Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 */

#include "intel_drv.h"

#define CTM_COEFF_SIGN	(1ULL << 63)

#define CTM_COEFF_1_0	(1ULL << 32)
#define CTM_COEFF_2_0	(CTM_COEFF_1_0 << 1)
#define CTM_COEFF_4_0	(CTM_COEFF_2_0 << 1)
#define CTM_COEFF_8_0	(CTM_COEFF_4_0 << 1)
#define CTM_COEFF_0_5	(CTM_COEFF_1_0 >> 1)
#define CTM_COEFF_0_25	(CTM_COEFF_0_5 >> 1)
#define CTM_COEFF_0_125	(CTM_COEFF_0_25 >> 1)

#define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)

#define CTM_COEFF_NEGATIVE(coeff)	(((coeff) & CTM_COEFF_SIGN) != 0)
#define CTM_COEFF_ABS(coeff)		((coeff) & (CTM_COEFF_SIGN - 1))

#define LEGACY_LUT_LENGTH		(sizeof(struct drm_color_lut) * 256)

/*
 * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
 * format). This macro takes the coefficient we want transformed and the
 * number of fractional bits.
 *
 * We only have a 9 bits precision window which slides depending on the value
 * of the CTM coefficient and we write the value from bit 3. We also round the
 * value.
 */
#define I9XX_CSC_COEFF_FP(coeff, fbits)	\
	(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)

#define I9XX_CSC_COEFF_LIMITED_RANGE	\
	I9XX_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
#define I9XX_CSC_COEFF_1_0		\
	((7 << 12) | I9XX_CSC_COEFF_FP(CTM_COEFF_1_0, 8))

static bool crtc_state_is_legacy(struct drm_crtc_state *state)
{
	return !state->degamma_lut &&
		!state->ctm &&
		state->gamma_lut &&
		state->gamma_lut->length == LEGACY_LUT_LENGTH;
}

/*
 * When using limited range, multiply the matrix given by userspace by
 * the matrix that we would use for the limited range. We do the
 * multiplication in U2.30 format.
 */
static void ctm_mult_by_limited(uint64_t *result, int64_t *input)
{
	int i;

	for (i = 0; i < 9; i++)
		result[i] = 0;

	for (i = 0; i < 3; i++) {
		int64_t user_coeff = input[i * 3 + i];
		uint64_t limited_coeff = CTM_COEFF_LIMITED_RANGE >> 2;
		uint64_t abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff),
					       0,
					       CTM_COEFF_4_0 - 1) >> 2;

		result[i * 3 + i] = (limited_coeff * abs_coeff) >> 27;
		if (CTM_COEFF_NEGATIVE(user_coeff))
			result[i * 3 + i] |= CTM_COEFF_SIGN;
	}
}

/* Set up the pipe CSC unit. */
static void i9xx_load_csc_matrix(struct drm_crtc_state *crtc_state)
{
	struct drm_crtc *crtc = crtc_state->crtc;
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i, pipe = intel_crtc->pipe;
	uint16_t coeffs[9] = { 0, };
	struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state);

	if (crtc_state->ctm) {
		struct drm_color_ctm *ctm =
			(struct drm_color_ctm *)crtc_state->ctm->data;
		uint64_t input[9] = { 0, };

		if (intel_crtc_state->limited_color_range) {
			ctm_mult_by_limited(input, ctm->matrix);
		} else {
			for (i = 0; i < ARRAY_SIZE(input); i++)
				input[i] = ctm->matrix[i];
		}

		/*
		 * Convert fixed point S31.32 input to format supported by the
		 * hardware.
		 */
		for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
			uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];

			/*
			 * Clamp input value to min/max supported by
			 * hardware.
			 */
			abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);

			/* sign bit */
			if (CTM_COEFF_NEGATIVE(input[i]))
				coeffs[i] |= 1 << 15;

			if (abs_coeff < CTM_COEFF_0_125)
				coeffs[i] |= (3 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 12);
			else if (abs_coeff < CTM_COEFF_0_25)
				coeffs[i] |= (2 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 11);
			else if (abs_coeff < CTM_COEFF_0_5)
				coeffs[i] |= (1 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 10);
			else if (abs_coeff < CTM_COEFF_1_0)
				coeffs[i] |= I9XX_CSC_COEFF_FP(abs_coeff, 9);
			else if (abs_coeff < CTM_COEFF_2_0)
				coeffs[i] |= (7 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 8);
			else
				coeffs[i] |= (6 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 7);
		}
	} else {
		/*
		 * Load an identity matrix if no coefficients are provided.
		 *
		 * TODO: Check what kind of values actually come out of the
		 * pipe with these coeff/postoff values and adjust to get the
		 * best accuracy. Perhaps we even need to take the bpc value
		 * into consideration.
		 */
		for (i = 0; i < 3; i++) {
			if (intel_crtc_state->limited_color_range)
				coeffs[i * 3 + i] =
					I9XX_CSC_COEFF_LIMITED_RANGE;
			else
				coeffs[i * 3 + i] = I9XX_CSC_COEFF_1_0;
		}
	}

	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);

	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);

	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);

	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);

	if (INTEL_GEN(dev_priv) > 6) {
		uint16_t postoff = 0;

		if (intel_crtc_state->limited_color_range)
			postoff = (16 * (1 << 12) / 255) & 0x1fff;

		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);

		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
	} else {
		uint32_t mode = CSC_MODE_YUV_TO_RGB;

		if (intel_crtc_state->limited_color_range)
			mode |= CSC_BLACK_SCREEN_OFFSET;

		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
	}
}

/*
 * Set up the pipe CSC unit on CherryView.
 */
static void cherryview_load_csc_matrix(struct drm_crtc_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int pipe = to_intel_crtc(crtc)->pipe;
	uint32_t mode;

	if (state->ctm) {
		struct drm_color_ctm *ctm =
			(struct drm_color_ctm *) state->ctm->data;
		uint16_t coeffs[9] = { 0, };
		int i;

		for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
			uint64_t abs_coeff =
				((1ULL << 63) - 1) & ctm->matrix[i];

			/* Round coefficient. */
			abs_coeff += 1 << (32 - 13);
			/* Clamp to hardware limits. */
			abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);

			/* Write coefficients in S3.12 format. */
			if (ctm->matrix[i] & (1ULL << 63))
				coeffs[i] = 1 << 15;
			coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
			coeffs[i] |= (abs_coeff >> 20) & 0xfff;
		}

		I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
			   coeffs[1] << 16 | coeffs[0]);
		I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
			   coeffs[3] << 16 | coeffs[2]);
		I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
			   coeffs[5] << 16 | coeffs[4]);
		I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
			   coeffs[7] << 16 | coeffs[6]);
		I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
	}

	mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
	if (!crtc_state_is_legacy(state)) {
		mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
			(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
	}
	I915_WRITE(CGM_PIPE_MODE(pipe), mode);
}

void intel_color_set_csc(struct drm_crtc_state *crtc_state)
{
	struct drm_device *dev = crtc_state->crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);

	if (dev_priv->display.load_csc_matrix)
		dev_priv->display.load_csc_matrix(crtc_state);
}

/* Loads the legacy palette/gamma unit for the CRTC. */
static void i9xx_load_luts_internal(struct drm_crtc *crtc,
				    struct drm_property_blob *blob,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	int i;

	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
			assert_dsi_pll_enabled(dev_priv);
		else
			assert_pll_enabled(dev_priv, pipe);
	}

	if (blob) {
		struct drm_color_lut *lut = (struct drm_color_lut *) blob->data;
		for (i = 0; i < 256; i++) {
			uint32_t word =
				(drm_color_lut_extract(lut[i].red, 8) << 16) |
				(drm_color_lut_extract(lut[i].green, 8) << 8) |
				drm_color_lut_extract(lut[i].blue, 8);

			if (HAS_GMCH_DISPLAY(dev_priv))
				I915_WRITE(PALETTE(pipe, i), word);
			else
				I915_WRITE(LGC_PALETTE(pipe, i), word);
		}
	} else {
		for (i = 0; i < 256; i++) {
			uint32_t word = (i << 16) | (i << 8) | i;

			if (HAS_GMCH_DISPLAY(dev_priv))
				I915_WRITE(PALETTE(pipe, i), word);
			else
				I915_WRITE(LGC_PALETTE(pipe, i), word);
		}
	}
}

static void i9xx_load_luts(struct drm_crtc_state *crtc_state)
{
	i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut,
				to_intel_crtc_state(crtc_state));
}

/* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
static void haswell_load_luts(struct drm_crtc_state *crtc_state)
{
	struct drm_crtc *crtc = crtc_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *intel_crtc_state =
		to_intel_crtc_state(crtc_state);
	bool reenable_ips = false;

	/*
	 * Workaround : Do not read or write the pipe palette/gamma data while
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
	 */
	if (IS_HASWELL(dev_priv) && intel_crtc_state->ips_enabled &&
	    (intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
		hsw_disable_ips(intel_crtc);
		reenable_ips = true;
	}

	intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);

	i9xx_load_luts(crtc_state);

	if (reenable_ips)
		hsw_enable_ips(intel_crtc);
}

/* Loads the palette/gamma unit for the CRTC on Broadwell+. */
static void broadwell_load_luts(struct drm_crtc_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
	uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;

	if (crtc_state_is_legacy(state)) {
		haswell_load_luts(state);
		return;
	}

	I915_WRITE(PREC_PAL_INDEX(pipe),
		   PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);

	if (state->degamma_lut) {
		struct drm_color_lut *lut =
			(struct drm_color_lut *) state->degamma_lut->data;

		for (i = 0; i < lut_size; i++) {
			uint32_t word =
			drm_color_lut_extract(lut[i].red, 10) << 20 |
			drm_color_lut_extract(lut[i].green, 10) << 10 |
			drm_color_lut_extract(lut[i].blue, 10);

			I915_WRITE(PREC_PAL_DATA(pipe), word);
		}
	} else {
		for (i = 0; i < lut_size; i++) {
			uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);

			I915_WRITE(PREC_PAL_DATA(pipe),
				   (v << 20) | (v << 10) | v);
		}
	}

	if (state->gamma_lut) {
		struct drm_color_lut *lut =
			(struct drm_color_lut *) state->gamma_lut->data;

		for (i = 0; i < lut_size; i++) {
			uint32_t word =
			(drm_color_lut_extract(lut[i].red, 10) << 20) |
			(drm_color_lut_extract(lut[i].green, 10) << 10) |
			drm_color_lut_extract(lut[i].blue, 10);

			I915_WRITE(PREC_PAL_DATA(pipe), word);
		}

		/* Program the max register to clamp values > 1.0. */
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
			   drm_color_lut_extract(lut[i].red, 16));
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
			   drm_color_lut_extract(lut[i].green, 16));
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
			   drm_color_lut_extract(lut[i].blue, 16));
	} else {
		for (i = 0; i < lut_size; i++) {
			uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);

			I915_WRITE(PREC_PAL_DATA(pipe),
				   (v << 20) | (v << 10) | v);
		}

		I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
	}

	intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
	I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
	POSTING_READ(GAMMA_MODE(pipe));

	/*
	 * Reset the index, otherwise it prevents the legacy palette to be
	 * written properly.
	 */
	I915_WRITE(PREC_PAL_INDEX(pipe), 0);
}

/* Loads the palette/gamma unit for the CRTC on CherryView. */
static void cherryview_load_luts(struct drm_crtc_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
	struct drm_color_lut *lut;
	uint32_t i, lut_size;
	uint32_t word0, word1;

	if (crtc_state_is_legacy(state)) {
		/* Turn off degamma/gamma on CGM block. */
		I915_WRITE(CGM_PIPE_MODE(pipe),
			   (state->ctm ? CGM_PIPE_MODE_CSC : 0));
		i9xx_load_luts_internal(crtc, state->gamma_lut,
					to_intel_crtc_state(state));
		return;
	}

	if (state->degamma_lut) {
		lut = (struct drm_color_lut *) state->degamma_lut->data;
		lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
		for (i = 0; i < lut_size; i++) {
			/* Write LUT in U0.14 format. */
			word0 =
			(drm_color_lut_extract(lut[i].green, 14) << 16) |
			drm_color_lut_extract(lut[i].blue, 14);
			word1 = drm_color_lut_extract(lut[i].red, 14);

			I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
			I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
		}
	}

	if (state->gamma_lut) {
		lut = (struct drm_color_lut *) state->gamma_lut->data;
		lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
		for (i = 0; i < lut_size; i++) {
			/* Write LUT in U0.10 format. */
			word0 =
			(drm_color_lut_extract(lut[i].green, 10) << 16) |
			drm_color_lut_extract(lut[i].blue, 10);
			word1 = drm_color_lut_extract(lut[i].red, 10);

			I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
			I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
		}
	}

	I915_WRITE(CGM_PIPE_MODE(pipe),
		   (state->ctm ? CGM_PIPE_MODE_CSC : 0) |
		   (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
		   (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));

	/*
	 * Also program a linear LUT in the legacy block (behind the
	 * CGM block).
	 */
	i9xx_load_luts_internal(crtc, NULL, to_intel_crtc_state(state));
}

void intel_color_load_luts(struct drm_crtc_state *crtc_state)
{
	struct drm_device *dev = crtc_state->crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);

	dev_priv->display.load_luts(crtc_state);
}

int intel_color_check(struct drm_crtc *crtc,
		      struct drm_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	size_t gamma_length, degamma_length;

	degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size *
		sizeof(struct drm_color_lut);
	gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size *
		sizeof(struct drm_color_lut);

	/*
	 * We allow both degamma & gamma luts at the right size or
	 * NULL.
	 */
	if ((!crtc_state->degamma_lut ||
	     crtc_state->degamma_lut->length == degamma_length) &&
	    (!crtc_state->gamma_lut ||
	     crtc_state->gamma_lut->length == gamma_length))
		return 0;

	/*
	 * We also allow no degamma lut and a gamma lut at the legacy
	 * size (256 entries).
	 */
	if (!crtc_state->degamma_lut &&
	    crtc_state->gamma_lut &&
	    crtc_state->gamma_lut->length == LEGACY_LUT_LENGTH)
		return 0;

	return -EINVAL;
}

void intel_color_init(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);

	drm_mode_crtc_set_gamma_size(crtc, 256);

	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
		dev_priv->display.load_luts = cherryview_load_luts;
	} else if (IS_HASWELL(dev_priv)) {
		dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
		dev_priv->display.load_luts = haswell_load_luts;
	} else if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv) ||
		   IS_BROXTON(dev_priv) || IS_KABYLAKE(dev_priv)) {
		dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
		dev_priv->display.load_luts = broadwell_load_luts;
	} else {
		dev_priv->display.load_luts = i9xx_load_luts;
	}

	/* Enable color management support when we have degamma & gamma LUTs. */
	if (INTEL_INFO(dev_priv)->color.degamma_lut_size != 0 &&
	    INTEL_INFO(dev_priv)->color.gamma_lut_size != 0)
		drm_crtc_enable_color_mgmt(crtc,
					   INTEL_INFO(dev_priv)->color.degamma_lut_size,
					   true,
					   INTEL_INFO(dev_priv)->color.gamma_lut_size);
}