Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// SPDX-License-Identifier: GPL-2.0
#include <linux/mm.h>
#include <linux/gfp.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/tlb.h>
#include <asm/fixmap.h>
#include <asm/mtrr.h>

#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)

#ifdef CONFIG_HIGHPTE
#define PGALLOC_USER_GFP __GFP_HIGHMEM
#else
#define PGALLOC_USER_GFP 0
#endif

gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;

pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
}

pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
	struct page *pte;

	pte = alloc_pages(__userpte_alloc_gfp, 0);
	if (!pte)
		return NULL;
	if (!pgtable_page_ctor(pte)) {
		__free_page(pte);
		return NULL;
	}
	return pte;
}

static int __init setup_userpte(char *arg)
{
	if (!arg)
		return -EINVAL;

	/*
	 * "userpte=nohigh" disables allocation of user pagetables in
	 * high memory.
	 */
	if (strcmp(arg, "nohigh") == 0)
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
	else
		return -EINVAL;
	return 0;
}
early_param("userpte", setup_userpte);

void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
{
	pgtable_page_dtor(pte);
	paravirt_release_pte(page_to_pfn(pte));
	tlb_remove_table(tlb, pte);
}

#if CONFIG_PGTABLE_LEVELS > 2
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
{
	struct page *page = virt_to_page(pmd);
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
	/*
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
	 * entries need a full cr3 reload to flush.
	 */
#ifdef CONFIG_X86_PAE
	tlb->need_flush_all = 1;
#endif
	pgtable_pmd_page_dtor(page);
	tlb_remove_table(tlb, page);
}

#if CONFIG_PGTABLE_LEVELS > 3
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
{
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
	tlb_remove_table(tlb, virt_to_page(pud));
}

#if CONFIG_PGTABLE_LEVELS > 4
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
{
	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
	tlb_remove_table(tlb, virt_to_page(p4d));
}
#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */

static inline void pgd_list_add(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_add(&page->lru, &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_del(&page->lru);
}

#define UNSHARED_PTRS_PER_PGD				\
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)


static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
	virt_to_page(pgd)->index = (pgoff_t)mm;
}

struct mm_struct *pgd_page_get_mm(struct page *page)
{
	return (struct mm_struct *)page->index;
}

static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
{
	/* If the pgd points to a shared pagetable level (either the
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
	   references from swapper_pg_dir. */
	if (CONFIG_PGTABLE_LEVELS == 2 ||
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
	    CONFIG_PGTABLE_LEVELS >= 4) {
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
				KERNEL_PGD_PTRS);
	}

	/* list required to sync kernel mapping updates */
	if (!SHARED_KERNEL_PMD) {
		pgd_set_mm(pgd, mm);
		pgd_list_add(pgd);
	}
}

static void pgd_dtor(pgd_t *pgd)
{
	if (SHARED_KERNEL_PMD)
		return;

	spin_lock(&pgd_lock);
	pgd_list_del(pgd);
	spin_unlock(&pgd_lock);
}

/*
 * List of all pgd's needed for non-PAE so it can invalidate entries
 * in both cached and uncached pgd's; not needed for PAE since the
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 * tactic would be needed. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
 * -- nyc
 */

#ifdef CONFIG_X86_PAE
/*
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 * updating the top-level pagetable entries to guarantee the
 * processor notices the update.  Since this is expensive, and
 * all 4 top-level entries are used almost immediately in a
 * new process's life, we just pre-populate them here.
 *
 * Also, if we're in a paravirt environment where the kernel pmd is
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 * and initialize the kernel pmds here.
 */
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD

void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
{
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);

	/* Note: almost everything apart from _PAGE_PRESENT is
	   reserved at the pmd (PDPT) level. */
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));

	/*
	 * According to Intel App note "TLBs, Paging-Structure Caches,
	 * and Their Invalidation", April 2007, document 317080-001,
	 * section 8.1: in PAE mode we explicitly have to flush the
	 * TLB via cr3 if the top-level pgd is changed...
	 */
	flush_tlb_mm(mm);
}
#else  /* !CONFIG_X86_PAE */

/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS	0

#endif	/* CONFIG_X86_PAE */

static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
{
	int i;

	for(i = 0; i < PREALLOCATED_PMDS; i++)
		if (pmds[i]) {
			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
			free_page((unsigned long)pmds[i]);
			mm_dec_nr_pmds(mm);
		}
}

static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
{
	int i;
	bool failed = false;
	gfp_t gfp = PGALLOC_GFP;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;

	for(i = 0; i < PREALLOCATED_PMDS; i++) {
		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
		if (!pmd)
			failed = true;
		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
			free_page((unsigned long)pmd);
			pmd = NULL;
			failed = true;
		}
		if (pmd)
			mm_inc_nr_pmds(mm);
		pmds[i] = pmd;
	}

	if (failed) {
		free_pmds(mm, pmds);
		return -ENOMEM;
	}

	return 0;
}

/*
 * Mop up any pmd pages which may still be attached to the pgd.
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 * preallocate which never got a corresponding vma will need to be
 * freed manually.
 */
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
{
	int i;

	for(i = 0; i < PREALLOCATED_PMDS; i++) {
		pgd_t pgd = pgdp[i];

		if (pgd_val(pgd) != 0) {
			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);

			pgdp[i] = native_make_pgd(0);

			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
			pmd_free(mm, pmd);
			mm_dec_nr_pmds(mm);
		}
	}
}

static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
{
	p4d_t *p4d;
	pud_t *pud;
	int i;

	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
		return;

	p4d = p4d_offset(pgd, 0);
	pud = pud_offset(p4d, 0);

	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
		pmd_t *pmd = pmds[i];

		if (i >= KERNEL_PGD_BOUNDARY)
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
			       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, pud, pmd);
	}
}

/*
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 * assumes that pgd should be in one page.
 *
 * But kernel with PAE paging that is not running as a Xen domain
 * only needs to allocate 32 bytes for pgd instead of one page.
 */
#ifdef CONFIG_X86_PAE

#include <linux/slab.h>

#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
#define PGD_ALIGN	32

static struct kmem_cache *pgd_cache;

static int __init pgd_cache_init(void)
{
	/*
	 * When PAE kernel is running as a Xen domain, it does not use
	 * shared kernel pmd. And this requires a whole page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return 0;

	/*
	 * when PAE kernel is not running as a Xen domain, it uses
	 * shared kernel pmd. Shared kernel pmd does not require a whole
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
	 * During boot time, we create a 32-byte slab for pgd table allocation.
	 */
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
				      SLAB_PANIC, NULL);
	if (!pgd_cache)
		return -ENOMEM;

	return 0;
}
core_initcall(pgd_cache_init);

static inline pgd_t *_pgd_alloc(void)
{
	/*
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
	 * We allocate one page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return (pgd_t *)__get_free_page(PGALLOC_GFP);

	/*
	 * Now PAE kernel is not running as a Xen domain. We can allocate
	 * a 32-byte slab for pgd to save memory space.
	 */
	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	if (!SHARED_KERNEL_PMD)
		free_page((unsigned long)pgd);
	else
		kmem_cache_free(pgd_cache, pgd);
}
#else

static inline pgd_t *_pgd_alloc(void)
{
	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
}

static inline void _pgd_free(pgd_t *pgd)
{
	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
}
#endif /* CONFIG_X86_PAE */

pgd_t *pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd;
	pmd_t *pmds[PREALLOCATED_PMDS];

	pgd = _pgd_alloc();

	if (pgd == NULL)
		goto out;

	mm->pgd = pgd;

	if (preallocate_pmds(mm, pmds) != 0)
		goto out_free_pgd;

	if (paravirt_pgd_alloc(mm) != 0)
		goto out_free_pmds;

	/*
	 * Make sure that pre-populating the pmds is atomic with
	 * respect to anything walking the pgd_list, so that they
	 * never see a partially populated pgd.
	 */
	spin_lock(&pgd_lock);

	pgd_ctor(mm, pgd);
	pgd_prepopulate_pmd(mm, pgd, pmds);

	spin_unlock(&pgd_lock);

	return pgd;

out_free_pmds:
	free_pmds(mm, pmds);
out_free_pgd:
	_pgd_free(pgd);
out:
	return NULL;
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_mop_up_pmds(mm, pgd);
	pgd_dtor(pgd);
	paravirt_pgd_free(mm, pgd);
	_pgd_free(pgd);
}

/*
 * Used to set accessed or dirty bits in the page table entries
 * on other architectures. On x86, the accessed and dirty bits
 * are tracked by hardware. However, do_wp_page calls this function
 * to also make the pte writeable at the same time the dirty bit is
 * set. In that case we do actually need to write the PTE.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	int changed = !pte_same(*ptep, entry);

	if (changed && dirty)
		*ptep = entry;

	return changed;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	int changed = !pmd_same(*pmdp, entry);

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	if (changed && dirty) {
		*pmdp = entry;
		/*
		 * We had a write-protection fault here and changed the pmd
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
	}

	return changed;
}

int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pud_t *pudp, pud_t entry, int dirty)
{
	int changed = !pud_same(*pudp, entry);

	VM_BUG_ON(address & ~HPAGE_PUD_MASK);

	if (changed && dirty) {
		*pudp = entry;
		/*
		 * We had a write-protection fault here and changed the pud
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
	}

	return changed;
}
#endif

int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
	int ret = 0;

	if (pte_young(*ptep))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *) &ptep->pte);

	return ret;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pmd_t *pmdp)
{
	int ret = 0;

	if (pmd_young(*pmdp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *)pmdp);

	return ret;
}
int pudp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pud_t *pudp)
{
	int ret = 0;

	if (pud_young(*pudp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *)pudp);

	return ret;
}
#endif

int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep)
{
	/*
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
	 * doesn't cause data corruption. [ It could cause incorrect
	 * page aging and the (mistaken) reclaim of hot pages, but the
	 * chance of that should be relatively low. ]
	 *
	 * So as a performance optimization don't flush the TLB when
	 * clearing the accessed bit, it will eventually be flushed by
	 * a context switch or a VM operation anyway. [ In the rare
	 * event of it not getting flushed for a long time the delay
	 * shouldn't really matter because there's no real memory
	 * pressure for swapout to react to. ]
	 */
	return ptep_test_and_clear_young(vma, address, ptep);
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pmd_t *pmdp)
{
	int young;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	young = pmdp_test_and_clear_young(vma, address, pmdp);
	if (young)
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);

	return young;
}
#endif

/**
 * reserve_top_address - reserves a hole in the top of kernel address space
 * @reserve - size of hole to reserve
 *
 * Can be used to relocate the fixmap area and poke a hole in the top
 * of kernel address space to make room for a hypervisor.
 */
void __init reserve_top_address(unsigned long reserve)
{
#ifdef CONFIG_X86_32
	BUG_ON(fixmaps_set > 0);
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
#endif
}

int fixmaps_set;

void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
{
	unsigned long address = __fix_to_virt(idx);

	if (idx >= __end_of_fixed_addresses) {
		BUG();
		return;
	}
	set_pte_vaddr(address, pte);
	fixmaps_set++;
}

void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
		       pgprot_t flags)
{
	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
}

#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
#ifdef CONFIG_X86_5LEVEL
/**
 * p4d_set_huge - setup kernel P4D mapping
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}

/**
 * p4d_clear_huge - clear kernel P4D mapping when it is set
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_clear_huge(p4d_t *p4d)
{
	return 0;
}
#endif

/**
 * pud_set_huge - setup kernel PUD mapping
 *
 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
 * function sets up a huge page only if any of the following conditions are met:
 *
 * - MTRRs are disabled, or
 *
 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
 *
 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
 *   has no effect on the requested PAT memory type.
 *
 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
 * page mapping attempt fails.
 *
 * Returns 1 on success and 0 on failure.
 */
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
	u8 mtrr, uniform;

	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK))
		return 0;

	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pud, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

/**
 * pmd_set_huge - setup kernel PMD mapping
 *
 * See text over pud_set_huge() above.
 *
 * Returns 1 on success and 0 on failure.
 */
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
	u8 mtrr, uniform;

	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK)) {
		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
			     __func__, addr, addr + PMD_SIZE);
		return 0;
	}

	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pmd, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

/**
 * pud_clear_huge - clear kernel PUD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PUD map is found).
 */
int pud_clear_huge(pud_t *pud)
{
	if (pud_large(*pud)) {
		pud_clear(pud);
		return 1;
	}

	return 0;
}

/**
 * pmd_clear_huge - clear kernel PMD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PMD map is found).
 */
int pmd_clear_huge(pmd_t *pmd)
{
	if (pmd_large(*pmd)) {
		pmd_clear(pmd);
		return 1;
	}

	return 0;
}
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */