Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
/* Generic associative array implementation.
 *
 * See Documentation/core-api/assoc_array.rst for information.
 *
 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */
//#define DEBUG
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/assoc_array_priv.h>

/*
 * Iterate over an associative array.  The caller must hold the RCU read lock
 * or better.
 */
static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
				       const struct assoc_array_ptr *stop,
				       int (*iterator)(const void *leaf,
						       void *iterator_data),
				       void *iterator_data)
{
	const struct assoc_array_shortcut *shortcut;
	const struct assoc_array_node *node;
	const struct assoc_array_ptr *cursor, *ptr, *parent;
	unsigned long has_meta;
	int slot, ret;

	cursor = root;

begin_node:
	if (assoc_array_ptr_is_shortcut(cursor)) {
		/* Descend through a shortcut */
		shortcut = assoc_array_ptr_to_shortcut(cursor);
		smp_read_barrier_depends();
		cursor = ACCESS_ONCE(shortcut->next_node);
	}

	node = assoc_array_ptr_to_node(cursor);
	smp_read_barrier_depends();
	slot = 0;

	/* We perform two passes of each node.
	 *
	 * The first pass does all the leaves in this node.  This means we
	 * don't miss any leaves if the node is split up by insertion whilst
	 * we're iterating over the branches rooted here (we may, however, see
	 * some leaves twice).
	 */
	has_meta = 0;
	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		ptr = ACCESS_ONCE(node->slots[slot]);
		has_meta |= (unsigned long)ptr;
		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
			/* We need a barrier between the read of the pointer
			 * and dereferencing the pointer - but only if we are
			 * actually going to dereference it.
			 */
			smp_read_barrier_depends();

			/* Invoke the callback */
			ret = iterator(assoc_array_ptr_to_leaf(ptr),
				       iterator_data);
			if (ret)
				return ret;
		}
	}

	/* The second pass attends to all the metadata pointers.  If we follow
	 * one of these we may find that we don't come back here, but rather go
	 * back to a replacement node with the leaves in a different layout.
	 *
	 * We are guaranteed to make progress, however, as the slot number for
	 * a particular portion of the key space cannot change - and we
	 * continue at the back pointer + 1.
	 */
	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
		goto finished_node;
	slot = 0;

continue_node:
	node = assoc_array_ptr_to_node(cursor);
	smp_read_barrier_depends();

	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		ptr = ACCESS_ONCE(node->slots[slot]);
		if (assoc_array_ptr_is_meta(ptr)) {
			cursor = ptr;
			goto begin_node;
		}
	}

finished_node:
	/* Move up to the parent (may need to skip back over a shortcut) */
	parent = ACCESS_ONCE(node->back_pointer);
	slot = node->parent_slot;
	if (parent == stop)
		return 0;

	if (assoc_array_ptr_is_shortcut(parent)) {
		shortcut = assoc_array_ptr_to_shortcut(parent);
		smp_read_barrier_depends();
		cursor = parent;
		parent = ACCESS_ONCE(shortcut->back_pointer);
		slot = shortcut->parent_slot;
		if (parent == stop)
			return 0;
	}

	/* Ascend to next slot in parent node */
	cursor = parent;
	slot++;
	goto continue_node;
}

/**
 * assoc_array_iterate - Pass all objects in the array to a callback
 * @array: The array to iterate over.
 * @iterator: The callback function.
 * @iterator_data: Private data for the callback function.
 *
 * Iterate over all the objects in an associative array.  Each one will be
 * presented to the iterator function.
 *
 * If the array is being modified concurrently with the iteration then it is
 * possible that some objects in the array will be passed to the iterator
 * callback more than once - though every object should be passed at least
 * once.  If this is undesirable then the caller must lock against modification
 * for the duration of this function.
 *
 * The function will return 0 if no objects were in the array or else it will
 * return the result of the last iterator function called.  Iteration stops
 * immediately if any call to the iteration function results in a non-zero
 * return.
 *
 * The caller should hold the RCU read lock or better if concurrent
 * modification is possible.
 */
int assoc_array_iterate(const struct assoc_array *array,
			int (*iterator)(const void *object,
					void *iterator_data),
			void *iterator_data)
{
	struct assoc_array_ptr *root = ACCESS_ONCE(array->root);

	if (!root)
		return 0;
	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
}

enum assoc_array_walk_status {
	assoc_array_walk_tree_empty,
	assoc_array_walk_found_terminal_node,
	assoc_array_walk_found_wrong_shortcut,
};

struct assoc_array_walk_result {
	struct {
		struct assoc_array_node	*node;	/* Node in which leaf might be found */
		int		level;
		int		slot;
	} terminal_node;
	struct {
		struct assoc_array_shortcut *shortcut;
		int		level;
		int		sc_level;
		unsigned long	sc_segments;
		unsigned long	dissimilarity;
	} wrong_shortcut;
};

/*
 * Navigate through the internal tree looking for the closest node to the key.
 */
static enum assoc_array_walk_status
assoc_array_walk(const struct assoc_array *array,
		 const struct assoc_array_ops *ops,
		 const void *index_key,
		 struct assoc_array_walk_result *result)
{
	struct assoc_array_shortcut *shortcut;
	struct assoc_array_node *node;
	struct assoc_array_ptr *cursor, *ptr;
	unsigned long sc_segments, dissimilarity;
	unsigned long segments;
	int level, sc_level, next_sc_level;
	int slot;

	pr_devel("-->%s()\n", __func__);

	cursor = ACCESS_ONCE(array->root);
	if (!cursor)
		return assoc_array_walk_tree_empty;

	level = 0;

	/* Use segments from the key for the new leaf to navigate through the
	 * internal tree, skipping through nodes and shortcuts that are on
	 * route to the destination.  Eventually we'll come to a slot that is
	 * either empty or contains a leaf at which point we've found a node in
	 * which the leaf we're looking for might be found or into which it
	 * should be inserted.
	 */
jumped:
	segments = ops->get_key_chunk(index_key, level);
	pr_devel("segments[%d]: %lx\n", level, segments);

	if (assoc_array_ptr_is_shortcut(cursor))
		goto follow_shortcut;

consider_node:
	node = assoc_array_ptr_to_node(cursor);
	smp_read_barrier_depends();

	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
	slot &= ASSOC_ARRAY_FAN_MASK;
	ptr = ACCESS_ONCE(node->slots[slot]);

	pr_devel("consider slot %x [ix=%d type=%lu]\n",
		 slot, level, (unsigned long)ptr & 3);

	if (!assoc_array_ptr_is_meta(ptr)) {
		/* The node doesn't have a node/shortcut pointer in the slot
		 * corresponding to the index key that we have to follow.
		 */
		result->terminal_node.node = node;
		result->terminal_node.level = level;
		result->terminal_node.slot = slot;
		pr_devel("<--%s() = terminal_node\n", __func__);
		return assoc_array_walk_found_terminal_node;
	}

	if (assoc_array_ptr_is_node(ptr)) {
		/* There is a pointer to a node in the slot corresponding to
		 * this index key segment, so we need to follow it.
		 */
		cursor = ptr;
		level += ASSOC_ARRAY_LEVEL_STEP;
		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
			goto consider_node;
		goto jumped;
	}

	/* There is a shortcut in the slot corresponding to the index key
	 * segment.  We follow the shortcut if its partial index key matches
	 * this leaf's.  Otherwise we need to split the shortcut.
	 */
	cursor = ptr;
follow_shortcut:
	shortcut = assoc_array_ptr_to_shortcut(cursor);
	smp_read_barrier_depends();
	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
	BUG_ON(sc_level > shortcut->skip_to_level);

	do {
		/* Check the leaf against the shortcut's index key a word at a
		 * time, trimming the final word (the shortcut stores the index
		 * key completely from the root to the shortcut's target).
		 */
		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
			segments = ops->get_key_chunk(index_key, sc_level);

		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
		dissimilarity = segments ^ sc_segments;

		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
			/* Trim segments that are beyond the shortcut */
			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
			dissimilarity &= ~(ULONG_MAX << shift);
			next_sc_level = shortcut->skip_to_level;
		} else {
			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
		}

		if (dissimilarity != 0) {
			/* This shortcut points elsewhere */
			result->wrong_shortcut.shortcut = shortcut;
			result->wrong_shortcut.level = level;
			result->wrong_shortcut.sc_level = sc_level;
			result->wrong_shortcut.sc_segments = sc_segments;
			result->wrong_shortcut.dissimilarity = dissimilarity;
			return assoc_array_walk_found_wrong_shortcut;
		}

		sc_level = next_sc_level;
	} while (sc_level < shortcut->skip_to_level);

	/* The shortcut matches the leaf's index to this point. */
	cursor = ACCESS_ONCE(shortcut->next_node);
	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
		level = sc_level;
		goto jumped;
	} else {
		level = sc_level;
		goto consider_node;
	}
}

/**
 * assoc_array_find - Find an object by index key
 * @array: The associative array to search.
 * @ops: The operations to use.
 * @index_key: The key to the object.
 *
 * Find an object in an associative array by walking through the internal tree
 * to the node that should contain the object and then searching the leaves
 * there.  NULL is returned if the requested object was not found in the array.
 *
 * The caller must hold the RCU read lock or better.
 */
void *assoc_array_find(const struct assoc_array *array,
		       const struct assoc_array_ops *ops,
		       const void *index_key)
{
	struct assoc_array_walk_result result;
	const struct assoc_array_node *node;
	const struct assoc_array_ptr *ptr;
	const void *leaf;
	int slot;

	if (assoc_array_walk(array, ops, index_key, &result) !=
	    assoc_array_walk_found_terminal_node)
		return NULL;

	node = result.terminal_node.node;
	smp_read_barrier_depends();

	/* If the target key is available to us, it's has to be pointed to by
	 * the terminal node.
	 */
	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		ptr = ACCESS_ONCE(node->slots[slot]);
		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
			/* We need a barrier between the read of the pointer
			 * and dereferencing the pointer - but only if we are
			 * actually going to dereference it.
			 */
			leaf = assoc_array_ptr_to_leaf(ptr);
			smp_read_barrier_depends();
			if (ops->compare_object(leaf, index_key))
				return (void *)leaf;
		}
	}

	return NULL;
}

/*
 * Destructively iterate over an associative array.  The caller must prevent
 * other simultaneous accesses.
 */
static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
					const struct assoc_array_ops *ops)
{
	struct assoc_array_shortcut *shortcut;
	struct assoc_array_node *node;
	struct assoc_array_ptr *cursor, *parent = NULL;
	int slot = -1;

	pr_devel("-->%s()\n", __func__);

	cursor = root;
	if (!cursor) {
		pr_devel("empty\n");
		return;
	}

move_to_meta:
	if (assoc_array_ptr_is_shortcut(cursor)) {
		/* Descend through a shortcut */
		pr_devel("[%d] shortcut\n", slot);
		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
		shortcut = assoc_array_ptr_to_shortcut(cursor);
		BUG_ON(shortcut->back_pointer != parent);
		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
		parent = cursor;
		cursor = shortcut->next_node;
		slot = -1;
		BUG_ON(!assoc_array_ptr_is_node(cursor));
	}

	pr_devel("[%d] node\n", slot);
	node = assoc_array_ptr_to_node(cursor);
	BUG_ON(node->back_pointer != parent);
	BUG_ON(slot != -1 && node->parent_slot != slot);
	slot = 0;

continue_node:
	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		struct assoc_array_ptr *ptr = node->slots[slot];
		if (!ptr)
			continue;
		if (assoc_array_ptr_is_meta(ptr)) {
			parent = cursor;
			cursor = ptr;
			goto move_to_meta;
		}

		if (ops) {
			pr_devel("[%d] free leaf\n", slot);
			ops->free_object(assoc_array_ptr_to_leaf(ptr));
		}
	}

	parent = node->back_pointer;
	slot = node->parent_slot;
	pr_devel("free node\n");
	kfree(node);
	if (!parent)
		return; /* Done */

	/* Move back up to the parent (may need to free a shortcut on
	 * the way up) */
	if (assoc_array_ptr_is_shortcut(parent)) {
		shortcut = assoc_array_ptr_to_shortcut(parent);
		BUG_ON(shortcut->next_node != cursor);
		cursor = parent;
		parent = shortcut->back_pointer;
		slot = shortcut->parent_slot;
		pr_devel("free shortcut\n");
		kfree(shortcut);
		if (!parent)
			return;

		BUG_ON(!assoc_array_ptr_is_node(parent));
	}

	/* Ascend to next slot in parent node */
	pr_devel("ascend to %p[%d]\n", parent, slot);
	cursor = parent;
	node = assoc_array_ptr_to_node(cursor);
	slot++;
	goto continue_node;
}

/**
 * assoc_array_destroy - Destroy an associative array
 * @array: The array to destroy.
 * @ops: The operations to use.
 *
 * Discard all metadata and free all objects in an associative array.  The
 * array will be empty and ready to use again upon completion.  This function
 * cannot fail.
 *
 * The caller must prevent all other accesses whilst this takes place as no
 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
 * accesses to continue.  On the other hand, no memory allocation is required.
 */
void assoc_array_destroy(struct assoc_array *array,
			 const struct assoc_array_ops *ops)
{
	assoc_array_destroy_subtree(array->root, ops);
	array->root = NULL;
}

/*
 * Handle insertion into an empty tree.
 */
static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
{
	struct assoc_array_node *new_n0;

	pr_devel("-->%s()\n", __func__);

	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
	if (!new_n0)
		return false;

	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
	edit->leaf_p = &new_n0->slots[0];
	edit->adjust_count_on = new_n0;
	edit->set[0].ptr = &edit->array->root;
	edit->set[0].to = assoc_array_node_to_ptr(new_n0);

	pr_devel("<--%s() = ok [no root]\n", __func__);
	return true;
}

/*
 * Handle insertion into a terminal node.
 */
static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
						  const struct assoc_array_ops *ops,
						  const void *index_key,
						  struct assoc_array_walk_result *result)
{
	struct assoc_array_shortcut *shortcut, *new_s0;
	struct assoc_array_node *node, *new_n0, *new_n1, *side;
	struct assoc_array_ptr *ptr;
	unsigned long dissimilarity, base_seg, blank;
	size_t keylen;
	bool have_meta;
	int level, diff;
	int slot, next_slot, free_slot, i, j;

	node	= result->terminal_node.node;
	level	= result->terminal_node.level;
	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;

	pr_devel("-->%s()\n", __func__);

	/* We arrived at a node which doesn't have an onward node or shortcut
	 * pointer that we have to follow.  This means that (a) the leaf we
	 * want must go here (either by insertion or replacement) or (b) we
	 * need to split this node and insert in one of the fragments.
	 */
	free_slot = -1;

	/* Firstly, we have to check the leaves in this node to see if there's
	 * a matching one we should replace in place.
	 */
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		ptr = node->slots[i];
		if (!ptr) {
			free_slot = i;
			continue;
		}
		if (assoc_array_ptr_is_leaf(ptr) &&
		    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
					index_key)) {
			pr_devel("replace in slot %d\n", i);
			edit->leaf_p = &node->slots[i];
			edit->dead_leaf = node->slots[i];
			pr_devel("<--%s() = ok [replace]\n", __func__);
			return true;
		}
	}

	/* If there is a free slot in this node then we can just insert the
	 * leaf here.
	 */
	if (free_slot >= 0) {
		pr_devel("insert in free slot %d\n", free_slot);
		edit->leaf_p = &node->slots[free_slot];
		edit->adjust_count_on = node;
		pr_devel("<--%s() = ok [insert]\n", __func__);
		return true;
	}

	/* The node has no spare slots - so we're either going to have to split
	 * it or insert another node before it.
	 *
	 * Whatever, we're going to need at least two new nodes - so allocate
	 * those now.  We may also need a new shortcut, but we deal with that
	 * when we need it.
	 */
	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
	if (!new_n0)
		return false;
	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
	if (!new_n1)
		return false;
	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);

	/* We need to find out how similar the leaves are. */
	pr_devel("no spare slots\n");
	have_meta = false;
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		ptr = node->slots[i];
		if (assoc_array_ptr_is_meta(ptr)) {
			edit->segment_cache[i] = 0xff;
			have_meta = true;
			continue;
		}
		base_seg = ops->get_object_key_chunk(
			assoc_array_ptr_to_leaf(ptr), level);
		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
	}

	if (have_meta) {
		pr_devel("have meta\n");
		goto split_node;
	}

	/* The node contains only leaves */
	dissimilarity = 0;
	base_seg = edit->segment_cache[0];
	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
		dissimilarity |= edit->segment_cache[i] ^ base_seg;

	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);

	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
		/* The old leaves all cluster in the same slot.  We will need
		 * to insert a shortcut if the new node wants to cluster with them.
		 */
		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
			goto all_leaves_cluster_together;

		/* Otherwise all the old leaves cluster in the same slot, but
		 * the new leaf wants to go into a different slot - so we
		 * create a new node (n0) to hold the new leaf and a pointer to
		 * a new node (n1) holding all the old leaves.
		 *
		 * This can be done by falling through to the node splitting
		 * path.
		 */
		pr_devel("present leaves cluster but not new leaf\n");
	}

split_node:
	pr_devel("split node\n");

	/* We need to split the current node.  The node must contain anything
	 * from a single leaf (in the one leaf case, this leaf will cluster
	 * with the new leaf) and the rest meta-pointers, to all leaves, some
	 * of which may cluster.
	 *
	 * It won't contain the case in which all the current leaves plus the
	 * new leaves want to cluster in the same slot.
	 *
	 * We need to expel at least two leaves out of a set consisting of the
	 * leaves in the node and the new leaf.  The current meta pointers can
	 * just be copied as they shouldn't cluster with any of the leaves.
	 *
	 * We need a new node (n0) to replace the current one and a new node to
	 * take the expelled nodes (n1).
	 */
	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
	new_n0->back_pointer = node->back_pointer;
	new_n0->parent_slot = node->parent_slot;
	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
	new_n1->parent_slot = -1; /* Need to calculate this */

do_split_node:
	pr_devel("do_split_node\n");

	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
	new_n1->nr_leaves_on_branch = 0;

	/* Begin by finding two matching leaves.  There have to be at least two
	 * that match - even if there are meta pointers - because any leaf that
	 * would match a slot with a meta pointer in it must be somewhere
	 * behind that meta pointer and cannot be here.  Further, given N
	 * remaining leaf slots, we now have N+1 leaves to go in them.
	 */
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		slot = edit->segment_cache[i];
		if (slot != 0xff)
			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
				if (edit->segment_cache[j] == slot)
					goto found_slot_for_multiple_occupancy;
	}
found_slot_for_multiple_occupancy:
	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);

	new_n1->parent_slot = slot;

	/* Metadata pointers cannot change slot */
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
		if (assoc_array_ptr_is_meta(node->slots[i]))
			new_n0->slots[i] = node->slots[i];
		else
			new_n0->slots[i] = NULL;
	BUG_ON(new_n0->slots[slot] != NULL);
	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);

	/* Filter the leaf pointers between the new nodes */
	free_slot = -1;
	next_slot = 0;
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		if (assoc_array_ptr_is_meta(node->slots[i]))
			continue;
		if (edit->segment_cache[i] == slot) {
			new_n1->slots[next_slot++] = node->slots[i];
			new_n1->nr_leaves_on_branch++;
		} else {
			do {
				free_slot++;
			} while (new_n0->slots[free_slot] != NULL);
			new_n0->slots[free_slot] = node->slots[i];
		}
	}

	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);

	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
		do {
			free_slot++;
		} while (new_n0->slots[free_slot] != NULL);
		edit->leaf_p = &new_n0->slots[free_slot];
		edit->adjust_count_on = new_n0;
	} else {
		edit->leaf_p = &new_n1->slots[next_slot++];
		edit->adjust_count_on = new_n1;
	}

	BUG_ON(next_slot <= 1);

	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		if (edit->segment_cache[i] == 0xff) {
			ptr = node->slots[i];
			BUG_ON(assoc_array_ptr_is_leaf(ptr));
			if (assoc_array_ptr_is_node(ptr)) {
				side = assoc_array_ptr_to_node(ptr);
				edit->set_backpointers[i] = &side->back_pointer;
			} else {
				shortcut = assoc_array_ptr_to_shortcut(ptr);
				edit->set_backpointers[i] = &shortcut->back_pointer;
			}
		}
	}

	ptr = node->back_pointer;
	if (!ptr)
		edit->set[0].ptr = &edit->array->root;
	else if (assoc_array_ptr_is_node(ptr))
		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
	else
		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
	pr_devel("<--%s() = ok [split node]\n", __func__);
	return true;

all_leaves_cluster_together:
	/* All the leaves, new and old, want to cluster together in this node
	 * in the same slot, so we have to replace this node with a shortcut to
	 * skip over the identical parts of the key and then place a pair of
	 * nodes, one inside the other, at the end of the shortcut and
	 * distribute the keys between them.
	 *
	 * Firstly we need to work out where the leaves start diverging as a
	 * bit position into their keys so that we know how big the shortcut
	 * needs to be.
	 *
	 * We only need to make a single pass of N of the N+1 leaves because if
	 * any keys differ between themselves at bit X then at least one of
	 * them must also differ with the base key at bit X or before.
	 */
	pr_devel("all leaves cluster together\n");
	diff = INT_MAX;
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
					  index_key);
		if (x < diff) {
			BUG_ON(x < 0);
			diff = x;
		}
	}
	BUG_ON(diff == INT_MAX);
	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);

	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;

	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
			 keylen * sizeof(unsigned long), GFP_KERNEL);
	if (!new_s0)
		return false;
	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);

	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
	new_s0->back_pointer = node->back_pointer;
	new_s0->parent_slot = node->parent_slot;
	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
	new_n0->parent_slot = 0;
	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
	new_n1->parent_slot = -1; /* Need to calculate this */

	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
	BUG_ON(level <= 0);

	for (i = 0; i < keylen; i++)
		new_s0->index_key[i] =
			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);

	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
	new_s0->index_key[keylen - 1] &= ~blank;

	/* This now reduces to a node splitting exercise for which we'll need
	 * to regenerate the disparity table.
	 */
	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
		ptr = node->slots[i];
		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
						     level);
		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
	}

	base_seg = ops->get_key_chunk(index_key, level);
	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
	goto do_split_node;
}

/*
 * Handle insertion into the middle of a shortcut.
 */
static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
					    const struct assoc_array_ops *ops,
					    struct assoc_array_walk_result *result)
{
	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
	struct assoc_array_node *node, *new_n0, *side;
	unsigned long sc_segments, dissimilarity, blank;
	size_t keylen;
	int level, sc_level, diff;
	int sc_slot;

	shortcut	= result->wrong_shortcut.shortcut;
	level		= result->wrong_shortcut.level;
	sc_level	= result->wrong_shortcut.sc_level;
	sc_segments	= result->wrong_shortcut.sc_segments;
	dissimilarity	= result->wrong_shortcut.dissimilarity;

	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
		 __func__, level, dissimilarity, sc_level);

	/* We need to split a shortcut and insert a node between the two
	 * pieces.  Zero-length pieces will be dispensed with entirely.
	 *
	 * First of all, we need to find out in which level the first
	 * difference was.
	 */
	diff = __ffs(dissimilarity);
	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
	pr_devel("diff=%d\n", diff);

	if (!shortcut->back_pointer) {
		edit->set[0].ptr = &edit->array->root;
	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
		node = assoc_array_ptr_to_node(shortcut->back_pointer);
		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
	} else {
		BUG();
	}

	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);

	/* Create a new node now since we're going to need it anyway */
	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
	if (!new_n0)
		return false;
	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
	edit->adjust_count_on = new_n0;

	/* Insert a new shortcut before the new node if this segment isn't of
	 * zero length - otherwise we just connect the new node directly to the
	 * parent.
	 */
	level += ASSOC_ARRAY_LEVEL_STEP;
	if (diff > level) {
		pr_devel("pre-shortcut %d...%d\n", level, diff);
		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;

		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
				 keylen * sizeof(unsigned long), GFP_KERNEL);
		if (!new_s0)
			return false;
		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
		new_s0->back_pointer = shortcut->back_pointer;
		new_s0->parent_slot = shortcut->parent_slot;
		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
		new_s0->skip_to_level = diff;

		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
		new_n0->parent_slot = 0;

		memcpy(new_s0->index_key, shortcut->index_key,
		       keylen * sizeof(unsigned long));

		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
		new_s0->index_key[keylen - 1] &= ~blank;
	} else {
		pr_devel("no pre-shortcut\n");
		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
		new_n0->back_pointer = shortcut->back_pointer;
		new_n0->parent_slot = shortcut->parent_slot;
	}

	side = assoc_array_ptr_to_node(shortcut->next_node);
	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;

	/* We need to know which slot in the new node is going to take a
	 * metadata pointer.
	 */
	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
	sc_slot &= ASSOC_ARRAY_FAN_MASK;

	pr_devel("new slot %lx >> %d -> %d\n",
		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);

	/* Determine whether we need to follow the new node with a replacement
	 * for the current shortcut.  We could in theory reuse the current
	 * shortcut if its parent slot number doesn't change - but that's a
	 * 1-in-16 chance so not worth expending the code upon.
	 */
	level = diff + ASSOC_ARRAY_LEVEL_STEP;
	if (level < shortcut->skip_to_level) {
		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;

		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
				 keylen * sizeof(unsigned long), GFP_KERNEL);
		if (!new_s1)
			return false;
		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);

		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
		new_s1->parent_slot = sc_slot;
		new_s1->next_node = shortcut->next_node;
		new_s1->skip_to_level = shortcut->skip_to_level;

		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);

		memcpy(new_s1->index_key, shortcut->index_key,
		       keylen * sizeof(unsigned long));

		edit->set[1].ptr = &side->back_pointer;
		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
	} else {
		pr_devel("no post-shortcut\n");

		/* We don't have to replace the pointed-to node as long as we
		 * use memory barriers to make sure the parent slot number is
		 * changed before the back pointer (the parent slot number is
		 * irrelevant to the old parent shortcut).
		 */
		new_n0->slots[sc_slot] = shortcut->next_node;
		edit->set_parent_slot[0].p = &side->parent_slot;
		edit->set_parent_slot[0].to = sc_slot;
		edit->set[1].ptr = &side->back_pointer;
		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
	}

	/* Install the new leaf in a spare slot in the new node. */
	if (sc_slot == 0)
		edit->leaf_p = &new_n0->slots[1];
	else
		edit->leaf_p = &new_n0->slots[0];

	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
	return edit;
}

/**
 * assoc_array_insert - Script insertion of an object into an associative array
 * @array: The array to insert into.
 * @ops: The operations to use.
 * @index_key: The key to insert at.
 * @object: The object to insert.
 *
 * Precalculate and preallocate a script for the insertion or replacement of an
 * object in an associative array.  This results in an edit script that can
 * either be applied or cancelled.
 *
 * The function returns a pointer to an edit script or -ENOMEM.
 *
 * The caller should lock against other modifications and must continue to hold
 * the lock until assoc_array_apply_edit() has been called.
 *
 * Accesses to the tree may take place concurrently with this function,
 * provided they hold the RCU read lock.
 */
struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
					    const struct assoc_array_ops *ops,
					    const void *index_key,
					    void *object)
{
	struct assoc_array_walk_result result;
	struct assoc_array_edit *edit;

	pr_devel("-->%s()\n", __func__);

	/* The leaf pointer we're given must not have the bottom bit set as we
	 * use those for type-marking the pointer.  NULL pointers are also not
	 * allowed as they indicate an empty slot but we have to allow them
	 * here as they can be updated later.
	 */
	BUG_ON(assoc_array_ptr_is_meta(object));

	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
	if (!edit)
		return ERR_PTR(-ENOMEM);
	edit->array = array;
	edit->ops = ops;
	edit->leaf = assoc_array_leaf_to_ptr(object);
	edit->adjust_count_by = 1;

	switch (assoc_array_walk(array, ops, index_key, &result)) {
	case assoc_array_walk_tree_empty:
		/* Allocate a root node if there isn't one yet */
		if (!assoc_array_insert_in_empty_tree(edit))
			goto enomem;
		return edit;

	case assoc_array_walk_found_terminal_node:
		/* We found a node that doesn't have a node/shortcut pointer in
		 * the slot corresponding to the index key that we have to
		 * follow.
		 */
		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
							   &result))
			goto enomem;
		return edit;

	case assoc_array_walk_found_wrong_shortcut:
		/* We found a shortcut that didn't match our key in a slot we
		 * needed to follow.
		 */
		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
			goto enomem;
		return edit;
	}

enomem:
	/* Clean up after an out of memory error */
	pr_devel("enomem\n");
	assoc_array_cancel_edit(edit);
	return ERR_PTR(-ENOMEM);
}

/**
 * assoc_array_insert_set_object - Set the new object pointer in an edit script
 * @edit: The edit script to modify.
 * @object: The object pointer to set.
 *
 * Change the object to be inserted in an edit script.  The object pointed to
 * by the old object is not freed.  This must be done prior to applying the
 * script.
 */
void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
{
	BUG_ON(!object);
	edit->leaf = assoc_array_leaf_to_ptr(object);
}

struct assoc_array_delete_collapse_context {
	struct assoc_array_node	*node;
	const void		*skip_leaf;
	int			slot;
};

/*
 * Subtree collapse to node iterator.
 */
static int assoc_array_delete_collapse_iterator(const void *leaf,
						void *iterator_data)
{
	struct assoc_array_delete_collapse_context *collapse = iterator_data;

	if (leaf == collapse->skip_leaf)
		return 0;

	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);

	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
	return 0;
}

/**
 * assoc_array_delete - Script deletion of an object from an associative array
 * @array: The array to search.
 * @ops: The operations to use.
 * @index_key: The key to the object.
 *
 * Precalculate and preallocate a script for the deletion of an object from an
 * associative array.  This results in an edit script that can either be
 * applied or cancelled.
 *
 * The function returns a pointer to an edit script if the object was found,
 * NULL if the object was not found or -ENOMEM.
 *
 * The caller should lock against other modifications and must continue to hold
 * the lock until assoc_array_apply_edit() has been called.
 *
 * Accesses to the tree may take place concurrently with this function,
 * provided they hold the RCU read lock.
 */
struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
					    const struct assoc_array_ops *ops,
					    const void *index_key)
{
	struct assoc_array_delete_collapse_context collapse;
	struct assoc_array_walk_result result;
	struct assoc_array_node *node, *new_n0;
	struct assoc_array_edit *edit;
	struct assoc_array_ptr *ptr;
	bool has_meta;
	int slot, i;

	pr_devel("-->%s()\n", __func__);

	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
	if (!edit)
		return ERR_PTR(-ENOMEM);
	edit->array = array;
	edit->ops = ops;
	edit->adjust_count_by = -1;

	switch (assoc_array_walk(array, ops, index_key, &result)) {
	case assoc_array_walk_found_terminal_node:
		/* We found a node that should contain the leaf we've been
		 * asked to remove - *if* it's in the tree.
		 */
		pr_devel("terminal_node\n");
		node = result.terminal_node.node;

		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
			ptr = node->slots[slot];
			if (ptr &&
			    assoc_array_ptr_is_leaf(ptr) &&
			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
						index_key))
				goto found_leaf;
		}
	case assoc_array_walk_tree_empty:
	case assoc_array_walk_found_wrong_shortcut:
	default:
		assoc_array_cancel_edit(edit);
		pr_devel("not found\n");
		return NULL;
	}

found_leaf:
	BUG_ON(array->nr_leaves_on_tree <= 0);

	/* In the simplest form of deletion we just clear the slot and release
	 * the leaf after a suitable interval.
	 */
	edit->dead_leaf = node->slots[slot];
	edit->set[0].ptr = &node->slots[slot];
	edit->set[0].to = NULL;
	edit->adjust_count_on = node;

	/* If that concludes erasure of the last leaf, then delete the entire
	 * internal array.
	 */
	if (array->nr_leaves_on_tree == 1) {
		edit->set[1].ptr = &array->root;
		edit->set[1].to = NULL;
		edit->adjust_count_on = NULL;
		edit->excised_subtree = array->root;
		pr_devel("all gone\n");
		return edit;
	}

	/* However, we'd also like to clear up some metadata blocks if we
	 * possibly can.
	 *
	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
	 * leaves in it, then attempt to collapse it - and attempt to
	 * recursively collapse up the tree.
	 *
	 * We could also try and collapse in partially filled subtrees to take
	 * up space in this node.
	 */
	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
		struct assoc_array_node *parent, *grandparent;
		struct assoc_array_ptr *ptr;

		/* First of all, we need to know if this node has metadata so
		 * that we don't try collapsing if all the leaves are already
		 * here.
		 */
		has_meta = false;
		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
			ptr = node->slots[i];
			if (assoc_array_ptr_is_meta(ptr)) {
				has_meta = true;
				break;
			}
		}

		pr_devel("leaves: %ld [m=%d]\n",
			 node->nr_leaves_on_branch - 1, has_meta);

		/* Look further up the tree to see if we can collapse this node
		 * into a more proximal node too.
		 */
		parent = node;
	collapse_up:
		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);

		ptr = parent->back_pointer;
		if (!ptr)
			goto do_collapse;
		if (assoc_array_ptr_is_shortcut(ptr)) {
			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
			ptr = s->back_pointer;
			if (!ptr)
				goto do_collapse;
		}

		grandparent = assoc_array_ptr_to_node(ptr);
		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
			parent = grandparent;
			goto collapse_up;
		}

	do_collapse:
		/* There's no point collapsing if the original node has no meta
		 * pointers to discard and if we didn't merge into one of that
		 * node's ancestry.
		 */
		if (has_meta || parent != node) {
			node = parent;

			/* Create a new node to collapse into */
			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
			if (!new_n0)
				goto enomem;
			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);

			new_n0->back_pointer = node->back_pointer;
			new_n0->parent_slot = node->parent_slot;
			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
			edit->adjust_count_on = new_n0;

			collapse.node = new_n0;
			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
			collapse.slot = 0;
			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
						    node->back_pointer,
						    assoc_array_delete_collapse_iterator,
						    &collapse);
			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);

			if (!node->back_pointer) {
				edit->set[1].ptr = &array->root;
			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
				BUG();
			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
				struct assoc_array_node *p =
					assoc_array_ptr_to_node(node->back_pointer);
				edit->set[1].ptr = &p->slots[node->parent_slot];
			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
				struct assoc_array_shortcut *s =
					assoc_array_ptr_to_shortcut(node->back_pointer);
				edit->set[1].ptr = &s->next_node;
			}
			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
			edit->excised_subtree = assoc_array_node_to_ptr(node);
		}
	}

	return edit;

enomem:
	/* Clean up after an out of memory error */
	pr_devel("enomem\n");
	assoc_array_cancel_edit(edit);
	return ERR_PTR(-ENOMEM);
}

/**
 * assoc_array_clear - Script deletion of all objects from an associative array
 * @array: The array to clear.
 * @ops: The operations to use.
 *
 * Precalculate and preallocate a script for the deletion of all the objects
 * from an associative array.  This results in an edit script that can either
 * be applied or cancelled.
 *
 * The function returns a pointer to an edit script if there are objects to be
 * deleted, NULL if there are no objects in the array or -ENOMEM.
 *
 * The caller should lock against other modifications and must continue to hold
 * the lock until assoc_array_apply_edit() has been called.
 *
 * Accesses to the tree may take place concurrently with this function,
 * provided they hold the RCU read lock.
 */
struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
					   const struct assoc_array_ops *ops)
{
	struct assoc_array_edit *edit;

	pr_devel("-->%s()\n", __func__);

	if (!array->root)
		return NULL;

	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
	if (!edit)
		return ERR_PTR(-ENOMEM);
	edit->array = array;
	edit->ops = ops;
	edit->set[1].ptr = &array->root;
	edit->set[1].to = NULL;
	edit->excised_subtree = array->root;
	edit->ops_for_excised_subtree = ops;
	pr_devel("all gone\n");
	return edit;
}

/*
 * Handle the deferred destruction after an applied edit.
 */
static void assoc_array_rcu_cleanup(struct rcu_head *head)
{
	struct assoc_array_edit *edit =
		container_of(head, struct assoc_array_edit, rcu);
	int i;

	pr_devel("-->%s()\n", __func__);

	if (edit->dead_leaf)
		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
		if (edit->excised_meta[i])
			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));

	if (edit->excised_subtree) {
		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
			struct assoc_array_node *n =
				assoc_array_ptr_to_node(edit->excised_subtree);
			n->back_pointer = NULL;
		} else {
			struct assoc_array_shortcut *s =
				assoc_array_ptr_to_shortcut(edit->excised_subtree);
			s->back_pointer = NULL;
		}
		assoc_array_destroy_subtree(edit->excised_subtree,
					    edit->ops_for_excised_subtree);
	}

	kfree(edit);
}

/**
 * assoc_array_apply_edit - Apply an edit script to an associative array
 * @edit: The script to apply.
 *
 * Apply an edit script to an associative array to effect an insertion,
 * deletion or clearance.  As the edit script includes preallocated memory,
 * this is guaranteed not to fail.
 *
 * The edit script, dead objects and dead metadata will be scheduled for
 * destruction after an RCU grace period to permit those doing read-only
 * accesses on the array to continue to do so under the RCU read lock whilst
 * the edit is taking place.
 */
void assoc_array_apply_edit(struct assoc_array_edit *edit)
{
	struct assoc_array_shortcut *shortcut;
	struct assoc_array_node *node;
	struct assoc_array_ptr *ptr;
	int i;

	pr_devel("-->%s()\n", __func__);

	smp_wmb();
	if (edit->leaf_p)
		*edit->leaf_p = edit->leaf;

	smp_wmb();
	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
		if (edit->set_parent_slot[i].p)
			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;

	smp_wmb();
	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
		if (edit->set_backpointers[i])
			*edit->set_backpointers[i] = edit->set_backpointers_to;

	smp_wmb();
	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
		if (edit->set[i].ptr)
			*edit->set[i].ptr = edit->set[i].to;

	if (edit->array->root == NULL) {
		edit->array->nr_leaves_on_tree = 0;
	} else if (edit->adjust_count_on) {
		node = edit->adjust_count_on;
		for (;;) {
			node->nr_leaves_on_branch += edit->adjust_count_by;

			ptr = node->back_pointer;
			if (!ptr)
				break;
			if (assoc_array_ptr_is_shortcut(ptr)) {
				shortcut = assoc_array_ptr_to_shortcut(ptr);
				ptr = shortcut->back_pointer;
				if (!ptr)
					break;
			}
			BUG_ON(!assoc_array_ptr_is_node(ptr));
			node = assoc_array_ptr_to_node(ptr);
		}

		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
	}

	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
}

/**
 * assoc_array_cancel_edit - Discard an edit script.
 * @edit: The script to discard.
 *
 * Free an edit script and all the preallocated data it holds without making
 * any changes to the associative array it was intended for.
 *
 * NOTE!  In the case of an insertion script, this does _not_ release the leaf
 * that was to be inserted.  That is left to the caller.
 */
void assoc_array_cancel_edit(struct assoc_array_edit *edit)
{
	struct assoc_array_ptr *ptr;
	int i;

	pr_devel("-->%s()\n", __func__);

	/* Clean up after an out of memory error */
	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
		ptr = edit->new_meta[i];
		if (ptr) {
			if (assoc_array_ptr_is_node(ptr))
				kfree(assoc_array_ptr_to_node(ptr));
			else
				kfree(assoc_array_ptr_to_shortcut(ptr));
		}
	}
	kfree(edit);
}

/**
 * assoc_array_gc - Garbage collect an associative array.
 * @array: The array to clean.
 * @ops: The operations to use.
 * @iterator: A callback function to pass judgement on each object.
 * @iterator_data: Private data for the callback function.
 *
 * Collect garbage from an associative array and pack down the internal tree to
 * save memory.
 *
 * The iterator function is asked to pass judgement upon each object in the
 * array.  If it returns false, the object is discard and if it returns true,
 * the object is kept.  If it returns true, it must increment the object's
 * usage count (or whatever it needs to do to retain it) before returning.
 *
 * This function returns 0 if successful or -ENOMEM if out of memory.  In the
 * latter case, the array is not changed.
 *
 * The caller should lock against other modifications and must continue to hold
 * the lock until assoc_array_apply_edit() has been called.
 *
 * Accesses to the tree may take place concurrently with this function,
 * provided they hold the RCU read lock.
 */
int assoc_array_gc(struct assoc_array *array,
		   const struct assoc_array_ops *ops,
		   bool (*iterator)(void *object, void *iterator_data),
		   void *iterator_data)
{
	struct assoc_array_shortcut *shortcut, *new_s;
	struct assoc_array_node *node, *new_n;
	struct assoc_array_edit *edit;
	struct assoc_array_ptr *cursor, *ptr;
	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
	unsigned long nr_leaves_on_tree;
	int keylen, slot, nr_free, next_slot, i;

	pr_devel("-->%s()\n", __func__);

	if (!array->root)
		return 0;

	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
	if (!edit)
		return -ENOMEM;
	edit->array = array;
	edit->ops = ops;
	edit->ops_for_excised_subtree = ops;
	edit->set[0].ptr = &array->root;
	edit->excised_subtree = array->root;

	new_root = new_parent = NULL;
	new_ptr_pp = &new_root;
	cursor = array->root;

descend:
	/* If this point is a shortcut, then we need to duplicate it and
	 * advance the target cursor.
	 */
	if (assoc_array_ptr_is_shortcut(cursor)) {
		shortcut = assoc_array_ptr_to_shortcut(cursor);
		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
				keylen * sizeof(unsigned long), GFP_KERNEL);
		if (!new_s)
			goto enomem;
		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
					 keylen * sizeof(unsigned long)));
		new_s->back_pointer = new_parent;
		new_s->parent_slot = shortcut->parent_slot;
		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
		new_ptr_pp = &new_s->next_node;
		cursor = shortcut->next_node;
	}

	/* Duplicate the node at this position */
	node = assoc_array_ptr_to_node(cursor);
	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
	if (!new_n)
		goto enomem;
	pr_devel("dup node %p -> %p\n", node, new_n);
	new_n->back_pointer = new_parent;
	new_n->parent_slot = node->parent_slot;
	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
	new_ptr_pp = NULL;
	slot = 0;

continue_node:
	/* Filter across any leaves and gc any subtrees */
	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		ptr = node->slots[slot];
		if (!ptr)
			continue;

		if (assoc_array_ptr_is_leaf(ptr)) {
			if (iterator(assoc_array_ptr_to_leaf(ptr),
				     iterator_data))
				/* The iterator will have done any reference
				 * counting on the object for us.
				 */
				new_n->slots[slot] = ptr;
			continue;
		}

		new_ptr_pp = &new_n->slots[slot];
		cursor = ptr;
		goto descend;
	}

	pr_devel("-- compress node %p --\n", new_n);

	/* Count up the number of empty slots in this node and work out the
	 * subtree leaf count.
	 */
	new_n->nr_leaves_on_branch = 0;
	nr_free = 0;
	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		ptr = new_n->slots[slot];
		if (!ptr)
			nr_free++;
		else if (assoc_array_ptr_is_leaf(ptr))
			new_n->nr_leaves_on_branch++;
	}
	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);

	/* See what we can fold in */
	next_slot = 0;
	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		struct assoc_array_shortcut *s;
		struct assoc_array_node *child;

		ptr = new_n->slots[slot];
		if (!ptr || assoc_array_ptr_is_leaf(ptr))
			continue;

		s = NULL;
		if (assoc_array_ptr_is_shortcut(ptr)) {
			s = assoc_array_ptr_to_shortcut(ptr);
			ptr = s->next_node;
		}

		child = assoc_array_ptr_to_node(ptr);
		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;

		if (child->nr_leaves_on_branch <= nr_free + 1) {
			/* Fold the child node into this one */
			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
				 slot, child->nr_leaves_on_branch, nr_free + 1,
				 next_slot);

			/* We would already have reaped an intervening shortcut
			 * on the way back up the tree.
			 */
			BUG_ON(s);

			new_n->slots[slot] = NULL;
			nr_free++;
			if (slot < next_slot)
				next_slot = slot;
			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
				struct assoc_array_ptr *p = child->slots[i];
				if (!p)
					continue;
				BUG_ON(assoc_array_ptr_is_meta(p));
				while (new_n->slots[next_slot])
					next_slot++;
				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
				new_n->slots[next_slot++] = p;
				nr_free--;
			}
			kfree(child);
		} else {
			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
				 slot, child->nr_leaves_on_branch, nr_free + 1,
				 next_slot);
		}
	}

	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);

	nr_leaves_on_tree = new_n->nr_leaves_on_branch;

	/* Excise this node if it is singly occupied by a shortcut */
	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
			if ((ptr = new_n->slots[slot]))
				break;

		if (assoc_array_ptr_is_meta(ptr) &&
		    assoc_array_ptr_is_shortcut(ptr)) {
			pr_devel("excise node %p with 1 shortcut\n", new_n);
			new_s = assoc_array_ptr_to_shortcut(ptr);
			new_parent = new_n->back_pointer;
			slot = new_n->parent_slot;
			kfree(new_n);
			if (!new_parent) {
				new_s->back_pointer = NULL;
				new_s->parent_slot = 0;
				new_root = ptr;
				goto gc_complete;
			}

			if (assoc_array_ptr_is_shortcut(new_parent)) {
				/* We can discard any preceding shortcut also */
				struct assoc_array_shortcut *s =
					assoc_array_ptr_to_shortcut(new_parent);

				pr_devel("excise preceding shortcut\n");

				new_parent = new_s->back_pointer = s->back_pointer;
				slot = new_s->parent_slot = s->parent_slot;
				kfree(s);
				if (!new_parent) {
					new_s->back_pointer = NULL;
					new_s->parent_slot = 0;
					new_root = ptr;
					goto gc_complete;
				}
			}

			new_s->back_pointer = new_parent;
			new_s->parent_slot = slot;
			new_n = assoc_array_ptr_to_node(new_parent);
			new_n->slots[slot] = ptr;
			goto ascend_old_tree;
		}
	}

	/* Excise any shortcuts we might encounter that point to nodes that
	 * only contain leaves.
	 */
	ptr = new_n->back_pointer;
	if (!ptr)
		goto gc_complete;

	if (assoc_array_ptr_is_shortcut(ptr)) {
		new_s = assoc_array_ptr_to_shortcut(ptr);
		new_parent = new_s->back_pointer;
		slot = new_s->parent_slot;

		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
			struct assoc_array_node *n;

			pr_devel("excise shortcut\n");
			new_n->back_pointer = new_parent;
			new_n->parent_slot = slot;
			kfree(new_s);
			if (!new_parent) {
				new_root = assoc_array_node_to_ptr(new_n);
				goto gc_complete;
			}

			n = assoc_array_ptr_to_node(new_parent);
			n->slots[slot] = assoc_array_node_to_ptr(new_n);
		}
	} else {
		new_parent = ptr;
	}
	new_n = assoc_array_ptr_to_node(new_parent);

ascend_old_tree:
	ptr = node->back_pointer;
	if (assoc_array_ptr_is_shortcut(ptr)) {
		shortcut = assoc_array_ptr_to_shortcut(ptr);
		slot = shortcut->parent_slot;
		cursor = shortcut->back_pointer;
		if (!cursor)
			goto gc_complete;
	} else {
		slot = node->parent_slot;
		cursor = ptr;
	}
	BUG_ON(!cursor);
	node = assoc_array_ptr_to_node(cursor);
	slot++;
	goto continue_node;

gc_complete:
	edit->set[0].to = new_root;
	assoc_array_apply_edit(edit);
	array->nr_leaves_on_tree = nr_leaves_on_tree;
	return 0;

enomem:
	pr_devel("enomem\n");
	assoc_array_destroy_subtree(new_root, edit->ops);
	kfree(edit);
	return -ENOMEM;
}