Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/*
 * GK20A does not have dedicated video memory, and to accurately represent this
 * fact Nouveau will not create a RAM device for it. Therefore its instmem
 * implementation must be done directly on top of system memory, while
 * preserving coherency for read and write operations.
 *
 * Instmem can be allocated through two means:
 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
 *    pages contiguous to the GPU. This is the preferred way.
 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
 *    contiguous memory.
 *
 * In both cases CPU read and writes are performed by creating a write-combined
 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
 * be conservative we do this every time we acquire or release an instobj, but
 * ideally L2 management should be handled at a higher level.
 *
 * To improve performance, CPU mappings are not removed upon instobj release.
 * Instead they are placed into a LRU list to be recycled when the mapped space
 * goes beyond a certain threshold. At the moment this limit is 1MB.
 */
#include "priv.h"

#include <core/memory.h>
#include <core/mm.h>
#include <core/tegra.h>
#include <subdev/fb.h>
#include <subdev/ltc.h>

struct gk20a_instobj {
	struct nvkm_memory memory;
	struct nvkm_mem mem;
	struct gk20a_instmem *imem;

	/* CPU mapping */
	u32 *vaddr;
};
#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)

/*
 * Used for objects allocated using the DMA API
 */
struct gk20a_instobj_dma {
	struct gk20a_instobj base;

	dma_addr_t handle;
	struct nvkm_mm_node r;
};
#define gk20a_instobj_dma(p) \
	container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)

/*
 * Used for objects flattened using the IOMMU API
 */
struct gk20a_instobj_iommu {
	struct gk20a_instobj base;

	/* to link into gk20a_instmem::vaddr_lru */
	struct list_head vaddr_node;
	/* how many clients are using vaddr? */
	u32 use_cpt;

	/* will point to the higher half of pages */
	dma_addr_t *dma_addrs;
	/* array of base.mem->size pages (+ dma_addr_ts) */
	struct page *pages[];
};
#define gk20a_instobj_iommu(p) \
	container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)

struct gk20a_instmem {
	struct nvkm_instmem base;

	/* protects vaddr_* and gk20a_instobj::vaddr* */
	struct mutex lock;

	/* CPU mappings LRU */
	unsigned int vaddr_use;
	unsigned int vaddr_max;
	struct list_head vaddr_lru;

	/* Only used if IOMMU if present */
	struct mutex *mm_mutex;
	struct nvkm_mm *mm;
	struct iommu_domain *domain;
	unsigned long iommu_pgshift;
	u16 iommu_bit;

	/* Only used by DMA API */
	unsigned long attrs;
};
#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)

static enum nvkm_memory_target
gk20a_instobj_target(struct nvkm_memory *memory)
{
	return NVKM_MEM_TARGET_NCOH;
}

static u64
gk20a_instobj_addr(struct nvkm_memory *memory)
{
	return gk20a_instobj(memory)->mem.offset;
}

static u64
gk20a_instobj_size(struct nvkm_memory *memory)
{
	return (u64)gk20a_instobj(memory)->mem.size << 12;
}

/*
 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
 */
static void
gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
{
	struct gk20a_instmem *imem = obj->base.imem;
	/* there should not be any user left... */
	WARN_ON(obj->use_cpt);
	list_del(&obj->vaddr_node);
	vunmap(obj->base.vaddr);
	obj->base.vaddr = NULL;
	imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
		   imem->vaddr_max);
}

/*
 * Must be called while holding gk20a_instmem::lock
 */
static void
gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
{
	while (imem->vaddr_use + size > imem->vaddr_max) {
		/* no candidate that can be unmapped, abort... */
		if (list_empty(&imem->vaddr_lru))
			break;

		gk20a_instobj_iommu_recycle_vaddr(
				list_first_entry(&imem->vaddr_lru,
				struct gk20a_instobj_iommu, vaddr_node));
	}
}

static void __iomem *
gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
{
	struct gk20a_instobj *node = gk20a_instobj(memory);
	struct gk20a_instmem *imem = node->imem;
	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;

	nvkm_ltc_flush(ltc);

	return node->vaddr;
}

static void __iomem *
gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
{
	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
	struct gk20a_instmem *imem = node->base.imem;
	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
	const u64 size = nvkm_memory_size(memory);

	nvkm_ltc_flush(ltc);

	mutex_lock(&imem->lock);

	if (node->base.vaddr) {
		if (!node->use_cpt) {
			/* remove from LRU list since mapping in use again */
			list_del(&node->vaddr_node);
		}
		goto out;
	}

	/* try to free some address space if we reached the limit */
	gk20a_instmem_vaddr_gc(imem, size);

	/* map the pages */
	node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
				pgprot_writecombine(PAGE_KERNEL));
	if (!node->base.vaddr) {
		nvkm_error(&imem->base.subdev, "cannot map instobj - "
			   "this is not going to end well...\n");
		goto out;
	}

	imem->vaddr_use += size;
	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
		   imem->vaddr_use, imem->vaddr_max);

out:
	node->use_cpt++;
	mutex_unlock(&imem->lock);

	return node->base.vaddr;
}

static void
gk20a_instobj_release_dma(struct nvkm_memory *memory)
{
	struct gk20a_instobj *node = gk20a_instobj(memory);
	struct gk20a_instmem *imem = node->imem;
	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;

	/* in case we got a write-combined mapping */
	wmb();
	nvkm_ltc_invalidate(ltc);
}

static void
gk20a_instobj_release_iommu(struct nvkm_memory *memory)
{
	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
	struct gk20a_instmem *imem = node->base.imem;
	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;

	mutex_lock(&imem->lock);

	/* we should at least have one user to release... */
	if (WARN_ON(node->use_cpt == 0))
		goto out;

	/* add unused objs to the LRU list to recycle their mapping */
	if (--node->use_cpt == 0)
		list_add_tail(&node->vaddr_node, &imem->vaddr_lru);

out:
	mutex_unlock(&imem->lock);

	wmb();
	nvkm_ltc_invalidate(ltc);
}

static u32
gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
{
	struct gk20a_instobj *node = gk20a_instobj(memory);

	return node->vaddr[offset / 4];
}

static void
gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
{
	struct gk20a_instobj *node = gk20a_instobj(memory);

	node->vaddr[offset / 4] = data;
}

static void
gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
{
	struct gk20a_instobj *node = gk20a_instobj(memory);

	nvkm_vm_map_at(vma, offset, &node->mem);
}

static void *
gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
{
	struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
	struct gk20a_instmem *imem = node->base.imem;
	struct device *dev = imem->base.subdev.device->dev;

	if (unlikely(!node->base.vaddr))
		goto out;

	dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->base.vaddr,
		       node->handle, imem->attrs);

out:
	return node;
}

static void *
gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
{
	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
	struct gk20a_instmem *imem = node->base.imem;
	struct device *dev = imem->base.subdev.device->dev;
	struct nvkm_mm_node *r = node->base.mem.mem;
	int i;

	if (unlikely(!r))
		goto out;

	mutex_lock(&imem->lock);

	/* vaddr has already been recycled */
	if (node->base.vaddr)
		gk20a_instobj_iommu_recycle_vaddr(node);

	mutex_unlock(&imem->lock);

	/* clear IOMMU bit to unmap pages */
	r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);

	/* Unmap pages from GPU address space and free them */
	for (i = 0; i < node->base.mem.size; i++) {
		iommu_unmap(imem->domain,
			    (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
		dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
			       DMA_BIDIRECTIONAL);
		__free_page(node->pages[i]);
	}

	/* Release area from GPU address space */
	mutex_lock(imem->mm_mutex);
	nvkm_mm_free(imem->mm, &r);
	mutex_unlock(imem->mm_mutex);

out:
	return node;
}

static const struct nvkm_memory_func
gk20a_instobj_func_dma = {
	.dtor = gk20a_instobj_dtor_dma,
	.target = gk20a_instobj_target,
	.addr = gk20a_instobj_addr,
	.size = gk20a_instobj_size,
	.acquire = gk20a_instobj_acquire_dma,
	.release = gk20a_instobj_release_dma,
	.rd32 = gk20a_instobj_rd32,
	.wr32 = gk20a_instobj_wr32,
	.map = gk20a_instobj_map,
};

static const struct nvkm_memory_func
gk20a_instobj_func_iommu = {
	.dtor = gk20a_instobj_dtor_iommu,
	.target = gk20a_instobj_target,
	.addr = gk20a_instobj_addr,
	.size = gk20a_instobj_size,
	.acquire = gk20a_instobj_acquire_iommu,
	.release = gk20a_instobj_release_iommu,
	.rd32 = gk20a_instobj_rd32,
	.wr32 = gk20a_instobj_wr32,
	.map = gk20a_instobj_map,
};

static int
gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
		       struct gk20a_instobj **_node)
{
	struct gk20a_instobj_dma *node;
	struct nvkm_subdev *subdev = &imem->base.subdev;
	struct device *dev = subdev->device->dev;

	if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
		return -ENOMEM;
	*_node = &node->base;

	nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);

	node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
					   &node->handle, GFP_KERNEL,
					   imem->attrs);
	if (!node->base.vaddr) {
		nvkm_error(subdev, "cannot allocate DMA memory\n");
		return -ENOMEM;
	}

	/* alignment check */
	if (unlikely(node->handle & (align - 1)))
		nvkm_warn(subdev,
			  "memory not aligned as requested: %pad (0x%x)\n",
			  &node->handle, align);

	/* present memory for being mapped using small pages */
	node->r.type = 12;
	node->r.offset = node->handle >> 12;
	node->r.length = (npages << PAGE_SHIFT) >> 12;

	node->base.mem.offset = node->handle;
	node->base.mem.mem = &node->r;
	return 0;
}

static int
gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
			 struct gk20a_instobj **_node)
{
	struct gk20a_instobj_iommu *node;
	struct nvkm_subdev *subdev = &imem->base.subdev;
	struct device *dev = subdev->device->dev;
	struct nvkm_mm_node *r;
	int ret;
	int i;

	/*
	 * despite their variable size, instmem allocations are small enough
	 * (< 1 page) to be handled by kzalloc
	 */
	if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
			     sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
		return -ENOMEM;
	*_node = &node->base;
	node->dma_addrs = (void *)(node->pages + npages);

	nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);

	/* Allocate backing memory */
	for (i = 0; i < npages; i++) {
		struct page *p = alloc_page(GFP_KERNEL);
		dma_addr_t dma_adr;

		if (p == NULL) {
			ret = -ENOMEM;
			goto free_pages;
		}
		node->pages[i] = p;
		dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
		if (dma_mapping_error(dev, dma_adr)) {
			nvkm_error(subdev, "DMA mapping error!\n");
			ret = -ENOMEM;
			goto free_pages;
		}
		node->dma_addrs[i] = dma_adr;
	}

	mutex_lock(imem->mm_mutex);
	/* Reserve area from GPU address space */
	ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
			   align >> imem->iommu_pgshift, &r);
	mutex_unlock(imem->mm_mutex);
	if (ret) {
		nvkm_error(subdev, "IOMMU space is full!\n");
		goto free_pages;
	}

	/* Map into GPU address space */
	for (i = 0; i < npages; i++) {
		u32 offset = (r->offset + i) << imem->iommu_pgshift;

		ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
		if (ret < 0) {
			nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);

			while (i-- > 0) {
				offset -= PAGE_SIZE;
				iommu_unmap(imem->domain, offset, PAGE_SIZE);
			}
			goto release_area;
		}
	}

	/* IOMMU bit tells that an address is to be resolved through the IOMMU */
	r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);

	node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
	node->base.mem.mem = r;
	return 0;

release_area:
	mutex_lock(imem->mm_mutex);
	nvkm_mm_free(imem->mm, &r);
	mutex_unlock(imem->mm_mutex);

free_pages:
	for (i = 0; i < npages && node->pages[i] != NULL; i++) {
		dma_addr_t dma_addr = node->dma_addrs[i];
		if (dma_addr)
			dma_unmap_page(dev, dma_addr, PAGE_SIZE,
				       DMA_BIDIRECTIONAL);
		__free_page(node->pages[i]);
	}

	return ret;
}

static int
gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
		  struct nvkm_memory **pmemory)
{
	struct gk20a_instmem *imem = gk20a_instmem(base);
	struct nvkm_subdev *subdev = &imem->base.subdev;
	struct gk20a_instobj *node = NULL;
	int ret;

	nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
		   imem->domain ? "IOMMU" : "DMA", size, align);

	/* Round size and align to page bounds */
	size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
	align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);

	if (imem->domain)
		ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
					       align, &node);
	else
		ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
					     align, &node);
	*pmemory = node ? &node->memory : NULL;
	if (ret)
		return ret;

	node->imem = imem;

	/* present memory for being mapped using small pages */
	node->mem.size = size >> 12;
	node->mem.memtype = 0;
	node->mem.page_shift = 12;

	nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
		   size, align, node->mem.offset);

	return 0;
}

static void *
gk20a_instmem_dtor(struct nvkm_instmem *base)
{
	struct gk20a_instmem *imem = gk20a_instmem(base);

	/* perform some sanity checks... */
	if (!list_empty(&imem->vaddr_lru))
		nvkm_warn(&base->subdev, "instobj LRU not empty!\n");

	if (imem->vaddr_use != 0)
		nvkm_warn(&base->subdev, "instobj vmap area not empty! "
			  "0x%x bytes still mapped\n", imem->vaddr_use);

	return imem;
}

static const struct nvkm_instmem_func
gk20a_instmem = {
	.dtor = gk20a_instmem_dtor,
	.memory_new = gk20a_instobj_new,
	.persistent = true,
	.zero = false,
};

int
gk20a_instmem_new(struct nvkm_device *device, int index,
		  struct nvkm_instmem **pimem)
{
	struct nvkm_device_tegra *tdev = device->func->tegra(device);
	struct gk20a_instmem *imem;

	if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
		return -ENOMEM;
	nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
	mutex_init(&imem->lock);
	*pimem = &imem->base;

	/* do not allow more than 1MB of CPU-mapped instmem */
	imem->vaddr_use = 0;
	imem->vaddr_max = 0x100000;
	INIT_LIST_HEAD(&imem->vaddr_lru);

	if (tdev->iommu.domain) {
		imem->mm_mutex = &tdev->iommu.mutex;
		imem->mm = &tdev->iommu.mm;
		imem->domain = tdev->iommu.domain;
		imem->iommu_pgshift = tdev->iommu.pgshift;
		imem->iommu_bit = tdev->func->iommu_bit;

		nvkm_info(&imem->base.subdev, "using IOMMU\n");
	} else {
		imem->attrs = DMA_ATTR_NON_CONSISTENT |
			      DMA_ATTR_WEAK_ORDERING |
			      DMA_ATTR_WRITE_COMBINE;

		nvkm_info(&imem->base.subdev, "using DMA API\n");
	}

	return 0;
}