Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*
 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
 *
 * Floating-point emulation code
 *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2, or (at your option)
 *    any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifdef __NO_PA_HDRS
    PA header file -- do not include this header file for non-PA builds.
#endif

/* 32-bit word grabbing functions */
#define Dbl_firstword(value) Dallp1(value)
#define Dbl_secondword(value) Dallp2(value)
#define Dbl_thirdword(value) dummy_location
#define Dbl_fourthword(value) dummy_location

#define Dbl_sign(object) Dsign(object)
#define Dbl_exponent(object) Dexponent(object)
#define Dbl_signexponent(object) Dsignexponent(object)
#define Dbl_mantissap1(object) Dmantissap1(object)
#define Dbl_mantissap2(object) Dmantissap2(object)
#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
#define Dbl_allp1(object) Dallp1(object)
#define Dbl_allp2(object) Dallp2(object)

/* dbl_and_signs ANDs the sign bits of each argument and puts the result
 * into the first argument. dbl_or_signs ors those same sign bits */
#define Dbl_and_signs( src1dst, src2)		\
    Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
#define Dbl_or_signs( src1dst, src2)		\
    Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)

/* The hidden bit is always the low bit of the exponent */
#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
#define Dbl_clear_signexponent_set_hidden(srcdst) \
    Deposit_dsignexponent(srcdst,1)
#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
#define Dbl_clear_signexponent(srcdst) \
    Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)

/* Exponent field for doubles has already been cleared and may be
 * included in the shift.  Here we need to generate two double width
 * variable shifts.  The insignificant bits can be ignored.
 *      MTSAR f(varamount)
 *      VSHD	srcdst.high,srcdst.low => srcdst.low
 *	VSHD	0,srcdst.high => srcdst.high 
 * This is very difficult to model with C expressions since the shift amount
 * could exceed 32.  */
/* varamount must be less than 64 */
#define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
    {if((varamount) >= 32) {						\
        Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
        Dallp1(srcdstA)=0;						\
    }									\
    else if(varamount > 0) {						\
	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\
	  (varamount), Dallp2(srcdstB));				\
	Dallp1(srcdstA) >>= varamount;					\
    } }
/* varamount must be less than 64 */
#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
    {if((varamount) >= 32) {						\
        Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \
    }									\
    else if(varamount > 0) {						\
	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
	(varamount), Dallp2(srcdstB));					\
	Deposit_dexponentmantissap1(srcdstA,				\
	    (Dexponentmantissap1(srcdstA)>>varamount));			\
    } }
/* varamount must be less than 64 */
#define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
    {if((varamount) >= 32) {						\
	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
	Dallp2(srcdstB)=0;						\
    }									\
    else {								\
	if ((varamount) > 0) {						\
	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
		(Dallp2(srcdstB) >> (32-(varamount)));			\
	    Dallp2(srcdstB) <<= varamount;				\
	}								\
    } }
#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
    Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
    Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb)) 
    
#define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
    Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
		  Extlow(right)

#define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
    Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
    Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
   
/* Sign extend the sign bit with an integer destination */
#define Dbl_signextendedsign(value)  Dsignedsign(value)

#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
/* Singles and doubles may include the sign and exponent fields.  The
 * hidden bit and the hidden overflow must be included. */
#define Dbl_increment(dbl_valueA,dbl_valueB) \
    if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
    if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
    Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
#define Dbl_decrement(dbl_valueA,dbl_valueB) \
    if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
    Dallp2(dbl_valueB) -= 1

#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
    (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
    (Dhiddenhigh7mantissa(dbl_value)!=0)
#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
    (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
    (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
    Dallp2(dbl_valueB)==0)
#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
    (Dhiddenhigh3mantissa(dbl_value)==0)
#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
    (Dhiddenhigh7mantissa(dbl_value)==0)
#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
    (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_isinfinity_exponent(dbl_value)		\
    (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
#define Dbl_isnotinfinity_exponent(dbl_value)		\
    (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
#define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
    Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_isnan(dbl_valueA,dbl_valueB)		\
    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
    (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
#define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
    (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))

#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
      Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
      Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
      Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
      Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
     ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
      (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))

#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
    Dallp2(dbl_valueB) <<= 8
#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
    Dallp2(dbl_valueB) <<= 7
#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
    Dallp2(dbl_valueB) <<= 4
#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
    Dallp2(dbl_valueB) <<= 3
#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
    Dallp2(dbl_valueB) <<= 2
#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
    Dallp2(dbl_valueB) <<= 1

#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
    Dallp1(dbl_valueA) >>= 8
#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
    Dallp1(dbl_valueA) >>= 4
#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
    Dallp1(dbl_valueA) >>= 2
#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
    Dallp1(dbl_valueA) >>= 1
    
/* This magnitude comparison uses the signless first words and
 * the regular part2 words.  The comparison is graphically:
 *
 *       1st greater?  -------------
 *                                 |
 *       1st less?-----------------+---------
 *                                 |        |
 *       2nd greater or equal----->|        |
 *                               False     True
 */
#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
      ((signlessleft <= signlessright) &&				\
       ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
    
#define Dbl_copytoint_exponentmantissap1(src,dest) \
    dest = Dexponentmantissap1(src)

/* A quiet NaN has the high mantissa bit clear and at least on other (in this
 * case the adjacent bit) bit set. */
#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)

#define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
    Deposit_dmantissap1(desta,valuea);			\
    Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_mantissap1(desta,valuea)		\
    Deposit_dmantissap1(desta,valuea)
#define Dbl_set_mantissap2(destb,valueb)		\
    Dmantissap2(destb) = Dmantissap2(valueb)

#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
    Deposit_dexponentmantissap1(desta,valuea);			\
    Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_exponentmantissap1(dest,value)			\
    Deposit_dexponentmantissap1(dest,value)

#define Dbl_copyfromptr(src,desta,destb) \
    Dallp1(desta) = src->wd0;		\
    Dallp2(destb) = src->wd1 
#define Dbl_copytoptr(srca,srcb,dest)	\
    dest->wd0 = Dallp1(srca);		\
    dest->wd1 = Dallp2(srcb)

/*  An infinity is represented with the max exponent and a zero mantissa */
#define Dbl_setinfinity_exponent(dbl_value) \
    Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
    Deposit_dexponentmantissap1(dbl_valueA, 			\
    (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
    Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
    Dallp1(dbl_valueA) 						\
        = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
    Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
    Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\
         (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
    Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\
	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
    Dmantissap2(dbl_valueB) = 0

#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
#define Dbl_setzero_exponent(dbl_value) 		\
    Dallp1(dbl_value) &= 0x800fffff
#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
    Dallp1(dbl_valueA) &= 0xfff00000; 			\
    Dallp2(dbl_valueB) = 0
#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
    Dallp1(dbl_valueA) &= 0x80000000;		\
    Dallp2(dbl_valueB) = 0
#define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
    Dallp1(dbl_valueA) &= 0x80000000
#define Dbl_setzero(dbl_valueA,dbl_valueB) \
    Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
#define Dbl_setnegativezero(dbl_value) \
    Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31

/* Use the following macro for both overflow & underflow conditions */
#define ovfl -
#define unfl +
#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
    Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))

#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\
    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
    Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\
    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\
			| ((unsigned int)1<<31);			\
    Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
    Deposit_dexponentmantissap1(dbl_valueA,				\
	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
    Dallp2(dbl_valueB) = 0xFFFFFFFF

#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\
    Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\
			 << (32-(1+DBL_EXP_LENGTH)) ; 			\
    Dallp2(dbl_valueB) = 0
#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\
         ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\
	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
    Dallp2(dbl_valueB) = 0xFFFFFFFF
    

/* The high bit is always zero so arithmetic or logical shifts will work. */
#define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
    if( shift >= 32 ) 							\
	{								\
	/* Big shift requires examining the portion shift off 		\
	the end to properly set inexact.  */				\
	if(shift < 64)							\
	    {								\
	    if(shift > 32)						\
		{							\
	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
		 shift-32, Extall(extent));				\
	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
	        }							\
	    else Extall(extent) = Dallp2(srcdstB);			\
	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
	    }								\
	else								\
	    {								\
	    Extall(extent) = Dallp1(srcdstA);				\
	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
	    Dallp2(srcdstB) = 0;					\
	    }								\
	Dallp1(srcdstA) = 0;						\
	}								\
    else								\
	{								\
	/* Small alignment is simpler.  Extension is easily set. */	\
	if (shift > 0)							\
	    {								\
	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
	     Dallp2(srcdstB));						\
	    Dallp1(srcdstA) >>= shift;					\
	    }								\
	else Extall(extent) = 0;					\
	}

/* 
 * Here we need to shift the result right to correct for an overshift
 * (due to the exponent becoming negative) during normalization.
 */
#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\
		(Dallp2(srcdstB) >> (shift));				\
	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift

#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)

/* The left argument is never smaller than the right argument */
#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
    if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
    Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
    Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)

/* Subtract right augmented with extension from left augmented with zeros and
 * store into result and extension. */
#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
    Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
    if( (Extall(extent) = 0-Extall(extent)) )				\
        {								\
        if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
        }

#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
    /* If the sum of the low words is less than either source, then	\
     * an overflow into the next word occurred. */			\
    Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
    if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
	Dallp1(resulta)++

#define Dbl_xortointp1(left,right,result)			\
    result = Dallp1(left) XOR Dallp1(right)

#define Dbl_xorfromintp1(left,right,result)			\
    Dallp1(result) = left XOR Dallp1(right)

#define Dbl_swap_lower(left,right)				\
    Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
    Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
    Dallp2(left)  = Dallp2(left) XOR Dallp2(right)

/* Need to Initialize */
#define Dbl_makequietnan(desta,destb)					\
    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
                 | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
    Dallp2(destb) = 0
#define Dbl_makesignalingnan(desta,destb)				\
    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
                 | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
    Dallp2(destb) = 0

#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
		exponent -= 8;						\
	}								\
	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
		exponent -= 4;						\
	}								\
	while(Dbl_iszero_hidden(dbl_opndA)) {				\
		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
		exponent -= 1;						\
	}

#define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
	/* 							\
	 * want this macro to generate:				\
	 *	ADD	src1dstB,src2B,src1dstB;		\
	 *	ADDC	src1dstA,src2A,src1dstA;		\
	 */							\
	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
	Dallp1(src1dstA) += (src2A);				\
	Dallp2(src1dstB) += (src2B)

#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
	/* 							\
	 * want this macro to generate:				\
	 *	SUB	src1dstB,src2B,src1dstB;		\
	 *	SUBB	src1dstA,src2A,src1dstA;		\
	 */							\
	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
	Dallp1(src1dstA) -= (src2A);				\
	Dallp2(src1dstB) -= (src2B)

#define Dbl_setoverflow(resultA,resultB)				\
	/* set result to infinity or largest number */			\
	switch (Rounding_mode()) {					\
		case ROUNDPLUS:						\
			if (Dbl_isone_sign(resultA)) {			\
				Dbl_setlargestnegative(resultA,resultB); \
			}						\
			else {						\
				Dbl_setinfinitypositive(resultA,resultB); \
			}						\
			break;						\
		case ROUNDMINUS:					\
			if (Dbl_iszero_sign(resultA)) {			\
				Dbl_setlargestpositive(resultA,resultB); \
			}						\
			else {						\
				Dbl_setinfinitynegative(resultA,resultB); \
			}						\
			break;						\
		case ROUNDNEAREST:					\
			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
			break;						\
		case ROUNDZERO:						\
			Dbl_setlargest_exponentmantissa(resultA,resultB); \
	}

#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
    Dbl_clear_signexponent_set_hidden(opndp1);				\
    if (exponent >= (1-DBL_P)) {					\
	if (exponent >= -31) {						\
	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\
	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
	    if (exponent > -31) {					\
		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
		Dallp1(opndp1) >>= 1-exponent;				\
	    }								\
	    else {							\
		Dallp2(opndp2) = Dallp1(opndp1);			\
		Dbl_setzerop1(opndp1);					\
	    }								\
	}								\
	else {								\
	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\
	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\
	    Dbl_setzerop1(opndp1);					\
	}								\
	inexact = guard | sticky;					\
    }									\
    else {								\
	guard = 0;							\
	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
	Dbl_setzero(opndp1,opndp2);					\
	inexact = sticky;						\
    }

/* 
 * The fused multiply add instructions requires a double extended format,
 * with 106 bits of mantissa.
 */
#define DBLEXT_THRESHOLD 106

#define Dblext_setzero(valA,valB,valC,valD)	\
    Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\
    Dextallp3(valC) = 0; Dextallp4(valD) = 0


#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
    Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)

#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
    Dextallp1(desta) = Dextallp4(srca);	\
    Dextallp2(destb) = Dextallp4(srcb);	\
    Dextallp3(destc) = Dextallp4(srcc);	\
    Dextallp4(destd) = Dextallp4(srcd)

#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \
    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
    Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
    Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
    Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4)

#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)

/* The high bit is always zero so arithmetic or logical shifts will work. */
#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
  {int shiftamt, sticky;						\
    shiftamt = shift % 32;						\
    sticky = 0;								\
    switch (shift/32) {							\
     case 0: if (shiftamt > 0) {					\
	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\
                Variable_shift_double(Dextallp3(srcdstC),		\
		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\
                Variable_shift_double(Dextallp2(srcdstB),		\
		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\
                Variable_shift_double(Dextallp1(srcdstA),		\
		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\
	        Dextallp1(srcdstA) >>= shiftamt;			\
	     }								\
	     break;							\
     case 1: if (shiftamt > 0) {					\
                sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\
			 Dextallp4(srcdstD);				\
                Variable_shift_double(Dextallp2(srcdstB),		\
		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\
                Variable_shift_double(Dextallp1(srcdstA),		\
		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\
	     }								\
	     else {							\
		sticky = Dextallp4(srcdstD);				\
		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\
		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\
	     }								\
	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\
	     Dextallp1(srcdstA) = 0;					\
	     break;							\
     case 2: if (shiftamt > 0) {					\
                sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\
			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
                Variable_shift_double(Dextallp1(srcdstA),		\
		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\
	     }								\
	     else {							\
		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\
	     }								\
	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\
	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
	     break;							\
     case 3: if (shiftamt > 0) {					\
                sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\
			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
			 Dextallp4(srcdstD);				\
	     }								\
	     else {							\
		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
		    Dextallp4(srcdstD);					\
	     }								\
	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\
	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
	     Dextallp3(srcdstC) = 0;					\
	     break;							\
    }									\
    if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\
  }

/* The left argument is never smaller than the right argument */
#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
    if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\
	if( (Dextallp3(leftc)--) == 0)				\
	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
    Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\
    if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\
        if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
    Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\
    if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
    Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\
    Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)

#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
    /* If the sum of the low words is less than either source, then \
     * an overflow into the next word occurred. */ \
    if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
	Dextallp4(rightd)) \
	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
	    Dextallp3(rightc)) \
	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
	        <= Dextallp2(rightb))  \
		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
	else \
	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
	        Dextallp2(rightb)) \
		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
    else \
	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
	    Dextallp3(rightc))  \
	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
	        <= Dextallp2(rightb)) \
		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
	else \
	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
	        Dextallp2(rightb)) \
		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)


#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\
    Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
    Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
    Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
    Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
   
#define Dblext_leftshiftby8(valA,valB,valC,valD) \
    Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
    Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
    Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
    Dextallp4(valD) <<= 8
#define Dblext_leftshiftby4(valA,valB,valC,valD) \
    Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
    Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
    Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
    Dextallp4(valD) <<= 4
#define Dblext_leftshiftby3(valA,valB,valC,valD) \
    Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
    Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
    Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
    Dextallp4(valD) <<= 3
#define Dblext_leftshiftby2(valA,valB,valC,valD) \
    Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
    Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
    Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
    Dextallp4(valD) <<= 2
#define Dblext_leftshiftby1(valA,valB,valC,valD) \
    Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
    Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
    Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
    Dextallp4(valD) <<= 1

#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
    Dextallp1(valueA) >>= 4
#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
    Dextallp1(valueA) >>= 1

#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)

#define Dblext_xorfromintp1(left,right,result) \
	Dbl_xorfromintp1(left,right,result)

#define Dblext_copytoint_exponentmantissap1(src,dest) \
	Dbl_copytoint_exponentmantissap1(src,dest)

#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)

#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0

#define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)  
#define Dblext_clear_signexponent_set_hidden(srcdst) \
	Dbl_clear_signexponent_set_hidden(srcdst) 
#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst) 
#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst) 
#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value) 

/*
 * The Fourword_add() macro assumes that integers are 4 bytes in size.
 * It will break if this is not the case.
 */

#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
	/* 								\
	 * want this macro to generate:					\
	 *	ADD	src1dstD,src2D,src1dstD;			\
	 *	ADDC	src1dstC,src2C,src1dstC;			\
	 *	ADDC	src1dstB,src2B,src1dstB;			\
	 *	ADDC	src1dstA,src2A,src1dstA;			\
	 */								\
	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\
	       (unsigned int)(src2C)) {					\
	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
		 (unsigned int)(src2B)) src1dstA++;			\
	   }								\
	   else if ((unsigned int)(src1dstB += (src2B)) < 		\
		    (unsigned int)(src2B)) src1dstA++;			\
	}								\
	else {								\
	   if ((unsigned int)(src1dstC += (src2C)) <			\
	       (unsigned int)(src2C)) {					\
	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
		  (unsigned int)(src2B)) src1dstA++;			\
	   }								\
	   else if ((unsigned int)(src1dstB += (src2B)) <		\
		    (unsigned int)(src2B)) src1dstA++;			\
	}								\
	src1dstA += (src2A)

#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
  {int shiftamt, sticky;						\
    is_tiny = TRUE;							\
    if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\
	switch (Rounding_mode()) {					\
	case ROUNDPLUS:							\
		if (Dbl_iszero_sign(opndp1)) {				\
			Dbl_increment(opndp1,opndp2);			\
			if (Dbl_isone_hiddenoverflow(opndp1))		\
				is_tiny = FALSE;			\
			Dbl_decrement(opndp1,opndp2);			\
		}							\
		break;							\
	case ROUNDMINUS:						\
		if (Dbl_isone_sign(opndp1)) {				\
			Dbl_increment(opndp1,opndp2);			\
			if (Dbl_isone_hiddenoverflow(opndp1))		\
				is_tiny = FALSE;			\
			Dbl_decrement(opndp1,opndp2);			\
		}							\
		break;							\
	case ROUNDNEAREST:						\
		if (Dblext_isone_highp3(opndp3) &&			\
		    (Dblext_isone_lowp2(opndp2) || 			\
		     Dblext_isnotzero_low31p3(opndp3)))	{		\
			Dbl_increment(opndp1,opndp2);			\
			if (Dbl_isone_hiddenoverflow(opndp1))		\
				is_tiny = FALSE;			\
			Dbl_decrement(opndp1,opndp2);			\
		}							\
		break;							\
	}								\
    }									\
    Dblext_clear_signexponent_set_hidden(opndp1);			\
    if (exponent >= (1-QUAD_P)) {					\
	shiftamt = (1-exponent) % 32;					\
	switch((1-exponent)/32) {					\
	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\
		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\
		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\
		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\
		  Dextallp1(opndp1) >>= shiftamt;			\
		  break;						\
	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\
			   Dextallp4(opndp4);				\
		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\
		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\
		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\
		  Dextallp1(opndp1) = 0;				\
		  break;						\
	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\
			    Dextallp3(opndp3) | Dextallp4(opndp4);	\
		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\
		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\
		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
		  break;						\
	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\
		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\
			Dextallp4(opndp4);				\
		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\
		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
		  Dextallp3(opndp3) = 0;				\
		  break;						\
	}								\
    }									\
    else {								\
	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\
		 Dextallp3(opndp3) | Dextallp4(opndp4);			\
	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\
    }									\
    if (sticky) Dblext_setone_lowmantissap4(opndp4);			\
    exponent = 0;							\
  }