Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
 * GPL HEADER START
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 only,
 * as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License version 2 for more details (a copy is included
 * in the LICENSE file that accompanied this code).
 *
 * You should have received a copy of the GNU General Public License
 * version 2 along with this program; If not, see
 * http://www.gnu.org/licenses/gpl-2.0.html
 *
 * GPL HEADER END
 */
/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 */
/*
 * This file is part of Lustre, http://www.lustre.org/
 * Lustre is a trademark of Sun Microsystems, Inc.
 *
 * lustre/ldlm/interval_tree.c
 *
 * Interval tree library used by ldlm extent lock code
 *
 * Author: Huang Wei <huangwei@clusterfs.com>
 * Author: Jay Xiong <jinshan.xiong@sun.com>
 */
#include <lustre_dlm.h>
#include <obd_support.h>
#include <interval_tree.h>

enum {
	INTERVAL_RED = 0,
	INTERVAL_BLACK = 1
};

static inline int node_is_left_child(struct interval_node *node)
{
	return node == node->in_parent->in_left;
}

static inline int node_is_right_child(struct interval_node *node)
{
	return node == node->in_parent->in_right;
}

static inline int node_is_red(struct interval_node *node)
{
	return node->in_color == INTERVAL_RED;
}

static inline int node_is_black(struct interval_node *node)
{
	return node->in_color == INTERVAL_BLACK;
}

static inline int extent_compare(struct interval_node_extent *e1,
				 struct interval_node_extent *e2)
{
	int rc;

	if (e1->start == e2->start) {
		if (e1->end < e2->end)
			rc = -1;
		else if (e1->end > e2->end)
			rc = 1;
		else
			rc = 0;
	} else {
		if (e1->start < e2->start)
			rc = -1;
		else
			rc = 1;
	}
	return rc;
}

static inline int extent_equal(struct interval_node_extent *e1,
			       struct interval_node_extent *e2)
{
	return (e1->start == e2->start) && (e1->end == e2->end);
}

static inline int extent_overlapped(struct interval_node_extent *e1,
				    struct interval_node_extent *e2)
{
	return (e1->start <= e2->end) && (e2->start <= e1->end);
}

static inline int node_equal(struct interval_node *n1, struct interval_node *n2)
{
	return extent_equal(&n1->in_extent, &n2->in_extent);
}

static struct interval_node *interval_first(struct interval_node *node)
{
	if (!node)
		return NULL;
	while (node->in_left)
		node = node->in_left;
	return node;
}

static struct interval_node *interval_last(struct interval_node *node)
{
	if (!node)
		return NULL;
	while (node->in_right)
		node = node->in_right;
	return node;
}

static struct interval_node *interval_next(struct interval_node *node)
{
	if (!node)
		return NULL;
	if (node->in_right)
		return interval_first(node->in_right);
	while (node->in_parent && node_is_right_child(node))
		node = node->in_parent;
	return node->in_parent;
}

static struct interval_node *interval_prev(struct interval_node *node)
{
	if (!node)
		return NULL;

	if (node->in_left)
		return interval_last(node->in_left);

	while (node->in_parent && node_is_left_child(node))
		node = node->in_parent;

	return node->in_parent;
}

enum interval_iter interval_iterate_reverse(struct interval_node *root,
					    interval_callback_t func,
					    void *data)
{
	enum interval_iter rc = INTERVAL_ITER_CONT;
	struct interval_node *node;

	for (node = interval_last(root); node; node = interval_prev(node)) {
		rc = func(node, data);
		if (rc == INTERVAL_ITER_STOP)
			break;
	}

	return rc;
}
EXPORT_SYMBOL(interval_iterate_reverse);

static void __rotate_change_maxhigh(struct interval_node *node,
				    struct interval_node *rotate)
{
	__u64 left_max, right_max;

	rotate->in_max_high = node->in_max_high;
	left_max = node->in_left ? node->in_left->in_max_high : 0;
	right_max = node->in_right ? node->in_right->in_max_high : 0;
	node->in_max_high  = max(interval_high(node),
				 max(left_max, right_max));
}

/* The left rotation "pivots" around the link from node to node->right, and
 * - node will be linked to node->right's left child, and
 * - node->right's left child will be linked to node's right child.
 */
static void __rotate_left(struct interval_node *node,
			  struct interval_node **root)
{
	struct interval_node *right = node->in_right;
	struct interval_node *parent = node->in_parent;

	node->in_right = right->in_left;
	if (node->in_right)
		right->in_left->in_parent = node;

	right->in_left = node;
	right->in_parent = parent;
	if (parent) {
		if (node_is_left_child(node))
			parent->in_left = right;
		else
			parent->in_right = right;
	} else {
		*root = right;
	}
	node->in_parent = right;

	/* update max_high for node and right */
	__rotate_change_maxhigh(node, right);
}

/* The right rotation "pivots" around the link from node to node->left, and
 * - node will be linked to node->left's right child, and
 * - node->left's right child will be linked to node's left child.
 */
static void __rotate_right(struct interval_node *node,
			   struct interval_node **root)
{
	struct interval_node *left = node->in_left;
	struct interval_node *parent = node->in_parent;

	node->in_left = left->in_right;
	if (node->in_left)
		left->in_right->in_parent = node;
	left->in_right = node;

	left->in_parent = parent;
	if (parent) {
		if (node_is_right_child(node))
			parent->in_right = left;
		else
			parent->in_left = left;
	} else {
		*root = left;
	}
	node->in_parent = left;

	/* update max_high for node and left */
	__rotate_change_maxhigh(node, left);
}

#define interval_swap(a, b) do {			\
	struct interval_node *c = a; a = b; b = c;      \
} while (0)

/*
 * Operations INSERT and DELETE, when run on a tree with n keys,
 * take O(logN) time.Because they modify the tree, the result
 * may violate the red-black properties.To restore these properties,
 * we must change the colors of some of the nodes in the tree
 * and also change the pointer structure.
 */
static void interval_insert_color(struct interval_node *node,
				  struct interval_node **root)
{
	struct interval_node *parent, *gparent;

	while ((parent = node->in_parent) && node_is_red(parent)) {
		gparent = parent->in_parent;
		/* Parent is RED, so gparent must not be NULL */
		if (node_is_left_child(parent)) {
			struct interval_node *uncle;

			uncle = gparent->in_right;
			if (uncle && node_is_red(uncle)) {
				uncle->in_color = INTERVAL_BLACK;
				parent->in_color = INTERVAL_BLACK;
				gparent->in_color = INTERVAL_RED;
				node = gparent;
				continue;
			}

			if (parent->in_right == node) {
				__rotate_left(parent, root);
				interval_swap(node, parent);
			}

			parent->in_color = INTERVAL_BLACK;
			gparent->in_color = INTERVAL_RED;
			__rotate_right(gparent, root);
		} else {
			struct interval_node *uncle;

			uncle = gparent->in_left;
			if (uncle && node_is_red(uncle)) {
				uncle->in_color = INTERVAL_BLACK;
				parent->in_color = INTERVAL_BLACK;
				gparent->in_color = INTERVAL_RED;
				node = gparent;
				continue;
			}

			if (node_is_left_child(node)) {
				__rotate_right(parent, root);
				interval_swap(node, parent);
			}

			parent->in_color = INTERVAL_BLACK;
			gparent->in_color = INTERVAL_RED;
			__rotate_left(gparent, root);
		}
	}

	(*root)->in_color = INTERVAL_BLACK;
}

struct interval_node *interval_insert(struct interval_node *node,
				      struct interval_node **root)

{
	struct interval_node **p, *parent = NULL;

	LASSERT(!interval_is_intree(node));
	p = root;
	while (*p) {
		parent = *p;
		if (node_equal(parent, node))
			return parent;

		/* max_high field must be updated after each iteration */
		if (parent->in_max_high < interval_high(node))
			parent->in_max_high = interval_high(node);

		if (extent_compare(&node->in_extent, &parent->in_extent) < 0)
			p = &parent->in_left;
		else
			p = &parent->in_right;
	}

	/* link node into the tree */
	node->in_parent = parent;
	node->in_color = INTERVAL_RED;
	node->in_left = NULL;
	node->in_right = NULL;
	*p = node;

	interval_insert_color(node, root);
	node->in_intree = 1;

	return NULL;
}
EXPORT_SYMBOL(interval_insert);

static inline int node_is_black_or_0(struct interval_node *node)
{
	return !node || node_is_black(node);
}

static void interval_erase_color(struct interval_node *node,
				 struct interval_node *parent,
				 struct interval_node **root)
{
	struct interval_node *tmp;

	while (node_is_black_or_0(node) && node != *root) {
		if (parent->in_left == node) {
			tmp = parent->in_right;
			if (node_is_red(tmp)) {
				tmp->in_color = INTERVAL_BLACK;
				parent->in_color = INTERVAL_RED;
				__rotate_left(parent, root);
				tmp = parent->in_right;
			}
			if (node_is_black_or_0(tmp->in_left) &&
			    node_is_black_or_0(tmp->in_right)) {
				tmp->in_color = INTERVAL_RED;
				node = parent;
				parent = node->in_parent;
			} else {
				if (node_is_black_or_0(tmp->in_right)) {
					struct interval_node *o_left;

					o_left = tmp->in_left;
					if (o_left)
						o_left->in_color = INTERVAL_BLACK;
					tmp->in_color = INTERVAL_RED;
					__rotate_right(tmp, root);
					tmp = parent->in_right;
				}
				tmp->in_color = parent->in_color;
				parent->in_color = INTERVAL_BLACK;
				if (tmp->in_right)
					tmp->in_right->in_color = INTERVAL_BLACK;
				__rotate_left(parent, root);
				node = *root;
				break;
			}
		} else {
			tmp = parent->in_left;
			if (node_is_red(tmp)) {
				tmp->in_color = INTERVAL_BLACK;
				parent->in_color = INTERVAL_RED;
				__rotate_right(parent, root);
				tmp = parent->in_left;
			}
			if (node_is_black_or_0(tmp->in_left) &&
			    node_is_black_or_0(tmp->in_right)) {
				tmp->in_color = INTERVAL_RED;
				node = parent;
				parent = node->in_parent;
			} else {
				if (node_is_black_or_0(tmp->in_left)) {
					struct interval_node *o_right;

					o_right = tmp->in_right;
					if (o_right)
						o_right->in_color = INTERVAL_BLACK;
					tmp->in_color = INTERVAL_RED;
					__rotate_left(tmp, root);
					tmp = parent->in_left;
				}
				tmp->in_color = parent->in_color;
				parent->in_color = INTERVAL_BLACK;
				if (tmp->in_left)
					tmp->in_left->in_color = INTERVAL_BLACK;
				__rotate_right(parent, root);
				node = *root;
				break;
			}
		}
	}
	if (node)
		node->in_color = INTERVAL_BLACK;
}

/*
 * if the @max_high value of @node is changed, this function traverse  a path
 * from node  up to the root to update max_high for the whole tree.
 */
static void update_maxhigh(struct interval_node *node,
			   __u64  old_maxhigh)
{
	__u64 left_max, right_max;

	while (node) {
		left_max = node->in_left ? node->in_left->in_max_high : 0;
		right_max = node->in_right ? node->in_right->in_max_high : 0;
		node->in_max_high = max(interval_high(node),
					max(left_max, right_max));

		if (node->in_max_high >= old_maxhigh)
			break;
		node = node->in_parent;
	}
}

void interval_erase(struct interval_node *node,
		    struct interval_node **root)
{
	struct interval_node *child, *parent;
	int color;

	LASSERT(interval_is_intree(node));
	node->in_intree = 0;
	if (!node->in_left) {
		child = node->in_right;
	} else if (!node->in_right) {
		child = node->in_left;
	} else { /* Both left and right child are not NULL */
		struct interval_node *old = node;

		node = interval_next(node);
		child = node->in_right;
		parent = node->in_parent;
		color = node->in_color;

		if (child)
			child->in_parent = parent;
		if (parent == old)
			parent->in_right = child;
		else
			parent->in_left = child;

		node->in_color = old->in_color;
		node->in_right = old->in_right;
		node->in_left = old->in_left;
		node->in_parent = old->in_parent;

		if (old->in_parent) {
			if (node_is_left_child(old))
				old->in_parent->in_left = node;
			else
				old->in_parent->in_right = node;
		} else {
			*root = node;
		}

		old->in_left->in_parent = node;
		if (old->in_right)
			old->in_right->in_parent = node;
		update_maxhigh(child ? : parent, node->in_max_high);
		update_maxhigh(node, old->in_max_high);
		if (parent == old)
			parent = node;
		goto color;
	}
	parent = node->in_parent;
	color = node->in_color;

	if (child)
		child->in_parent = parent;
	if (parent) {
		if (node_is_left_child(node))
			parent->in_left = child;
		else
			parent->in_right = child;
	} else {
		*root = child;
	}

	update_maxhigh(child ? : parent, node->in_max_high);

color:
	if (color == INTERVAL_BLACK)
		interval_erase_color(child, parent, root);
}
EXPORT_SYMBOL(interval_erase);

static inline int interval_may_overlap(struct interval_node *node,
				       struct interval_node_extent *ext)
{
	return (ext->start <= node->in_max_high &&
		ext->end >= interval_low(node));
}

/*
 * This function finds all intervals that overlap interval ext,
 * and calls func to handle resulted intervals one by one.
 * in lustre, this function will find all conflicting locks in
 * the granted queue and add these locks to the ast work list.
 *
 * {
 *	if (!node)
 *		return 0;
 *	if (ext->end < interval_low(node)) {
 *		interval_search(node->in_left, ext, func, data);
 *	} else if (interval_may_overlap(node, ext)) {
 *		if (extent_overlapped(ext, &node->in_extent))
 *			func(node, data);
 *		interval_search(node->in_left, ext, func, data);
 *		interval_search(node->in_right, ext, func, data);
 *	}
 *	return 0;
 * }
 *
 */
enum interval_iter interval_search(struct interval_node *node,
				   struct interval_node_extent *ext,
				   interval_callback_t func,
				   void *data)
{
	enum interval_iter rc = INTERVAL_ITER_CONT;
	struct interval_node *parent;

	LASSERT(ext);
	LASSERT(func);

	while (node) {
		if (ext->end < interval_low(node)) {
			if (node->in_left) {
				node = node->in_left;
				continue;
			}
		} else if (interval_may_overlap(node, ext)) {
			if (extent_overlapped(ext, &node->in_extent)) {
				rc = func(node, data);
				if (rc == INTERVAL_ITER_STOP)
					break;
			}

			if (node->in_left) {
				node = node->in_left;
				continue;
			}
			if (node->in_right) {
				node = node->in_right;
				continue;
			}
		}

		parent = node->in_parent;
		while (parent) {
			if (node_is_left_child(node) &&
			    parent->in_right) {
				/*
				 * If we ever got the left, it means that the
				 * parent met ext->end<interval_low(parent), or
				 * may_overlap(parent). If the former is true,
				 * we needn't go back. So stop early and check
				 * may_overlap(parent) after this loop.
				 */
				node = parent->in_right;
				break;
			}
			node = parent;
			parent = parent->in_parent;
		}
		if (!parent || !interval_may_overlap(parent, ext))
			break;
	}

	return rc;
}
EXPORT_SYMBOL(interval_search);