllg_disable(clk);

	/* set IDDQ */
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
}

static int
gm20b_clk_init_dvfs(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	struct nvkm_device *device = subdev->device;
	bool fused = clk->uvdet_offs && clk->uvdet_slope;
	static const s32 ADC_SLOPE_UV = 10000; /* default ADC detection slope */
	u32 data;
	int ret;

	/* Enable NA DVFS */
	nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_BIT,
		  GPCPLL_DVFS1_EN_DFS_BIT);

	/* Set VCO_CTRL */
	if (clk->dvfs_params->vco_ctrl)
		nvkm_mask(device, GPCPLL_CFG3, GPCPLL_CFG3_VCO_CTRL_MASK,
		      clk->dvfs_params->vco_ctrl << GPCPLL_CFG3_VCO_CTRL_SHIFT);

	if (fused) {
		/* Start internal calibration, but ignore results */
		nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT,
			  GPCPLL_DVFS1_EN_DFS_CAL_BIT);

		/* got uvdev parameters from fuse, skip calibration */
		goto calibrated;
	}

	/*
	 * If calibration parameters are not fused, start internal calibration,
	 * wait for completion, and use results along with default slope to
	 * calculate ADC offset during boot.
	 */
	nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT,
			  GPCPLL_DVFS1_EN_DFS_CAL_BIT);

	/* Wait for internal calibration done (spec < 2us). */
	ret = nvkm_wait_usec(device, 10, GPCPLL_DVFS1,
			     GPCPLL_DVFS1_DFS_CAL_DONE_BIT,
			     GPCPLL_DVFS1_DFS_CAL_DONE_BIT);
	if (ret < 0) {
		nvkm_error(subdev, "GPCPLL calibration timeout\n");
		return -ETIMEDOUT;
	}

	data = nvkm_rd32(device, GPCPLL_CFG3) >>
			 GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT;
	data &= MASK(GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH);

	clk->uvdet_slope = ADC_SLOPE_UV;
	clk->uvdet_offs = ((s32)clk->uv) - data * ADC_SLOPE_UV;

	nvkm_debug(subdev, "calibrated DVFS parameters: offs %d, slope %d\n",
		   clk->uvdet_offs, clk->uvdet_slope);

calibrated:
	/* Compute and apply initial DVFS parameters */
	gm20b_dvfs_calc_det_coeff(clk, clk->uv, &clk->dvfs);
	gm20b_dvfs_program_coeff(clk, 0);
	gm20b_dvfs_program_ext_cal(clk, clk->dvfs.dfs_ext_cal);
	gm20b_dvfs_program_coeff(clk, clk->dvfs.dfs_coeff);
	gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs);

	return 0;
}

/* Forward declaration to detect speedo >=1 in gm20b_clk_init() */
static const struct nvkm_clk_func gm20b_clk;

static int
gm20b_clk_init(struct nvkm_clk *base)
{
	struct gk20a_clk *clk = gk20a_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	int ret;
	u32 data;

	/* get out from IDDQ */
	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
	nvkm_rd32(device, GPCPLL_CFG);
	udelay(5);

	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
		  GPC2CLK_OUT_INIT_VAL);

	/* Set the global bypass control to VCO */
	nvkm_mask(device, BYPASSCTRL_SYS,
	       MASK(BYPASSCTRL_SYS_GPCPLL_WIDTH) << BYPASSCTRL_SYS_GPCPLL_SHIFT,
	       0);

	ret = gk20a_clk_setup_slide(clk);
	if (ret)
		return ret;

	/* If not fused, set RAM SVOP PDP data 0x2, and enable fuse override */
	data = nvkm_rd32(device, 0x021944);
	if (!(data & 0x3)) {
		data |= 0x2;
		nvkm_wr32(device, 0x021944, data);

		data = nvkm_rd32(device, 0x021948);
		data |=  0x1;
		nvkm_wr32(device, 0x021948, data);
	}

	/* Disable idle slow down  */
	nvkm_mask(device, 0x20160, 0x003f0000, 0x0);

	/* speedo >= 1? */
	if (clk->base.func == &gm20b_clk) {
		struct gm20b_clk *_clk = gm20b_clk(base);
		struct nvkm_volt *volt = device->volt;

		/* Get current voltage */
		_clk->uv = nvkm_volt_get(volt);

		/* Initialize DVFS */
		ret = gm20b_clk_init_dvfs(_clk);
		if (ret)
			return ret;
	}

	/* Start with lowest frequency */
	base->func->calc(base, &base->func->pstates[0].base);
	ret = base->func->prog(base);
	if (ret) {
		nvkm_error(subdev, "cannot initialize clock\n");
		return ret;
	}

	return 0;
}

static const struct nvkm_clk_func
gm20b_clk_speedo0 = {
	.init = gm20b_clk_init,
	.fini = gk20a_clk_fini,
	.read = gk20a_clk_read,
	.calc = gk20a_clk_calc,
	.prog = gk20a_clk_prog,
	.tidy = gk20a_clk_tidy,
	.pstates = gm20b_pstates,
	/* Speedo 0 only supports 12 voltages */
	.nr_pstates = ARRAY_SIZE(gm20b_pstates) - 1,
	.domains = {
		{ nv_clk_src_crystal, 0xff },
		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
		{ nv_clk_src_max },
	},
};

static const struct nvkm_clk_func
gm20b_clk = {
	.init = gm20b_clk_init,
	.fini = gm20b_clk_fini,
	.read = gk20a_clk_read,
	.calc = gm20b_clk_calc,
	.prog = gm20b_clk_prog,
	.tidy = gk20a_clk_tidy,
	.pstates = gm20b_pstates,
	.nr_pstates = ARRAY_SIZE(gm20b_pstates),
	.domains = {
		{ nv_clk_src_crystal, 0xff },
		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
		{ nv_clk_src_max },
	},
};

static int
gm20b_clk_new_speedo0(struct nvkm_device *device, int index,
		      struct nvkm_clk **pclk)
{
	struct gk20a_clk *clk;
	int ret;

	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
	if (!clk)
		return -ENOMEM;
	*pclk = &clk->base;

	ret = gk20a_clk_ctor(device, index, &gm20b_clk_speedo0,
			     &gm20b_pllg_params, clk);

	clk->pl_to_div = pl_to_div;
	clk->div_to_pl = div_to_pl;

	return ret;
}

/* FUSE register */
#define FUSE_RESERVED_CALIB0	0x204
#define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT	0
#define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH	4
#define FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT	4
#define FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH	10
#define FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT		14
#define FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH		10
#define FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT		24
#define FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH		6
#define FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT		30
#define FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH		2

static int
gm20b_clk_init_fused_params(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	u32 val = 0;
	u32 rev = 0;

#if IS_ENABLED(CONFIG_ARCH_TEGRA)
	tegra_fuse_readl(FUSE_RESERVED_CALIB0, &val);
	rev = (val >> FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT) &
	      MASK(FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH);
#endif

	/* No fused parameters, we will calibrate later */
	if (rev == 0)
		return -EINVAL;

	/* Integer part in mV + fractional part in uV */
	clk->uvdet_slope = ((val >> FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH)) * 1000 +
			((val >> FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH));

	/* Integer part in mV + fractional part in 100uV */
	clk->uvdet_offs = ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT) &
			MASK(FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH)) * 1000 +
			((val >> FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT) &
			 MASK(FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH)) * 100;

	nvkm_debug(subdev, "fused calibration data: slope %d, offs %d\n",
		   clk->uvdet_slope, clk->uvdet_offs);
	return 0;
}

static int
gm20b_clk_init_safe_fmax(struct gm20b_clk *clk)
{
	struct nvkm_subdev *subdev = &clk->base.base.subdev;
	struct nvkm_volt *volt = subdev->device->volt;
	struct nvkm_pstate *pstates = clk->base.base.func->pstates;
	int nr_pstates = clk->base.base.func->nr_pstates;
	int vmin, id = 0;
	u32 fmax = 0;
	int i;

	/* find lowest voltage we can use */
	vmin = volt->vid[0].uv;
	for (i = 1; i < volt->vid_nr; i++) {
		if (volt->vid[i].uv <= vmin) {
			vmin = volt->vid[i].uv;
			id = volt->vid[i].vid;
		}
	}

	/* find max frequency at this voltage */
	for (i = 0; i < nr_pstates; i++)
		if (pstates[i].base.voltage == id)
			fmax = max(fmax,
				   pstates[i].base.domain[nv_clk_src_gpc]);

	if (!fmax) {
		nvkm_error(subdev, "failed to evaluate safe fmax\n");
		return -EINVAL;
	}

	/* we are safe at 90% of the max frequency */
	clk->safe_fmax_vmin = fmax * (100 - 10) / 100;
	nvkm_debug(subdev, "safe fmax @ vmin = %u Khz\n", clk->safe_fmax_vmin);

	return 0;
}

int
gm20b_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
	struct nvkm_device_tegra *tdev = device->func->tegra(device);
	struct gm20b_clk *clk;
	struct nvkm_subdev *subdev;
	struct gk20a_clk_pllg_params *clk_params;
	int ret;

	/* Speedo 0 GPUs cannot use noise-aware PLL */
	if (tdev->gpu_speedo_id == 0)
		return gm20b_clk_new_speedo0(device, index, pclk);

	/* Speedo >= 1, use NAPLL */
	clk = kzalloc(sizeof(*clk) + sizeof(*clk_params), GFP_KERNEL);
	if (!clk)
		return -ENOMEM;
	*pclk = &clk->base.base;
	subdev = &clk->base.base.subdev;

	/* duplicate the clock parameters since we will patch them below */
	clk_params = (void *) (clk + 1);
	*clk_params = gm20b_pllg_params;
	ret = gk20a_clk_ctor(device, index, &gm20b_clk, clk_params,
			     &clk->base);
	if (ret)
		return ret;

	/*
	 * NAPLL can only work with max_u, clamp the m range so
	 * gk20a_pllg_calc_mnp always uses it
	 */
	clk_params->max_m = clk_params->min_m = DIV_ROUND_UP(clk_params->max_u,
						(clk->base.parent_rate / KHZ));
	if (clk_params->max_m == 0) {
		nvkm_warn(subdev, "cannot use NAPLL, using legacy clock...\n");
		kfree(clk);
		return gm20b_clk_new_speedo0(device, index, pclk);
	}

	clk->base.pl_to_div = pl_to_div;
	clk->base.div_to_pl = div_to_pl;

	clk->dvfs_params = &gm20b_dvfs_params;

	ret = gm20b_clk_init_fused_params(clk);
	/*
	 * we will calibrate during init - should never happen on
	 * prod parts
	 */
	if (ret)
		nvkm_warn(subdev, "no fused calibration parameters\n");

	ret = gm20b_clk_init_safe_fmax(clk);
	if (ret)
		return ret;

	return 0;
}