Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
 *
 * Uses a block device as cache for other block devices; optimized for SSDs.
 * All allocation is done in buckets, which should match the erase block size
 * of the device.
 *
 * Buckets containing cached data are kept on a heap sorted by priority;
 * bucket priority is increased on cache hit, and periodically all the buckets
 * on the heap have their priority scaled down. This currently is just used as
 * an LRU but in the future should allow for more intelligent heuristics.
 *
 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
 * counter. Garbage collection is used to remove stale pointers.
 *
 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
 * as keys are inserted we only sort the pages that have not yet been written.
 * When garbage collection is run, we resort the entire node.
 *
 * All configuration is done via sysfs; see Documentation/bcache.txt.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "extents.h"
#include "writeback.h"

static void sort_key_next(struct btree_iter *iter,
			  struct btree_iter_set *i)
{
	i->k = bkey_next(i->k);

	if (i->k == i->end)
		*i = iter->data[--iter->used];
}

static bool bch_key_sort_cmp(struct btree_iter_set l,
			     struct btree_iter_set r)
{
	int64_t c = bkey_cmp(l.k, r.k);

	return c ? c > 0 : l.k < r.k;
}

static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
{
	unsigned i;

	for (i = 0; i < KEY_PTRS(k); i++)
		if (ptr_available(c, k, i)) {
			struct cache *ca = PTR_CACHE(c, k, i);
			size_t bucket = PTR_BUCKET_NR(c, k, i);
			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));

			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
			    bucket <  ca->sb.first_bucket ||
			    bucket >= ca->sb.nbuckets)
				return true;
		}

	return false;
}

/* Common among btree and extent ptrs */

static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
{
	unsigned i;

	for (i = 0; i < KEY_PTRS(k); i++)
		if (ptr_available(c, k, i)) {
			struct cache *ca = PTR_CACHE(c, k, i);
			size_t bucket = PTR_BUCKET_NR(c, k, i);
			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));

			if (KEY_SIZE(k) + r > c->sb.bucket_size)
				return "bad, length too big";
			if (bucket <  ca->sb.first_bucket)
				return "bad, short offset";
			if (bucket >= ca->sb.nbuckets)
				return "bad, offset past end of device";
			if (ptr_stale(c, k, i))
				return "stale";
		}

	if (!bkey_cmp(k, &ZERO_KEY))
		return "bad, null key";
	if (!KEY_PTRS(k))
		return "bad, no pointers";
	if (!KEY_SIZE(k))
		return "zeroed key";
	return "";
}

void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
{
	unsigned i = 0;
	char *out = buf, *end = buf + size;

#define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__))

	p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));

	for (i = 0; i < KEY_PTRS(k); i++) {
		if (i)
			p(", ");

		if (PTR_DEV(k, i) == PTR_CHECK_DEV)
			p("check dev");
		else
			p("%llu:%llu gen %llu", PTR_DEV(k, i),
			  PTR_OFFSET(k, i), PTR_GEN(k, i));
	}

	p("]");

	if (KEY_DIRTY(k))
		p(" dirty");
	if (KEY_CSUM(k))
		p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
#undef p
}

static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
{
	struct btree *b = container_of(keys, struct btree, keys);
	unsigned j;
	char buf[80];

	bch_extent_to_text(buf, sizeof(buf), k);
	printk(" %s", buf);

	for (j = 0; j < KEY_PTRS(k); j++) {
		size_t n = PTR_BUCKET_NR(b->c, k, j);
		printk(" bucket %zu", n);

		if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
			printk(" prio %i",
			       PTR_BUCKET(b->c, k, j)->prio);
	}

	printk(" %s\n", bch_ptr_status(b->c, k));
}

/* Btree ptrs */

bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
{
	char buf[80];

	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
		goto bad;

	if (__ptr_invalid(c, k))
		goto bad;

	return false;
bad:
	bch_extent_to_text(buf, sizeof(buf), k);
	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
	return true;
}

static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
{
	struct btree *b = container_of(bk, struct btree, keys);
	return __bch_btree_ptr_invalid(b->c, k);
}

static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
{
	unsigned i;
	char buf[80];
	struct bucket *g;

	if (mutex_trylock(&b->c->bucket_lock)) {
		for (i = 0; i < KEY_PTRS(k); i++)
			if (ptr_available(b->c, k, i)) {
				g = PTR_BUCKET(b->c, k, i);

				if (KEY_DIRTY(k) ||
				    g->prio != BTREE_PRIO ||
				    (b->c->gc_mark_valid &&
				     GC_MARK(g) != GC_MARK_METADATA))
					goto err;
			}

		mutex_unlock(&b->c->bucket_lock);
	}

	return false;
err:
	mutex_unlock(&b->c->bucket_lock);
	bch_extent_to_text(buf, sizeof(buf), k);
	btree_bug(b,
"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
		  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
		  g->prio, g->gen, g->last_gc, GC_MARK(g));
	return true;
}

static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
{
	struct btree *b = container_of(bk, struct btree, keys);
	unsigned i;

	if (!bkey_cmp(k, &ZERO_KEY) ||
	    !KEY_PTRS(k) ||
	    bch_ptr_invalid(bk, k))
		return true;

	for (i = 0; i < KEY_PTRS(k); i++)
		if (!ptr_available(b->c, k, i) ||
		    ptr_stale(b->c, k, i))
			return true;

	if (expensive_debug_checks(b->c) &&
	    btree_ptr_bad_expensive(b, k))
		return true;

	return false;
}

static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
				       struct bkey *insert,
				       struct btree_iter *iter,
				       struct bkey *replace_key)
{
	struct btree *b = container_of(bk, struct btree, keys);

	if (!KEY_OFFSET(insert))
		btree_current_write(b)->prio_blocked++;

	return false;
}

const struct btree_keys_ops bch_btree_keys_ops = {
	.sort_cmp	= bch_key_sort_cmp,
	.insert_fixup	= bch_btree_ptr_insert_fixup,
	.key_invalid	= bch_btree_ptr_invalid,
	.key_bad	= bch_btree_ptr_bad,
	.key_to_text	= bch_extent_to_text,
	.key_dump	= bch_bkey_dump,
};

/* Extents */

/*
 * Returns true if l > r - unless l == r, in which case returns true if l is
 * older than r.
 *
 * Necessary for btree_sort_fixup() - if there are multiple keys that compare
 * equal in different sets, we have to process them newest to oldest.
 */
static bool bch_extent_sort_cmp(struct btree_iter_set l,
				struct btree_iter_set r)
{
	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));

	return c ? c > 0 : l.k < r.k;
}

static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
					  struct bkey *tmp)
{
	while (iter->used > 1) {
		struct btree_iter_set *top = iter->data, *i = top + 1;

		if (iter->used > 2 &&
		    bch_extent_sort_cmp(i[0], i[1]))
			i++;

		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
			break;

		if (!KEY_SIZE(i->k)) {
			sort_key_next(iter, i);
			heap_sift(iter, i - top, bch_extent_sort_cmp);
			continue;
		}

		if (top->k > i->k) {
			if (bkey_cmp(top->k, i->k) >= 0)
				sort_key_next(iter, i);
			else
				bch_cut_front(top->k, i->k);

			heap_sift(iter, i - top, bch_extent_sort_cmp);
		} else {
			/* can't happen because of comparison func */
			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));

			if (bkey_cmp(i->k, top->k) < 0) {
				bkey_copy(tmp, top->k);

				bch_cut_back(&START_KEY(i->k), tmp);
				bch_cut_front(i->k, top->k);
				heap_sift(iter, 0, bch_extent_sort_cmp);

				return tmp;
			} else {
				bch_cut_back(&START_KEY(i->k), top->k);
			}
		}
	}

	return NULL;
}

static void bch_subtract_dirty(struct bkey *k,
			   struct cache_set *c,
			   uint64_t offset,
			   int sectors)
{
	if (KEY_DIRTY(k))
		bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
					     offset, -sectors);
}

static bool bch_extent_insert_fixup(struct btree_keys *b,
				    struct bkey *insert,
				    struct btree_iter *iter,
				    struct bkey *replace_key)
{
	struct cache_set *c = container_of(b, struct btree, keys)->c;

	uint64_t old_offset;
	unsigned old_size, sectors_found = 0;

	BUG_ON(!KEY_OFFSET(insert));
	BUG_ON(!KEY_SIZE(insert));

	while (1) {
		struct bkey *k = bch_btree_iter_next(iter);
		if (!k)
			break;

		if (bkey_cmp(&START_KEY(k), insert) >= 0) {
			if (KEY_SIZE(k))
				break;
			else
				continue;
		}

		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
			continue;

		old_offset = KEY_START(k);
		old_size = KEY_SIZE(k);

		/*
		 * We might overlap with 0 size extents; we can't skip these
		 * because if they're in the set we're inserting to we have to
		 * adjust them so they don't overlap with the key we're
		 * inserting. But we don't want to check them for replace
		 * operations.
		 */

		if (replace_key && KEY_SIZE(k)) {
			/*
			 * k might have been split since we inserted/found the
			 * key we're replacing
			 */
			unsigned i;
			uint64_t offset = KEY_START(k) -
				KEY_START(replace_key);

			/* But it must be a subset of the replace key */
			if (KEY_START(k) < KEY_START(replace_key) ||
			    KEY_OFFSET(k) > KEY_OFFSET(replace_key))
				goto check_failed;

			/* We didn't find a key that we were supposed to */
			if (KEY_START(k) > KEY_START(insert) + sectors_found)
				goto check_failed;

			if (!bch_bkey_equal_header(k, replace_key))
				goto check_failed;

			/* skip past gen */
			offset <<= 8;

			BUG_ON(!KEY_PTRS(replace_key));

			for (i = 0; i < KEY_PTRS(replace_key); i++)
				if (k->ptr[i] != replace_key->ptr[i] + offset)
					goto check_failed;

			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
		}

		if (bkey_cmp(insert, k) < 0 &&
		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
			/*
			 * We overlapped in the middle of an existing key: that
			 * means we have to split the old key. But we have to do
			 * slightly different things depending on whether the
			 * old key has been written out yet.
			 */

			struct bkey *top;

			bch_subtract_dirty(k, c, KEY_START(insert),
				       KEY_SIZE(insert));

			if (bkey_written(b, k)) {
				/*
				 * We insert a new key to cover the top of the
				 * old key, and the old key is modified in place
				 * to represent the bottom split.
				 *
				 * It's completely arbitrary whether the new key
				 * is the top or the bottom, but it has to match
				 * up with what btree_sort_fixup() does - it
				 * doesn't check for this kind of overlap, it
				 * depends on us inserting a new key for the top
				 * here.
				 */
				top = bch_bset_search(b, bset_tree_last(b),
						      insert);
				bch_bset_insert(b, top, k);
			} else {
				BKEY_PADDED(key) temp;
				bkey_copy(&temp.key, k);
				bch_bset_insert(b, k, &temp.key);
				top = bkey_next(k);
			}

			bch_cut_front(insert, top);
			bch_cut_back(&START_KEY(insert), k);
			bch_bset_fix_invalidated_key(b, k);
			goto out;
		}

		if (bkey_cmp(insert, k) < 0) {
			bch_cut_front(insert, k);
		} else {
			if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
				old_offset = KEY_START(insert);

			if (bkey_written(b, k) &&
			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
				/*
				 * Completely overwrote, so we don't have to
				 * invalidate the binary search tree
				 */
				bch_cut_front(k, k);
			} else {
				__bch_cut_back(&START_KEY(insert), k);
				bch_bset_fix_invalidated_key(b, k);
			}
		}

		bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
	}

check_failed:
	if (replace_key) {
		if (!sectors_found) {
			return true;
		} else if (sectors_found < KEY_SIZE(insert)) {
			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
				       (KEY_SIZE(insert) - sectors_found));
			SET_KEY_SIZE(insert, sectors_found);
		}
	}
out:
	if (KEY_DIRTY(insert))
		bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
					     KEY_START(insert),
					     KEY_SIZE(insert));

	return false;
}

bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
{
	char buf[80];

	if (!KEY_SIZE(k))
		return true;

	if (KEY_SIZE(k) > KEY_OFFSET(k))
		goto bad;

	if (__ptr_invalid(c, k))
		goto bad;

	return false;
bad:
	bch_extent_to_text(buf, sizeof(buf), k);
	cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
	return true;
}

static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
{
	struct btree *b = container_of(bk, struct btree, keys);
	return __bch_extent_invalid(b->c, k);
}

static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
				     unsigned ptr)
{
	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
	char buf[80];

	if (mutex_trylock(&b->c->bucket_lock)) {
		if (b->c->gc_mark_valid &&
		    (!GC_MARK(g) ||
		     GC_MARK(g) == GC_MARK_METADATA ||
		     (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
			goto err;

		if (g->prio == BTREE_PRIO)
			goto err;

		mutex_unlock(&b->c->bucket_lock);
	}

	return false;
err:
	mutex_unlock(&b->c->bucket_lock);
	bch_extent_to_text(buf, sizeof(buf), k);
	btree_bug(b,
"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
		  g->prio, g->gen, g->last_gc, GC_MARK(g));
	return true;
}

static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
{
	struct btree *b = container_of(bk, struct btree, keys);
	struct bucket *g;
	unsigned i, stale;

	if (!KEY_PTRS(k) ||
	    bch_extent_invalid(bk, k))
		return true;

	for (i = 0; i < KEY_PTRS(k); i++)
		if (!ptr_available(b->c, k, i))
			return true;

	if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
		return false;

	for (i = 0; i < KEY_PTRS(k); i++) {
		g = PTR_BUCKET(b->c, k, i);
		stale = ptr_stale(b->c, k, i);

		btree_bug_on(stale > 96, b,
			     "key too stale: %i, need_gc %u",
			     stale, b->c->need_gc);

		btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
			     b, "stale dirty pointer");

		if (stale)
			return true;

		if (expensive_debug_checks(b->c) &&
		    bch_extent_bad_expensive(b, k, i))
			return true;
	}

	return false;
}

static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
{
	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
		~((uint64_t)1 << 63);
}

static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
{
	struct btree *b = container_of(bk, struct btree, keys);
	unsigned i;

	if (key_merging_disabled(b->c))
		return false;

	for (i = 0; i < KEY_PTRS(l); i++)
		if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
			return false;

	/* Keys with no pointers aren't restricted to one bucket and could
	 * overflow KEY_SIZE
	 */
	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
		SET_KEY_SIZE(l, USHRT_MAX);

		bch_cut_front(l, r);
		return false;
	}

	if (KEY_CSUM(l)) {
		if (KEY_CSUM(r))
			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
		else
			SET_KEY_CSUM(l, 0);
	}

	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));

	return true;
}

const struct btree_keys_ops bch_extent_keys_ops = {
	.sort_cmp	= bch_extent_sort_cmp,
	.sort_fixup	= bch_extent_sort_fixup,
	.insert_fixup	= bch_extent_insert_fixup,
	.key_invalid	= bch_extent_invalid,
	.key_bad	= bch_extent_bad,
	.key_merge	= bch_extent_merge,
	.key_to_text	= bch_extent_to_text,
	.key_dump	= bch_bkey_dump,
	.is_extents	= true,
};